Multifunctional applications of biochar beyond carbon

International Materials Reviews 67, 150-200

DOI: 10.1080/09506608.2021.1922047

Citation Report

#	Article	IF	CITATIONS
2	Low tech biochar production could be a highly effective nature-based solution for climate change mitigation in the developing world. Plant and Soil, 2022, 479, 77-83.	3.7	3
3	Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade?. Journal of Hazardous Materials, 2021, 420, 126534.	12.4	150
4	Novel agrotechnological intervention for soil amendment through areca nut husk biochar in conjunction with vetiver grass. Chemosphere, 2022, 287, 132443.	8.2	3
5	Multidimensional approaches of biogas production and up-gradation: Opportunities and challenges. Bioresource Technology, 2021, 338, 125514.	9.6	97
6	Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil. Chemosphere, 2021, 282, 131016.	8.2	36
7	Immobilization of cadmium and lead using phosphorus-rich animal-derived and iron-modified plant-derived biochars under dynamic redox conditions in a paddy soil. Environment International, 2021, 156, 106628.	10.0	77
8	Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar. Science of the Total Environment, 2021, 801, 149623.	8.0	61
9	Biochar as environmental armour and its diverse role towards protecting soil, water and air. Science of the Total Environment, 2022, 806, 150444.	8.0	63
10	Highly efficient bio-adsorption of Malachite green using Chinese Fan-Palm Biochar (Livistona) Tj ETQq0 0 0 rgBT	Overlock 8.2	10 ₃ Tf 50 422
11	Microwave assisted carbonization and activation of biochar for energy-environment nexus: A review. Chemosphere, 2022, 286, 131631.	8.2	52
12	Insight to bacteria community response of organic management in apple orchard-bagasse fertilizer combined with biochar. Chemosphere, 2022, 286, 131693.	8.2	20
13	The sorption and short-term immobilization of lead and cadmium by nano-hydroxyapatite/biochar in aqueous solution and soil. Chemosphere, 2022, 286, 131810.	8.2	42
14	Review: Performance of Biochar under Diminish Water Stress in Plants. Communications in Soil Science and Plant Analysis, 2022, 53, 1-16.	1.4	2
15	Technologies and perspectives for achieving carbon neutrality. Innovation(China), 2021, 2, 100180.	9.1	306
16	Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective. Renewable and Sustainable Energy Reviews, 2022, 153, 111791.	16.4	78
17	Antimony contamination and its risk management in complex environmental settings: A review. Environment International, 2022, 158, 106908.	10.0	125
18	The significant role of electron donating capacity and carbon structure of biochar to electron transfer of zerovalent iron. Chemosphere, 2022, 287, 132381.	8.2	8
19	Carbonaceous admixtures in cementitious building materials: Effect of particle size blending on rheology, packing, early age properties and processing energy demand. Science of the Total Environment, 2022, 807, 150884.	8.0	22

#	Article	IF	CITATIONS
20	Effect of biochar on the form transformation of heavy metals in paddy soil under different water regimes. Archives of Agronomy and Soil Science, 2023, 69, 387-398.	2.6	3
21	Stabilization of lead and cadmium in soil by sulfur-iron functionalized biochar: Performance, mechanisms and microbial community evolution. Journal of Hazardous Materials, 2022, 425, 127876.	12.4	109
22	Enhanced sorption of trivalent antimony by chitosan-loaded biochar in aqueous solutions: Characterization, performance and mechanisms. Journal of Hazardous Materials, 2022, 425, 127971.	12.4	89
23	Effects of modified biochar on As-contaminated water and soil: A recent update. Advances in Chemical Pollution, Environmental Management and Protection, 2021, 7, 107-136.	0.5	2
24	Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils. Environmental Pollution, 2022, 299, 118810.	7.5	38
25	Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review. Bioresource Technology, 2022, 346, 126581.	9.6	60
26	Pharmaceutical compounds used in the COVID-19 pandemic: A review of their presence in water and treatment techniques for their elimination. Science of the Total Environment, 2022, 814, 152691.	8.0	77
27	Effect of biochar addition on the dynamics of antibiotic resistant bacteria during the pig manure composting. Science of the Total Environment, 2022, 814, 152688.	8.0	22
28	Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review. Journal of Hazardous Materials, 2022, 427, 128131.	12.4	31
29	Remediation of Cd and Cu contaminated water and soil using novel nanomaterials derived from sugar beet processing- and clay brick factory-solid wastes. Journal of Hazardous Materials, 2022, 428, 128205.	12.4	30
30	Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago) Tj ETQq0 0 0	rgBT/Ove	-lock 10 Tf 50
31	Aging features of metal(loid)s in biochar-amended soil: Effects of biochar type and aging method. Science of the Total Environment, 2022, 815, 152922.	8.0	31
32	Co-composted biochar derived from rice straw and sugarcane bagasse improved soil properties, carbon balance, and zucchini growth in a sandy soil: A trial for enhancing the health of low fertile arid soils. Chemosphere, 2022, 292, 133389.	8.2	37
33	Direct and Indirect Electron Transfer Routes of Chromium(VI) Reduction with Different Crystalline Ferric Oxyhydroxides in the Presence of Pyrogenic Carbon. Environmental Science & Education (2022, 56, 1724-1735.	10.0	40
34	A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability $\hat{a} \in A$ review. Cleaner Materials, 2022, 3, 100045.	5.1	44
35	Assessing simultaneous immobilization of lead and improvement of phosphorus availability through application of phosphorus-rich biochar in a contaminated soil: A pot experiment. Chemosphere, 2022, 296, 133891.	8.2	17
36	The Adsorption Mechanisms of Oriental Plane Tree Biochar Toward Bisphenol S: A Combined Thermodynamic Evidence, Spectroscopic Analysis and Theoretical Calculations. SSRN Electronic Journal, O, , .	0.4	0
37	Life cycle assessment of urban uses of biochar and case study in Uppsala, Sweden. Biochar, 2022, 4, 1.	12.6	11

#	Article	IF	CITATIONS
38	Hydrochar: A Promising Step Towards Achieving a Circular Economy and Sustainable Development Goals. Frontiers in Chemical Engineering, 2022, 4, .	2.7	13
39	Sustainable biochar effects on the remediation of contaminated soil: A 2-crop season site practice near a lead-zinc smelter in Feng County, China. Environmental Pollution, 2022, 302, 119095.	7.5	5
40	Herbal plants- and rice straw-derived biochars reduced metal mobilization in fishpond sediments and improved their potential as fertilizers. Science of the Total Environment, 2022, 826, 154043.	8.0	49
41	Valorizing plastic toy wastes to flammable gases through CO2-mediated pyrolysis with a Co-based catalyst. Journal of Hazardous Materials, 2022, 434, 128850.	12.4	3
42	Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: Mechanisms, methods, and prospects. Chemical Engineering Journal, 2022, 439, 135716.	12.7	108
43	Co-Pyrolysis of Sewage Sludge and Wetland Biomass Waste for Biochar Production: Behaviors of Phosphorus and Heavy Metals. International Journal of Environmental Research and Public Health, 2022, 19, 2818.	2.6	16
44	Removal of toxic elements from aqueous environments using nano zero-valent iron- and iron oxide-modified biochar: a review. Biochar, 2022, 4, 1.	12.6	54
45	Enhancing microplastics biodegradation during composting using livestock manure biochar. Environmental Pollution, 2022, 306, 119339.	7.5	29
46	Biochar accelerates soil organic carbon mineralization via rhizodeposit-activated Actinobacteria. Biology and Fertility of Soils, 2022, 58, 565-577.	4.3	22
47	Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters, 2022, 20, 2385-2485.	16.2	162
48	Enhancement of soil physical properties and soil water retention with biochar-based soil amendments. Science of the Total Environment, 2022, 836, 155746.	8.0	21
49	Nanoporous carbon materials as a sustainable alternative for the remediation of toxic impurities and environmental contaminants: A review. Science of the Total Environment, 2022, 838, 155943.	8.0	7
50	A Review of Soil Injection of Liquid Organic Wastes: Potentials and Challenges. Environmental Processes, 2022, 9, .	3.5	1
51	Mobilization of contaminants: Potential for soil remediation and unintended consequences. Science of the Total Environment, 2022, 839, 156373.	8.0	43
52	The effects of biochar aging on rhizosphere microbial communities in cadmium-contaminated acid soil. Chemosphere, 2022, 303, 135153.	8.2	15
53	Engineered biochar for environmental decontamination in aquatic and soil systems: a review. , 2022, 1, \cdot		93
54	A critical review of biochar-based nitrogen fertilizers and their effects on crop production and the environment. Biochar, 2022, 4, .	12.6	46
55	Mobility of exogenous lead in acidic soil treated with wheat straw biochar after aging process of freeze-thaw cycles. Environmental Pollutants and Bioavailability, 2022, 34, 253-262.	3.0	3

#	ARTICLE	IF	CITATIONS
56	Sustainable Valorization of E-Waste Plastic through Catalytic Pyrolysis Using CO ₂ . ACS Sustainable Chemistry and Engineering, 2022, 10, 8443-8451.	6.7	8
57	Removal and recovery of phosphorus from secondary effluent using layered double hydroxide-biochar composites. Science of the Total Environment, 2022, 844, 156802.	8.0	16
58	Hydroxyapatite tailored hierarchical porous biochar composite immobilized Cd(II) and Pb(II) and mitigated their hazardous effects in contaminated water and soil. Journal of Hazardous Materials, 2022, 437, 129330.	12.4	62
59	Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives. Environmental Pollution, 2022, 308, 119609.	7.5	49
60	Insights into simultaneous adsorption and oxidation of antimonite [Sb(III)] by crawfish shell-derived biochar: spectroscopic investigation and theoretical calculations. Biochar, 2022, 4, .	12.6	15
61	Detailed Analysis of Gas, Char and Bio-oil Products of Oak Wood Pyrolysis at Different Operating Conditions. Waste and Biomass Valorization, 2023, 14, 325-343.	3.4	9
62	Optimizing the Design of a Biomass-to-Biofuel Supply Chain Network Using a Decentralized Processing Approach. Energies, 2022, 15, 5001.	3.1	4
63	Removal of lead (Pb+2) from contaminated water using a novel MoO3-biochar composite: Performance and mechanism. Environmental Pollution, 2022, 308, 119693.	7.5	28
64	Identifying biotic and abiotic processes of reversing biochar-induced soil phosphorus leaching through biochar modification with MgAl layered (hydr)oxides. Science of the Total Environment, 2022, 843, 157037.	8.0	13
65	The adsorption mechanisms of oriental plane tree biochar toward bisphenol S: A combined thermodynamic evidence, spectroscopic analysis and theoretical calculations. Environmental Pollution, 2022, 310, 119819.	7.5	9
66	A review on the conversion of cassava wastes into value-added products towards a sustainable environment. Environmental Science and Pollution Research, 2022, 29, 69223-69240.	5.3	7
67	Growth and Photosynthetic Characteristics of Sesame Seedlings with Gibberellin-Producing Rhodobacter sphaeroides SIRO3 and Biochar. International Journal of Plant Biology, 2022, 13, 257-269.	2.6	2
68	Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Separation and Purification Technology, 2022, 300, 121925.	7.9	143
69	Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. Science of the Total Environment, 2022, 853, 158562.	8.0	76
70	Contrasting effects of different field-aged biochars on potential methane oxidation between acidic and saline paddy soils. Science of the Total Environment, 2022, 853, 158643.	8.0	6
71	An attempt to enhance the adsorption capacity of biochar for organic pollutants - Characteristics of CaCl2 biochar under multiple design conditions. Science of the Total Environment, 2023, 854, 158675.	8.0	16
72	Thermokinetics of production of biochar from crop residues: an overview. Green Chemistry, 2022, 24, 7801-7817.	9.0	11
73	Adsorptive behavior of micro(nano)plastics through biochar: Co-existence, consequences, and challenges in contaminated ecosystems. Science of the Total Environment, 2023, 856, 159097.	8.0	28

#	ARTICLE	IF	CITATIONS
74	Advances in preparation, application in contaminant removal, and environmental risks of biochar-based catalysts: a review. Biochar, 2022, 4, .	12.6	19
75	Arsenic removal from water and soils using pristine and modified biochars. Biochar, 2022, 4, .	12.6	30
76	Responses of microbial necromass carbon and microbial community structure to straw- and straw-derived biochar in brown earth soil of Northeast China. Frontiers in Microbiology, 0, 13, .	3.5	7
77	Arsenic adsorption by different Fe-enriched biochars conditioned with sulfuric acid. Environmental Science and Pollution Research, 2023, 30, 16398-16407.	5.3	9
78	Hydrogelâ€biochar composites for removal of methylene blue: Adsorption performance, characterization, and adsorption isotherm, kinetics, thermodynamics analysis. Journal of Applied Polymer Science, 0, , .	2.6	2
79	Insights into Agricultural-Waste-Based Nano-Activated Carbon Fabrication and Modifications for Wastewater Treatment Application. Agriculture (Switzerland), 2022, 12, 1737.	3.1	14
80	Waste to catalyst: Role of agricultural waste in water and wastewater treatment. Science of the Total Environment, 2023, 858, 159762.	8.0	63
81	Integrating Biochar, Bacteria, and Plants for Sustainable Remediation of Soils Contaminated with Organic Pollutants. Environmental Science & Environme	10.0	85
82	Scientometric study of treatment technologies of soil pollution: Present and future challenges. Applied Soil Ecology, 2023, 182, 104695.	4.3	5
84	Soil acidification and the liming potential of biochar. Environmental Pollution, 2023, 317, 120632.	7.5	45
85	Recent Advances in Biochar-based Catalysts: Air Purification and Opportunities for Industrial Upscaling. Asian Journal of Atmospheric Environment, 2022, 16, 1-17.	1.1	0
86	Study of biochar impregnated with Al recovered from water sludge for phosphate adsorption/desorption. Journal of Cleaner Production, 2023, 383, 135507.	9.3	9
87	Remediation competence of nanoparticles amalgamated biochar (nanobiochar/nanocomposite) on pollutants: A review. Environmental Research, 2023, 218, 114947.	7.5	6
88	Enhanced removal of tetrabromobisphenol A by Burkholderia cepacian Y17 immobilized on biochar. Ecotoxicology and Environmental Safety, 2023, 249, 114450.	6.0	3
89	Catalytic modification of corn straw facilitates the remediation of Cd contaminated water and soil. Journal of Hazardous Materials, 2023, 445, 130582.	12.4	2
90	Hydrothermal carbonization of cow dung with human urine as a solvent for hydrochar: An experimental and kinetic study. Journal of Environmental Management, 2023, 327, 116854.	7.8	2
91	Evaluation and characterization of biochar on the biogeochemical behavior of polycyclic aromatic hydrocarbons in mangrove wetlands. Science of the Total Environment, 2023, 864, 161039.	8.0	4
92	Thermal degradation characteristics, kinetic and thermodynamic analyses of date palm surface fibers at different heating rates. Fuel, 2023, 335, 127076.	6.4	10

#	Article	IF	CITATIONS
93	Phosphorus recovery and reuse in water bodies with simple ball-milled Ca-loaded biochar. Science of the Total Environment, 2023, 860, 160502.	8.0	12
94	Pros and Cons of Biochar to Soil Potentially Toxic Element Mobilization and Phytoavailability: Environmental Implications. Earth Systems and Environment, 2023, 7, 321-345.	6.2	23
95	More microbial manipulation and plant defense than soil fertility for biochar in food production: A field experiment of replanted ginseng with different biochars. Frontiers in Microbiology, $0,13,1$	3.5	2
96	Stability of potentially toxic elements in municipal sludge biochars modified by MgCl2 and phosphate. Waste Disposal & Sustainable Energy, 2023, 5, 13-23.	2.5	7
97	A Recycling Pathway for Rare Earth Metals (REMs) from E-Waste through Co-Gasification with Biomass. Energies, 2022, 15, 9141.	3.1	1
98	Use of sewage sludge biochar as a catalyst in production of biodiesel through thermally induced transesterification. Biochar, 2022, 4, .	12.6	5
99	Biochar-mediated removal of pharmaceutical compounds from aqueous matrices via adsorption. Waste Disposal & Sustainable Energy, 2023, 5, 37-62.	2.5	21
100	Wood Residue-Derived Biochar as a Low-Cost, Lubricating Filler in Poly(butylene succinate-co-adipate) Biocomposites. Materials, 2023, 16, 570.	2.9	8
101	Biochar influences the cane fields' microbiota and the development of pre-sprouted sugarcane seedlings. Waste Disposal & Sustainable Energy, 2023, 5, 75-88.	2.5	4
102	Anthropogenic, Carbon-Reinforced Soil as a Living Engineered Material. Chemical Reviews, 2023, 123, 2420-2435.	47.7	8
103	Role of biochar toward carbon neutrality. , 2023, 2, .		37
104	Techno-economic assessment and logistics management of biomass in the conversion progress to bioenergy. Sustainable Energy Technologies and Assessments, 2023, 55, 102991.	2.7	9
105	Environmental benefits from the use of CO2 in the thermal disposal of cigarette butts. Environmental Research, 2023, 220, 115217.	7.5	3
106	Utilization of current pyrolysis technology to convert biomass and manure waste into biochar for soil remediation: A review. Science of the Total Environment, 2023, 864, 160990.	8.0	24
107	Crawfish shell- and Chinese banyan branch-derived biochars reduced phytoavailability of As and Pb and altered community composition of bacteria in a contaminated arable soil. Science of the Total Environment, 2023, 865, 161284.	8.0	4
108	Effects of different gasification biochar grain size on greenhouse gases and ammonia emissions in municipal aerated composting processes. Journal of Environmental Management, 2023, 331, 117257.	7.8	4
109	Phosphate Removal Mechanisms in Aqueous Solutions by Three Different Fe-Modified Biochars. International Journal of Environmental Research and Public Health, 2023, 20, 326.	2.6	6
110	Effect of the Sorption Layer on the Protection Time Provided by Anti-Smog Half-Masks. Materials, 2023, 16, 1230.	2.9	1

#	Article	IF	CITATIONS
111	Cookstoves for biochar production and carbon capture. , 2023, , 53-68.		O
112	Bioconversion of hazardous organic wastes using invertebrates. , 2023, , 297-357.		0
113	Abattoir residues as nutrient resources: Nitrogen recycling with bone chars and biogas digestates. Heliyon, 2023, 9, e15169.	3.2	0
114	The challenges of micropollutants and their environmental detection through biochar-based nanostructured electrochemical sensors: a review. International Journal of Environmental Science and Technology, 2023, 20, 11741-11762.	3.5	2
115	Emerging trends in role and significance of biochar in gaseous biofuels production. Environmental Technology and Innovation, 2023, 30, 103100.	6.1	15
116	Importance of biochar as a key amendment to convert rice paddy into carbon negative. Science of the Total Environment, 2023, 873, 162331.	8.0	3
117	Co-transport and deposition of fluoride using rice husk-derived biochar in saturated porous media: Effect of solution chemistry and surface properties. Environmental Technology and Innovation, 2023, 30, 103056.	6.1	12
118	Assessment of pine wood biomass wastes valorization by pyrolysis with focus on fast pyrolysis biochar production. Journal of the Energy Institute, 2023, 108, 101242.	5.3	13
119	Super facile one-step synthesis of sugarcane bagasse derived N-doped porous biochar for adsorption of ciprofloxacin. Journal of Environmental Management, 2023, 335, 117566.	7.8	11
120	Cadmium-resistant phosphate-solubilizing bacteria immobilized on phosphoric acid-ball milling modified biochar enhances soil cadmium passivation and phosphorus bioavailability. Science of the Total Environment, 2023, 877, 162812.	8.0	10
121	Aquaculture sediments amended with biochar improved soil health and plant growth in a degraded soil. Marine Pollution Bulletin, 2023, 191, 114899.	5.0	7
122	Enhanced trichloroethylene biodegradation: The mechanism and influencing factors of combining microorganism and carbonâ€iron materials. Science of the Total Environment, 2023, 878, 162720.	8.0	5
123	Applications, impacts, and management of biochar persistent free radicals: A review. Environmental Pollution, 2023, 327, 121543.	7.5	4
124	Sustainable biochar for advanced electrochemical/energy storage applications. Journal of Energy Storage, 2023, 63, 107115.	8.1	19
125	Silica enhanced activation and stability of Fe/Mn decorated sludge biochar composite for tetracycline degradation. Chemosphere, 2023, 328, 138614.	8.2	6
126	Chemical speciation determines combined cytotoxicity: Examples of biochar and arsenic/chromium. Journal of Hazardous Materials, 2023, 448, 130855.	12.4	5
127	Biochar Derived from Rice by-Products for Arsenic and Chromium Removal by Adsorption: A Review. Journal of Composites Science, 2023, 7, 59.	3.0	14
128	Multi-functionalization of woody biochar tuned for sustainable surface microbiological processes: a case study for energy applications. Sustainable Energy and Fuels, 2023, 7, 1454-1465.	4.9	0

#	Article	IF	CITATIONS
129	Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. Energies, 2023, 16, 1783.	3.1	32
130	Biochar-Soil-Plant interactions: A cross talk for sustainable agriculture under changing climate. Frontiers in Environmental Science, $0,11,.$	3.3	20
131	Biochar with Inorganic Nitrogen Fertilizer Reduces Direct Greenhouse Gas Emission Flux from Soil. Plants, 2023, 12, 1002.	3.5	2
132	Effect of coffee husk and cocoa pods biochar on phosphorus fixation and release processes in acid soils from West Cameroon. Soil Use and Management, 2023, 39, 817-832.	4.9	2
133	Exploring the Prospective of Weed Amaranthus retroflexus for Biofuel Production through Pyrolysis. Agriculture (Switzerland), 2023, 13, 687.	3.1	1
134	Multifaceted applications of biochar in environmental management: a bibliometric profile. Biochar, 2023, 5, .	12.6	26
135	A comprehensive review on biohydrogen production pilot scale reactor technologies: Sustainable development and future prospects. International Journal of Hydrogen Energy, 2023, 48, 23785-23820.	7.1	12
136	Effects of biochar-based materials on nickel adsorption and bioavailability in soil. Scientific Reports, 2023, 13, .	3.3	1
137	Biochar Application to Soils to Improve the Management of Irrigation Water. Sustainable Agriculture Reviews, 2023, , 273-291.	1,1	0
139	Murraya Koenigii Plant-Derived Biochar (BC) and Lanthanum Ferrite (BC/LaFeO3) Nano-Hybrid Structure for Efficient Ciprofloxacin Adsorption from Waste Water. Chemistry Africa, 2023, 6, 3079-3095.	2.4	1
140	Efficient removal of congo red dye using activated lychee peel biochar supported Ca-Cr layered double hydroxide. Environmental Nanotechnology, Monitoring and Management, 2023, 20, 100835.	2.9	1
141	Microorganisms and their metabolites affect the content of polycyclic aromatic hydrocarbons and their derivatives in pyrolyzed material. Science of the Total Environment, 2023, 886, 163966.	8.0	4
142	The potential of biochar as a microbial carrier for agricultural and environmental applications. Science of the Total Environment, 2023, 886, 163968.	8.0	36
143	Utilizing residual biomasses from agriculture and forestry: Different approaches to set system boundaries in environmental and economic life-cycle assessments. Biomass and Bioenergy, 2023, 174, 106839.	5.7	5
144	Effect of pore structure on the thermal stability of shape-stabilized phase change materials. Journal of Materials Research and Technology, 2023, 25, 465-479.	5.8	3
145	Valorization potential of dried tannery fleshing wastes (TFW) through pyrolysis in the leather industry: Kinetic and thermodynamic investigations. Sustainable Chemistry and Pharmacy, 2023, 33, 101130.	3.3	1
146	Recent advancements in antimony (Sb) removal from water and wastewater by carbon-based materials: a systematic review. Environmental Monitoring and Assessment, 2023, 195, .	2.7	3
147	Biochar enhances multifunctionality by increasing the uniformity of energy flow through a soil nematode food web. Soil Biology and Biochemistry, 2023, 183, 109056.	8.8	3

#	ARTICLE	IF	CITATIONS
148	Recent advancements and challenges in emerging applications of biochar-based catalysts. Biotechnology Advances, 2023, 67, 108181.	11.7	29
149	Advanced approaches for resource recovery from wastewater and activated sludge: A review. Bioresource Technology, 2023, 384, 129250.	9.6	9
150	Relevance of wood biochar on CO2 adsorption: A review. , 2023, 3, 100056.		5
151	Magnetic Activated Carbon from ZnCl2 and FeCl3 Coactivation of Lotus Seedpod: One-Pot Preparation, Characterization, and Catalytic Activity towards Robust Degradation of Acid Orange 10. Bioinorganic Chemistry and Applications, 2023, 2023, 1-17.	4.1	2
152	Phytoextraction of As by Pteris vittata L. assisted with municipal sewage sludge compost and associated mechanism. Science of the Total Environment, 2023, 893, 164705.	8.0	0
153	Biochar application to temperate grasslands: challenges and opportunities for delivering multiple ecosystem services. Biochar, 2023, 5, .	12.6	4
154	Biochar preparation and evaluation of its effect in composting mechanism: A review. Bioresource Technology, 2023, 384, 129329.	9.6	16
155	Effect of corn pre-puffing on the efficiency of MgO-engineered biochar for phosphorus recovery from livestock wastewater: mechanistic investigations and cost benefit analyses. Biochar, 2023, 5, .	12.6	11
156	Review of innovative uses of biochar in environmental applications for nitrobenzene removal in aqueous and soil phases. Frontiers in Chemical Engineering, 0, 5, .	2.7	1
157	The critical impacts of pyrochar during 2,4,6-trichlorophenol photochemical remediation process: Cooperation between persistent free radicals and oxygenated functional groups. Environmental Pollution, 2023, 330, 121813.	7.5	1
158	Planning and development of waste-to-hydrogen conversion facilities: A parametric analysis. Energy, 2023, 278, 127850.	8.8	2
159	Biochar inhibited hydrogen radical-induced Cd bioavailability in a paddy soil. Science of the Total Environment, 2023, 892, 164521.	8.0	9
160	Effects of bagasse biochar application on soil organic carbon fixation in manganese-contaminated sugarcane fields. Chemical and Biological Technologies in Agriculture, 2023, 10, .	4.6	0
161	A State-of-the-Art Review of Organic Polymer Modifiers for Slope Eco-Engineering. Polymers, 2023, 15, 2878.	4.5	2
162	Toxicity assessment of microplastic (MPs); a threat to the ecosystem. Environmental Research, 2023, 234, 116523.	7.5	20
163	Biochar combined with magnesium fertilizer improves cabbage (<i>Brassica oleraceae</i> L.) yield by modulating physicochemical characteristics and the bacterial community in acidic soil. Soil Use and Management, 2023, 39, 1422-1436.	4.9	O
164	Enhanced Adsorption of Hexavalent Chromium from Aqueous Solution by Citric Acid-Modified Biochar from Invasive Plant Biomass. Water, Air, and Soil Pollution, 2023, 234, .	2.4	3
165	Land Application of Biosolids-Derived Biochar in Australia: A Review. Sustainability, 2023, 15, 10909.	3.2	1

#	Article	IF	CITATIONS
166	Hydrothermal carbonization of sawmill shavings for fuel pellet production: A robust strategy for sustainable energy. Journal of Cleaner Production, 2023, 418, 138120.	9.3	2
167	Biochar from agricultural crop residues: Environmental, production, and life cycle assessment overview. Resources, Conservation & Recycling Advances, 2023, 19, 200173.	2.5	6
168	Nano-biochar: recent progress, challenges, and opportunities for sustainable environmental remediation. Frontiers in Microbiology, 0, 14 , .	3.5	6
169	A comprehensive review on immobilized microbes - biochar and their environmental remediation: Mechanism, challenges and future perspectives. Environmental Research, 2023, 236, 116723.	7.5	3
170	Promoting Energy Crops to Replace Fossil Fuel Use., 2023,, 69-87.		0
171	Bamboos as a cultivated medicinal grass for industries: A systematic review. Industrial Crops and Products, 2023, 203, 117210.	5.2	6
172	Beneficial impacts of biochar as a potential feed additive in animal husbandry. Journal of Experimental Biology and Agricultural Sciences, 2023, 11, 479-499.	0.4	0
173	Alleviate environmental concerns with biochar as a container substrate: a review. Frontiers in Plant Science, $0, 14, .$	3.6	1
174	Nitrogenâ€doped biochar as an efficient sensing material for the electrochemical detection of heavy metal ion Pb ²⁺ and Cd ²⁺ . Asia-Pacific Journal of Chemical Engineering, 0, , .	1.5	0
175	Nitrogen dynamics after slurry application as affected by anaerobic digestion, biochar and a nitrification inhibitor. Soil Use and Management, 2024, 40, .	4.9	0
176	Biochar technology for sustainable environment. , 2023, , 99-111.		0
177	Key enablers for carbon dioxide removal through the application of biochar to agricultural soils: Evidence from three historical analogues. Technological Forecasting and Social Change, 2023, 195, 122704.	11.6	2
178	Gasified olive stone biochar as a green construction fill material. Construction and Building Materials, 2023, 403, 133003.	7.2	1
179	Lignocellulosic Agricultural Waste Valorization to Obtain Valuable Products: An Overview. Recycling, 2023, 8, 61.	5.0	16
180	Modified Biochar for Arsenic Immobilization in Soil: A Critical Review. Reviews of Environmental Contamination and Toxicology, 2023, 261, .	1.3	1
181	Combining agroecology and bioeconomy to meet the societal challenges of agriculture. Plant and Soil, 2023, 492, 61-78.	3.7	1
182	Design approach for the sustainable synthesis of sulfonated biomass-derived hydrochars and pyrochars for the production of 5-(hydroxymethyl)furfural. Sustainable Chemistry and Pharmacy, 2023, 35, 101216.	3.3	2
183	A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. Science of the Total Environment, 2023, 904, 166813.	8.0	13

#	Article	IF	CITATIONS
184	Distribution of PAHs, PCBs, and PCDD/Fs in products from full-scale relevant pyrolysis of diverse contaminated organic waste. Journal of Hazardous Materials, 2024, 461, 132546.	12.4	3
185	Biochar for future and futuristic biochar. Pedosphere, 2023, 33, 680-682.	4.0	6
186	Techno-Economic Analysis of State-of-the-Art Carbon Capture Technologies and Their Applications: Scient Metric Review. Encyclopedia, 2023, 3, 1270-1305.	4.5	1
187	" Assessing the impact of biochar on microbes in acidic soils: Alleviating the toxicity of aluminum and acidity― Journal of Environmental Management, 2023, 345, 118796.	7.8	3
188	Effect of pyrolysis temperature on physicochemical properties and hexavalent chromium adsorption of the corncob biochars. Biomass Conversion and Biorefinery, 0, , .	4.6	0
189	Characterization and Adsorption Capacity of Modified Biochar for Sulfamethylimidine and Methylene Blue in Water. ACS Omega, 2023, 8, 29966-29978.	3.5	0
190	Soil acidification and salinity: the importance of biochar application to agricultural soils. Frontiers in Plant Science, 0, 14, .	3.6	5
191	Copyrolytic Biochar for Remediation of Cadmium Contaminated Soil. Environmental Engineering Science, 2023, 40, 460-467.	1.6	0
192	Integration of biochar with nitrogen in acidic soil: A strategy to sequester carbon and improve the yield of stevia via altering soil properties and nutrient recycling. Journal of Environmental Management, 2023, 345, 118872.	7.8	1
193	The mechanism of DEHP degradation by the combined action of biochar and Arthrobacter sp. JQ-1: Mechanisms insight from bacteria viability, degradation efficiency and changes in extracellular environment. Chemosphere, 2023, 341, 140093.	8.2	0
194	Waste-derived nanobiochar: A new avenue towards sustainable agriculture, environment, and circular bioeconomy. Science of the Total Environment, 2023, 905, 166881.	8.0	7
195	Introduction of Biochar: Sources, Composition, and Recent Updates. Materials Horizons, 2023, , 1-17.	0.6	0
196	Ruminal content biochar supplementation for enhanced biomethanation of rice straw: Focusing on biochar characterization and dose optimization. Science of the Total Environment, 2023, 905, 167250.	8.0	1
197	Influence of biochar produced from negative pressure-induced carbonization on transformation of potentially toxic metal(loid)s concerning plant physiological characteristics in industrially contaminated soil. Journal of Environmental Management, 2023, 347, 119018.	7.8	2
198	Preparation and application of metal-modified biochar in the purification of micro-polystyrene polluted aqueous environment. Journal of Environmental Management, 2023, 347, 119158.	7.8	1
199	Combined resource utilization of ash from biomass power generation and wheat straw biochar for soil remediation. Applied Soil Ecology, 2024, 193, 105150.	4.3	2
200	Environmental Analysis of the Valorization of Woody Biomass Residues: A Comparative Study with Vine Pruning Leftovers in Portugal. Sustainability, 2023, 15, 14950.	3.2	0
201	Development of data-intensive techno-economic models for the assessment of a biomass, waste heat, and MSW integrated waste-to-electricity facility. Resources, Conservation & Recycling Advances, 2023, 20, 200188.	2.5	1

#	Article	IF	CITATIONS
202	Influence of biochar on growth performances, yield of root and tuber crops and controlling plant-parasitic nematodes. Biochar, 2023, 5, .	12.6	0
203	Easy Recovered Magnetic Bark Biochar for Methylene Blue Removal: Preparation Characterization and Adsorption Parameters Study. ChemistrySelect, 2023, 8, .	1.5	1
204	Synergistic effect of biochar-based compounds from vegetable wastes and gibberellic acid on wheat growth under salinity stress. Scientific Reports, 2023, 13 , .	3.3	2
205	Adsorption of volatile organic compounds on biochar: A review. Chemical Engineering Research and Design, 2024, 182, 559-578.	5.6	1
206	Recent advancement in biochar production and utilization – A combination of traditional and bibliometric review. International Journal of Hydrogen Energy, 2024, 54, 1137-1153.	7.1	0
207	Adsorption of trace heavy metals through organic compounds enriched biochar using isotherm adsorption and kinetic models. Environmental Research, 2024, 241, 117702.	7. 5	0
208	Enhancing lead removal from wastewater and alleviating lead stress in soil-wheat systems using starch-stabilized Fe-Ni/biochar composites: Synthesis and physico-chemical investigations. Chemical Engineering Research and Design, 2024, 182, 608-624.	5.6	0
209	Sustainable manufacture and application of biochar to improve soil properties and remediate soil contaminated with organic impurities: a systematic review. Frontiers in Environmental Science, 0, 11, .	3.3	4
210	Prediction and Evolution of Carbon Storage of Terrestrial Ecosystems in the Qinling Mountains North Slope Region, China. Land, 2023, 12, 2063.	2.9	1
211	Pyrolytic Modification of Avocado (Persea americana) Peel for the Enhancement of Cadmium(II) and Chromium(VI) Sorption Properties. Applied Sciences (Switzerland), 2023, 13, 12466.	2.5	0
212	Multi-analytical techniques to study changes in carbon and nitrogen forms in a tomato-cultivated soil treated with biochar and biostimulants., 2023, 1, 100050.		0
213	Biochar Enhanced Chemical and Biological Properties of Contaminated Soils with Lead. IOP Conference Series: Earth and Environmental Science, 2023, 1259, 012024.	0.3	0
214	Biomass-Based Engineered Materials for Soil Remediation. , 2023, , 253-293.		0
215	An overview of characteristic factors of biochar as a soil improvement tool in rice growth- A review. Environmental Research, 2024, 242, 117794.	7. 5	0
216	Cold-bonded biochar-rich lightweight aggregates for net-zero concrete. Journal of Cleaner Production, 2024, 434, 140008.	9.3	0
217	Adsorption Optimization of Methylene Blue from Aqueous Solution by Cost-Effective Biochar Using Response Surface Methodology and a Modeling Approach. Water, Air, and Soil Pollution, 2023, 234, .	2.4	1
219	Effects of Manure-Based Nitrogen Substitution for Chemical Nitrogen Fertilizers on Economic Benefits and Water-Use Efficiency of Maize. Agronomy, 2023, 13, 3031.	3.0	0
220	Soil health assessment of an acidic red soil agricultural area and its restoration with biochar soil conditioners. Soil Use and Management, 0 , , .	4.9	O

#	Article	IF	CITATIONS
221	Biochar-thermoplastic Polymer Composites: Recent Advances and Perspectives., 2023,, 35-58.		0
222	Biochar modulating soil biological health: A review. Science of the Total Environment, 2024, 914, 169585.	8.0	0
223	Biochar-concrete: A comprehensive review of properties, production and sustainability. Case Studies in Construction Materials, 2024, 20, e02859.	1.7	0
224	Electrolytic manganese residue-biochar composite for simultaneous removal of antimony and arsenic from water: Adsorption performance and mechanisms. Journal of Cleaner Production, 2024, 437, 140623.	9.3	1
225	Beyond the basics: a perspective on barriers and opportunities for scaling up biochar production from forest slash. Biochar, 2024, 6, .	12.6	0
226	Prediction of Biochar Yield and Specific Surface Area Based on Integrated Learning Algorithm. Journal of Carbon Research, 2024, 10, 10.	2.7	1
228	Biochar: Empowering the future of energy production and storage. Journal of Analytical and Applied Pyrolysis, 2024, 177, 106370.	5. 5	1
229	Biocharâ€based catalysts derived from biomass waste: production, characterization, and application for liquid biofuel synthesis. Biofuels, Bioproducts and Biorefining, 2024, 18, 594-616.	3.7	0
230	Biochar ageing effects on soil respiration, biochar wettability and gaseous CO2 adsorption. Mitigation and Adaptation Strategies for Global Change, 2024, 29, .	2.1	0
231	Biochar Application for Soil Quality Improvement: An Overview., 0,,.		0
232	Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy. Biofuels, Bioproducts and Biorefining, 2024, 18, 567-593.	3.7	1
233	Co-applied biochar and PGPB promote maize growth and reduce CO2 emission by modifying microbial communities in coal mining degraded soils. Journal of Environmental Management, 2024, 354, 120280.	7.8	0
234	A novel Zr-P-modified nanomagnetic herbal biochar immobilized Cd and Pb in water and soil and enhanced the relative abundance of metal-resistant bacteria: Biogeochemical and spectroscopic investigations to identify the governing factors and potential mechanisms. Chemical Engineering Journal, 2024, 485, 149978.	12.7	0
235	Conversion of locally available materials to biochar and activated carbon for drinking water treatment. Chemosphere, 2024, 353, 141566.	8.2	0
236	Recent advances in the application of magnetic materials for the management of perfluoroalkyl substances in aqueous phases. Chemosphere, 2024, 352, 141522.	8.2	0
237	Definitive Review of Nanobiochar. ACS Omega, 0, , .	3.5	0
238	A critical review of soil phosphorus dynamics and biogeochemical processes for unlocking soil phosphorus reserves. Advances in Agronomy, 2024, , 153-249.	5.2	0
239	Biochar amendment gradually immobilized soil As and Sb over 2 years. Soil Use and Management, 2024, 40, .	4.9	0

#	Article	IF	CITATIONS
240	CO2 sequestration for conventional utilization and industrial application., 2024,, 299-319.		0
241	The significant role of waste to energy on decarbonization. , 2024, , 323-344.		0
242	An updated review on how biochar may possess potential in soil ARGs control on aspects of source, fate and elimination. Biochar, 2024, 6 , $.$	12.6	0
243	Environmental implications of residual pyrogenic carbonaceous materials from incomplete biomass combustion: a review. , 2024, 3, .		0
245	Adsorption of tetracycline by nitrogen-enriched biochar prepared at different pyrolysis temperatures: Considering the crucial role of nitrogen configuration. Journal of Analytical and Applied Pyrolysis, 2024, 179, 106482.	5.5	0