Packaging and degradability properties of polyvinyl alc filled water hyacinth cellulose nanocrystals

Journal of Bioresources and Bioproducts

6,168-185

DOI: 10.1016/j.jobab.2021.02.009

Citation Report

#	Article	IF	CITATIONS
1	Effect of Plasticizer Content on the Structure and Properties of SPI/MA-g-PBAT Blend Films. Journal of Polymers and the Environment, 2022, 30, 562-568.	2.4	5
2	Preparation and properties of poly (vinyl alcohol)/sodium caseinate blend films crosslinked with glutaraldehyde and glyoxal. Journal of Polymer Engineering, 2021, 41, 808-817.	0.6	2
3	The Use of Nanocellulose in Edible Coatings for the Preservation of Perishable Fruits and Vegetables. Coatings, 2021, 11, 990.	1.2	25
4	Preparation and properties of <scp>PBAT</scp> / <scp>PLA</scp> composites modified by <scp>PVA</scp> and cellulose nanocrystals. Journal of Applied Polymer Science, 2022, 139, 51474.	1.3	9
5	Green and sustainable cellulose-derived humidity sensors: A review. Carbohydrate Polymers, 2021, 270, 118385.	5.1	66
6	Optimization of Processâ€Control Parameters for the Diameter of Electrospun Hydrophilic Polymeric Composite Nanofibers. Macromolecular Materials and Engineering, 2021, 306, 2100471.	1.7	4
7	Cellulose nanocrystals as sustainable material for enhanced painting efficiency of watercolor paint. Surfaces and Interfaces, 2021, 27, 101570.	1.5	6
8	Fabrication and the barrier characterization of the cellulose nanofibers/organic montmorillonite/poly lactic acid nanocomposites. Journal of Applied Polymer Science, 2022, 139, 51827.	1.3	4
9	Recent applications of regenerated cellulose films and hydrogels in food packaging. Current Opinion in Food Science, 2022, 43, 7-17.	4.1	54
10	Healable, Adhesive, and Conductive Nanocomposite Hydrogels with Ultrastretchability for Flexible Sensors. ACS Applied Materials & Interfaces, 2021, 13, 58048-58058.	4.0	40
11	Construction of mechanically robust and recyclable photocatalytic hydrogel based on nanocellulose-supported CdS/MoS2/Montmorillonite hybrid for antibiotic degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128035.	2.3	22
12	Strong water-resistant, UV-blocking cellulose/glucomannan/lignin composite films inspired by natural LCC bonds. Carbohydrate Polymers, 2022, 281, 119083.	5.1	36
13	Large-Scale Manufacture of Recyclable Bioplastics from Renewable Cellulosic Biomass Derived from Softwood Kraft Pulp. ACS Applied Polymer Materials, 2022, 4, 1334-1343.	2.0	8
14	Facile preparation of transparent poly (γâ€glutamic acid) modified poly (vinyl alcohol) hydrogels with high tensile strength and toughness. Journal of Applied Polymer Science, 2022, 139, .	1.3	7
15	Plant extract-based green fabrication of nickel ferrite (NiFe2O4) nanoparticles: An operative platform for non-enzymatic determination of pentachlorophenol. Chemosphere, 2022, 294, 133760.	4.2	35
16	Facile preparation of self-assembled high-performance cellulose based composite. Composites Science and Technology, 2022, 221, 109311.	3.8	2
17	A New Wood Adhesive Based on Recycling Camellia oleifera Cake-Protein: Preparation and Properties. Materials, 2022, 15, 1659.	1.3	4
18	Development of Starch-Based Bioplastic from Jackfruit Seed. Advances in Polymer Technology, 2022, 2022, 1-9.	0.8	11

#	Article	IF	CITATIONS
19	Fabrication and characterization of ZnO nanofilms using extracted pectin of Premna microphylla Turcz leaves and carboxymethyl cellulose. International Journal of Biological Macromolecules, 2022, 209, 525-532.	3.6	10
20	Superhydrophobic polyurethane sponge based on sepiolite for efficient oil/water separation. Journal of Hazardous Materials, 2022, 434, 128833.	6.5	63
21	Cellulose nanofibrils (CNFs) in uniform diameter: Capturing the impact of carboxyl group on dispersion and Re-dispersion of CNFs suspensions. International Journal of Biological Macromolecules, 2022, 207, 23-30.	3.6	17
22	Liquid Transport and Real-Time Dye Purification <i>via</i> Lotus Petiole-Inspired Long-Range-Ordered Anisotropic Cellulose Nanofibril Aerogels. ACS Nano, 2021, 15, 20666-20677.	7.3	75
23	Preparation and benchmarking of novel cellulose nanopaper. Cellulose, 2022, 29, 4393-4411.	2.4	13
24	Morphology engineering processed nanofibrous membranes with secondary structure for high-performance air filtration. Separation and Purification Technology, 2022, 294, 121093.	3.9	80
25	Nanoparticle-reinforced polyacrylamide hydrogel composites for clinical applications: a review. Journal of Materials Science, 2022, 57, 8041-8063.	1.7	15
26	Preparation of Novel Biodegradable Cellulose Nanocrystal Proton Exchange Membranes for Direct Methanol Fuel-Cell Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 5559-5568.	3.2	7
27	Morphology Engineering Processed Nanofibrous Membranes with Secondary Structure for High-Performance Air Filtration. SSRN Electronic Journal, 0, , .	0.4	0
28	Nanocomposites based on the graphene family for food packaging: historical perspective, preparation methods, and properties. RSC Advances, 2022, 12, 14084-14111.	1.7	16
29	The properties of starch/cellulose/polyvinyl alcohol composite as hydrodegradable film. Polymers and Polymer Composites, 2022, 30, 096739112211003.	1.0	0
30	Fabrication of PVA/GO Nanofiber Films by Electrospinning: Application for the Adsorption of Cu2+ and Organic Dyes. Journal of Polymers and the Environment, 2022, 30, 2964-2975.	2.4	13
31	Effects of Additional Polyvinyl Alcohol (PVA) on the Physiochemical Properties of Chitosan-Glutaraldehyde-Gelatine Bioplastic. Jurnal Kimia Sains Dan Aplikasi, 2022, 25, 130-136.	0.1	0
32	Effect of transglutaminase crosslinking on the structural, physicochemical, functional, and emulsion stabilization properties of three types of gelatins. LWT - Food Science and Technology, 2022, 163, 113543.	2.5	16
33	Self-assembled hydrolyzed gelatin nanoparticles from silver carp spine bones for Pickering emulsion stabilization. Food Bioscience, 2022, 48, 101735.	2.0	4
34	Self-healable hydrophobic films fabricated by incorporating natural wax into cellulose matrix. Chemical Engineering Journal, 2022, 446, 136791.	6.6	20
35	Transparent and mechanically robust Polyvinyl-alcohol nanocomposites based on multiple cross-linked networks for paper-reinforcement Technology. Chemical Engineering Journal, 2022, 446, 136896.	6.6	2
36	Biofunctionalized Nanomaterials: Alternative for Encapsulation Process Enhancement. Polysaccharides, 2022, 3, 411-425.	2.1	2

CITATION REPORT

#	Article	IF	CITATIONS
37	Molded fiber and pulp products as green and sustainable alternatives to plastics: A mini review. Journal of Bioresources and Bioproducts, 2022, 7, 14-25.	11.8	45
38	Selective oxidation of amaranth dye in soft drinks through tin oxide decorated reduced graphene oxide nanocomposite based electrochemical sensor. Food and Chemical Toxicology, 2022, 165, 113177.	1.8	31
39	Rational design of electrospun nanofibers for gas purification: Principles, opportunities, and challenges. Chemical Engineering Journal, 2022, 446, 137099.	6.6	27
40	Application of electrospun polyimide-based porous nano-fibers separators in ionic liquid electrolyte for electrical double-layer capacitors. Polymer, 2022, 253, 124945.	1.8	3
41	Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Advances in Colloid and Interface Science, 2022, 305, 102705.	7.0	51
42	Optimization of the Rheological Properties of Self-Assembled Tripeptide/Alginate/Cellulose Hydrogels for 3D Printing. Polymers, 2022, 14, 2229.	2.0	19
43	Evaluation of the Antimicrobial, Thermal, Mechanical, and Barrier Properties of Corn Starch–Chitosan Biodegradable Films Reinforced with Cellulose Nanocrystals. Polymers, 2022, 14, 2166.	2.0	12
44	High Strength and Stable Proton Exchange Membrane Based on Perfluorosulfonic Acid/Polybenzimidazole. Chinese Journal of Polymer Science (English Edition), 2022, 40, 764-771.	2.0	13
45	Construction of high-performance polymer hydrogel composite materials for artificial bionic organs. Journal of Experimental Nanoscience, 2022, 17, 339-350.	1.3	3
46	Hydrogen production via sodium borohydride hydrolysis catalyzed by cobalt ferrite anchored nitrogen-and sulfur co-doped graphene hybrid nanocatalyst: Artificial neural network modeling approach. Chemical Engineering Research and Design, 2022, 183, 557-566.	2.7	53
47	Artificial neural networks modeling ethanol oxidation reaction kinetics catalyzed by polyaniline-manganese ferrite supported platinum-ruthenium nanohybrid electrocatalyst. Chemical Engineering Research and Design, 2022, 184, 72-78.	2.7	14
48	Electrochemical monitoring of bisphenol-s through nanostructured tin oxide/Nafion/GCE: A solution to environmental pollution. Chemosphere, 2022, 303, 135170.	4.2	8
49	Thermal and flame-retardant properties of multilayered composites prepared through novel multilayering approach. Environmental Research, 2022, 213, 113724.	3.7	4
50	Preparation of Poly(vinyl Alcohol) Microparticles for Freeze Protection of Sensitive Fruit Crops. Polymers, 2022, 14, 2452.	2.0	4
51	Polypyrrole nanorods coated on cellulose nanofibers by pickering emulsion as conductive medium for multimodal gel-based sensor. Cellulose, 2022, 29, 6719-6732.	2.4	2
52	Effects of antioxidant types on the stabilization and in vitro digestion behaviors of silver carp scale gelatin-stabilized fish oil-loaded emulsions. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112624.	2.5	5
53	Facile Synthesis of NiO/ZnO nanocomposite as an effective platform for electrochemical determination of carbamazepine. Chemosphere, 2022, 303, 135270.	4.2	8
54	Direct utilization of radioactive irradiated graphite as a high-energy supercapacitor a promising electrode material. Fuel, 2022, 325, 124843.	3.4	14

CITATION REPORT

#	Article	IF	CITATIONS
55	Sustainable and Eco-Friendly Packaging Films Based on Poly (Vinyl Alcohol) and Glass Flakes. Membranes, 2022, 12, 701.	1.4	11
56	Surface amplification of graphite screen printed electrode using reduced graphene oxide/polypyrrole nanotubes nanocomposite; a powerful electrochemical strategy for determination of sulfite in food samples. Food and Chemical Toxicology, 2022, 167, 113274.	1.8	7
57	Silica-coated modified magnetic nanoparticles (Fe3O4@SiO2@(BuSO3H)3) as an efficient adsorbent for Pd2+ removal. Chemosphere, 2022, 307, 135622.	4.2	17
58	Recent advances in poly (vinyl alcohol)/natural polymer based films for food packaging applications: A review. Food Packaging and Shelf Life, 2022, 33, 100904.	3.3	53
59	2D lamellar membrane with nanochannels synthesized by bottom-up assembly approach for the superior photocatalytic hydrogen evolution. Renewable and Sustainable Energy Reviews, 2022, 168, 112767.	8.2	7
60	Preparation of novel composite aerogel with conductive and antibacterial via constructing three-dimensional crosslinked structure. Reactive and Functional Polymers, 2022, 178, 105361.	2.0	2
61	Flexible environment-tolerant electroluminescent devices based on nanocellulose-mediated transparent electrodes. Carbohydrate Polymers, 2022, 296, 119891.	5.1	18
62	Engineering of GO/MWCNT/RuO2 ternary aerogel for high-performance supercapacitor. Fuel, 2022, 329, 125398.	3.4	24
63	The Properties, Modification, and Application of Banana Starch. Polymers, 2022, 14, 3092.	2.0	17
64	A Comprehensive Characterization of Biodegradable Edible Films Based on Potato Peel Starch Plasticized with Glycerol. Polymers, 2022, 14, 3462.	2.0	14
65	Spongeâ€Like Microfiber Electrodes for Highâ€Performance Redox Flow Batteries. Small Methods, 2022, 6,	4.6	5
66	Utilization of By-Products from Livestock: Study on the Mechanical and Thermal Properties of Biodegradable Containers Made with Pork Skin Gelatin Polymer. Foods, 2022, 11, 2513.	1.9	3
67	Pump-inject antimicrobial and biodegradable aerogel as mask intermediate filter layer for medical protection of air filtration. Materials Today Sustainability, 2022, 19, 100211.	1.9	1
68	Transformation of Buxus sinica into high-quality biocomposites via an innovative and environmentally-friendly physical approach. Applied Surface Science, 2022, 606, 154595.	3.1	7
69	Chitin Nanocomposite Based on Plasticized Poly(lactic acid)/Poly(3-hydroxybutyrate) (PLA/PHB) Blends as Fully Biodegradable Packaging Materials. Polymers, 2022, 14, 3177.	2.0	13
70	Recycling ofÂbast textile wastes into high value-added products: a review. Environmental Chemistry Letters, 2022, 20, 3747-3763.	8.3	20
71	Radiation modification and characterization of polyvinyl alcohol/starch/citric acid/glycerol bioblend film. Polymers From Renewable Resources, 0, , 204124792211222.	0.8	2
72	Insight into crosslinked chitosan/soy protein isolate /PVA plastics by revealing its structure, physicochemical properties, and biodegradability. Industrial Crops and Products, 2022, 187, 115548.	2.5	14

#	Article	IF	CITATIONS
73	Effect of extraction methods on the properties of tilapia scale gelatins. International Journal of Biological Macromolecules, 2022, 221, 1150-1160.	3.6	8
74	Removal of lead from aqueous solution using electrospun nanofibers: preparation, characterization, adsorption isotherm, and kinetic study. Analytical Methods, 2022, 14, 3382-3396.	1.3	5
75	Development of Pectin and Poly(vinyl alcohol)-Based Active Packaging Enriched with Itaconic Acid and Apple Pomace-Derived Antioxidants. Antioxidants, 2022, 11, 1729.	2.2	21
76	Phenolic Extraction of Moringa oleifera Leaves in DES: Characterization of the Extracts and Their Application in Methylcellulose Films for Food Packaging. Foods, 2022, 11, 2641.	1.9	6
77	Bio-Nanocomposite Based on Edible Gelatin Film as Active Packaging from Clarias gariepinus Fish Skin with the Addition of Cellulose Nanocrystalline and Nanopropolis. Polymers, 2022, 14, 3738.	2.0	9
78	Valorization of Oil Palm Empty Fruit Bunch for Cellulose Fibers: A Reinforcement Material in Polyvinyl Alcohol Biocomposites for Its Application as Detergent Capsules. Sustainability, 2022, 14, 11446.	1.6	5
79	Molecular Dynamics Simulations on the Elastic Properties of Polypropylene Bionanocomposite Reinforced with Cellulose Nanofibrils. Nanomaterials, 2022, 12, 3379.	1.9	2
80	Stimuli-Responsive nanocellulose Hydrogels: An overview. European Polymer Journal, 2022, 180, 111591.	2.6	19
81	Development and Characterization of Biodegradable Polymers for Fish Packaging Applications. Journal of Packaging Technology and Research, 2022, 6, 149-166.	0.6	1
82	Polyurethane-based separation membranes: A review on fabrication techniques, applications, and future prospectives. Journal of Industrial and Engineering Chemistry, 2022, 116, 99-119.	2.9	10
83	Gallic Acid Crosslinked Gelatin and Casein Based Composite Films for Food Packaging Applications. Polymers, 2022, 14, 4065.	2.0	12
84	A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications. Polymers, 2022, 14, 3698.	2.0	71
86	The Green Era of Food Packaging: General Considerations and New Trends. Polymers, 2022, 14, 4257.	2.0	12
87	Production of Cellulose Nanocrystals Suspension with High Yields from Water Hyacinth. Journal of Natural Fibers, 2023, 20, .	1.7	2
88	Fabrication of biodegradable blend plastic from konjac glucomannan/zein/ PVA and understanding its multi-scale structure and physicochemical properties. International Journal of Biological Macromolecules, 2023, 225, 172-184.	3.6	6
89	Different Preparation Method of Nanocellulose from MacarangaÂgigantea and Its Preliminary Study on Packaging Film Potential. Polymers, 2022, 14, 4591.	2.0	3
90	Simultaneous strengthening and toughening lignin/cellulose nanofibril composite films: Effects from flexible hydrogen bonds. Chemical Engineering Journal, 2023, 453, 139770.	6.6	31
91	Nanocellulose Based Green Nanocomposites: Characteristics and Application in Primary Food Packaging. Food Reviews International, 2023, 39, 7148-7179.	4.3	2

# 92	ARTICLE Interface design of stretchable and environment-tolerant strain sensors with hierarchical nanocellulose-supported graphene nanocomplexes. Composites Part A: Applied Science and Manufacturing, 2023, 164, 107313.	IF 3.8	Citations 30
93	Water-Soluble Poly(vinyl alcohol)/Biomass Waste Composites: A New Route toward Ecofriendly Materials. ACS Omega, 2022, 7, 42515-42523.	1.6	5
94	Recent advances in polyvinyl alcohol-based composite films and their applications in food packaging. Food Packaging and Shelf Life, 2022, 34, 100991.	3.3	27
95	CdSe QDs modified cellulose microfibrils for enhanced humidity sensing properties. Applied Surface Science, 2023, 612, 155894.	3.1	3
96	Biopolymer-Based Blend Nanocomposites. , 2022, , 1-28.		0
97	Biopolymer-Based Films Reinforced with Green Synthesized Zinc Oxide Nanoparticles. Polymers, 2022, 14, 5202.	2.0	15
98	Preparation and properties of silanation-modified nanocellulose-reinforced polyvinyl alcohol nanocomposites. Journal of the Textile Institute, 0, , 1-6.	1.0	1
99	Active Agents Incorporated in Polymeric Substrates to Enhance Antibacterial and Antioxidant Properties in Food Packaging Applications. Macromol, 2023, 3, 1-27.	2.4	9
100	Antimicrobial Bilayer Film Based on Chitosan/Electrospun Zein Fiber Loaded with Jaboticaba Peel Extract for Food Packaging Applications. Polymers, 2022, 14, 5457.	2.0	3
101	High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	18
102	Recent Developments in Water Hyacinth Fiber Composites and Their Applications. Composites Science and Technology, 2023, , 229-243.	0.4	2
103	Polysaccharides for Biodegradable Packaging Materials: Past, Present, and Future (Brief Review). Polymers, 2023, 15, 451.	2.0	9
104	Guargum/nanocellulose based novel crosslinked antimicrobial film with enhanced barrier and mechanical properties for food packaging. Journal of Environmental Chemical Engineering, 2023, 11, 109254.	3.3	3
106	Extraction and characterization of novel biomass–based cellulosic plant fiber from Ficus benjamina L. stem for a potential polymeric composite reinforcement. Biomass Conversion and Biorefinery, 2023, 13, 14225-14239.	2.9	11
107	Endo-Exoglucanase Synergism for Cellulose Nanofibril Production Assessment and Characterization. Molecules, 2023, 28, 948.	1.7	0
108	Highly stretchable, adhesive, and biocompatible hydrogel platforms of tannic acid functionalized spherical nanocellulose for strain sensors. International Journal of Biological Macromolecules, 2023, 229, 105-122.	3.6	7
109	Lightweight, bacteriostatic and thermally conductive wood plastic composite prepared by chitosan modified biointerfaces. Applied Surface Science, 2023, 615, 156313.	3.1	13
110	Development and Characterization of Sustainable Antimicrobial Films Incorporated with Natamycin and Cellulose Nanocrystals for Cheese Preservation. Polysaccharides, 2023, 4, 53-64.	2.1	2

CITATION REPORT

#	Article	IF	CITATIONS
111	Tuning of the properties of polyvinyl alcohol/ polyacrylamide film by phytic acid and gamma radiation crosslinking for food packaging applications. Polymer-Plastics Technology and Materials, 2023, 62, 866-876.	0.6	1
112	Graphene-Based Coating to Mitigate Biofilm Development in Marine Environments. Nanomaterials, 2023, 13, 381.	1.9	5
113	Renovation of Agro-Waste for Sustainable Food Packaging: A Review. Polymers, 2023, 15, 648.	2.0	21
114	Potential of Coccolithophore Microalgae as Fillers in Starch-Based Films for Active and Sustainable Food Packaging. Foods, 2023, 12, 513.	1.9	0
115	Biodegradation of low-density polyethylene film/plasticized cassava starch blends with central composite design for optimal environmental pollution control. Journal of Hazardous Materials Advances, 2023, 9, 100251.	1.2	3
116	A Review of Current Trends on Polyvinyl Alcohol (PVA)-Based Solid Polymer Electrolytes. Molecules, 2023, 28, 1781.	1.7	10
117	An integrated biorefinery approach for the valorization of water hyacinth towards circular bioeconomy: a review. Environmental Science and Pollution Research, 2023, 30, 39494-39536.	2.7	4
118	Processing, Properties, Modifications, and Environmental Impact of Nanocellulose/Biopolymer Composites: A Review. Polymers, 2023, 15, 1219.	2.0	4
119	Synthesis of methylcellulose-polyvinyl alcohol composite, biopolymer film and thermostable enzymes from sugarcane bagasse. International Journal of Biological Macromolecules, 2023, 235, 123903.	3.6	4
120	High Value Utilization of Waste Wood toward Porous and Lightweight Carbon Monolith with EMI Shielding, Heat Insulation and Mechanical Properties. Molecules, 2023, 28, 2482.	1.7	2
121	Extraction of crystalline nanocellulose (CNC) from date palm mat fibers and its application in the production of nanocomposites with polyvinyl alcohol and polyvinylpyrrolidone blended films. Results in Engineering, 2023, 17, 101031.	2.2	5
122	Biodegradable Nanofibrillated Cellulose/Poly-(butylene adipate-co-terephthalate) Composite Film with Enhanced Barrier Properties for Food Packaging. Molecules, 2023, 28, 2689.	1.7	1
123	Morphological, Spectroscopic and Thermal Analysis of Cellulose Nanocrystals Extracted from Waste Jute Fiber by Acid Hydrolysis. Polymers, 2023, 15, 1530.	2.0	7
124	Designing Antioxidant and Antimicrobial Polyethylene Films with Bioactive Compounds/Clay Nanohybrids for Potential Packaging Applications. Molecules, 2023, 28, 2945.	1.7	2
125	Effect of different proportions of CNTs/Fe ₃ O ₄ hybrid filler on the morphological, electrical and electromagnetic interference shielding properties of poly(lactic acid) nanocomposites. E-Polymers, 2023, 23, .	1.3	7
126	N-succinyl chitosan-cellulose acetate-based bionanocomposite films: Preparation and characterization. Journal of Materials Research, 0, , .	1.2	0
127	Spectral Imaging of UV-Blocking Carbon Dot-Based Coatings for Food Packaging Applications. Coatings, 2023, 13, 785.	1.2	2
128	Recent advances in the sustainable approach-based fabrication of antimicrobial nanosystems. , 2023, , 297-315.		0

#	Article	IF	CITATIONS
131	Biopolymer-Based Blend Nanocomposites. , 2023, , 551-577.		0
140	Cellulose-Based Gels: Synthesis, Properties and Applications. , 2023, , 613-638.		0
144	Progress in the utilization of water hyacinth as effective biomass material. Environment, Development and Sustainability, 0, , .	2.7	2
148	Recent developments of the nanocellulose extraction from water hyacinth: a review. Cellulose, 2023, 30, 8617-8641.	2.4	3