Fully 3D Printed and Disposable Paper Supercapacitors

Advanced Materials 33, e2101328 DOI: 10.1002/adma.202101328

Citation Report

#	Article	IF	CITATIONS
1	3D Printed Microâ€Electrochemical Energy Storage Devices: From Design to Integration. Advanced Functional Materials, 2021, 31, 2104909.	14.9	66
2	Fiber Surface/Interfacial Engineering on Wearable Electronics. Small, 2021, 17, e2102903.	10.0	17
3	A Review on Printed Electronics: Fabrication Methods, Inks, Substrates, Applications and Environmental Impacts. Journal of Manufacturing and Materials Processing, 2021, 5, 89.	2.2	77
4	Extrusionâ€Based 3Dâ€Printed Supercapacitors: Recent Progress and Challenges. Energy and Environmental Materials, 2022, 5, 800-822.	12.8	24
5	AC Line Filter Electrochemical Capacitors: Materials, Morphology, and Configuration. Energy and Environmental Materials, 2022, 5, 1060-1083.	12.8	21
6	Aqueous Inks of Pristine Graphene for 3D Printed Microsupercapacitors with High Capacitance. ACS Nano, 2021, 15, 15342-15353.	14.6	60
7	Shape-Designable and Reconfigurable All-Paper Sensor through the Sandwich Architecture for Pressure/Proximity Detection. ACS Applied Materials & Interfaces, 2021, 13, 49085-49095.	8.0	13
8	Inkjet Printed Disposable Highâ€Rate Onâ€Paper Microsupercapacitors. Advanced Functional Materials, 2022, 32, 2108773.	14.9	36
9	Recent Development and Applications of Advanced Materials via Direct Ink Writing. Advanced Materials Technologies, 2022, 7, .	5.8	26
10	High Sensitivity, Broad Working Range, Comfortable, and Biofriendly Wearable Strain Sensor for Electronic Skin. Advanced Materials Technologies, 2022, 7, .	5.8	10
11	Materials and systems for polymer-based Metallocene batteries: Status and challenges. Polymer, 2022, 245, 124658.	3.8	3
12	Large-scale paper supercapacitors on demand. Journal of Energy Storage, 2022, 50, 104191.	8.1	23
13	Recent Advances in Sustainable Wearable Energy Devices with Nanoscale Materials and Macroscale Structures. Advanced Functional Materials, 2022, 32, .	14.9	43
14	Versatile carbon-loaded shellac ink for disposable printed electronics. Scientific Reports, 2021, 11, 23784.	3.3	22
15	3D Printed Ti ₃ C ₂ T <i>_x</i> MXene/Cellulose Nanofiber Architectures for Solidâ€5tate Supercapacitors: Ink Rheology, 3D Printability, and Electrochemical Performance. Advanced Functional Materials, 2022, 32, .	14.9	85
16	Digital Microscale Electrochemical Energy Storage Devices for a Fully Connected and Intelligent World. ACS Energy Letters, 2022, 7, 267-281.	17.4	31
17	Designing Tools and Interfaces for Ecological Restoration: An Investigation into the Opportunities and Constraints for Technological Interventions. , 2022, , .		4
18	Bioinspired celluloseâ€integrated MXeneâ€based hydrogels for multifunctional sensing and electromagnetic interference shielding. , 2022, 1, 495-506.		36

CITATION REPORT

#	Article	IF	CITATIONS
19	All 3D Printing Shape onformable Zinc Ion Hybrid Capacitors with Ultrahigh Areal Capacitance and Improved Cycle Life. Advanced Energy Materials, 2022, 12, .	19.5	18
20	A focus review on 3D printing of wearable energy storage devices. , 2022, 4, 1242-1261.		23
21	Constructing Flexible Allâ€Solidâ€State Supercapacitors from 3D Nanosheets Active Bricks via 3D Manufacturing Technology: A Perspective Review. Advanced Functional Materials, 2022, 32, .	14.9	33
22	Ozone-activated CNTs to induce uniform coating of MnO ₂ as high-performance supercapacitor electrodes. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 1163-1169.	2.1	4
23	Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment. Carbohydrate Polymers, 2022, 292, 119675.	10.2	14
24	Fabricating flexible conductive structures by printing techniques and printable conductive materials. Journal of Materials Chemistry C, 2022, 10, 9441-9464.	5.5	22
25	Advanced manufacturing approaches for electrochemical energy storage devices. International Materials Reviews, 2023, 68, 323-364.	19.3	10
26	Transient, Biodegradable Energy Systems as a Promising Power Solution for Ecofriendly and Implantable Electronics. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	8
27	3R Electronics: Scalable Fabrication of Resilient, Repairable, and Recyclable Softâ€Matter Electronics. Advanced Materials, 2022, 34, .	21.0	33
28	Shellac as a multifunctional biopolymer: A review on properties, applications and future potential. International Journal of Biological Macromolecules, 2022, 215, 203-223.	7.5	41
29	Allâ€Directâ€Inkâ€Writing of Artistic Supercapacitors: Toward Onâ€Demand Embodied Power Sources. Advanced Functional Materials, 2022, 32, .	14.9	5
30	Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications. Nature Communications, 2022, 13, .	12.8	34
31	All-Printed High-Performance Flexible Supercapacitors Using Hierarchical Porous Nickel–Cobalt Hydroxide Inks. ACS Applied Energy Materials, 2022, 5, 9418-9428.	5.1	13
32	Water activated disposable paper battery. Scientific Reports, 2022, 12, .	3.3	10
33	Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Advanced Functional Materials, 2022, 32, .	14.9	32
34	Hierarchical core–shell-structured bimetallic nickel–cobalt phosphide nanoarrays coated with nickel sulfide for high-performance hybrid supercapacitors. Journal of Colloid and Interface Science, 2022, 628, 222-232.	9.4	19
35	Remarkable gas bubble transport driven by capillary pressure in 3D printing-enabled anisotropic structures for efficient hydrogen evolution electrocatalysts. Applied Catalysis B: Environmental, 2023, 320, 121995.	20.2	12
36	Metal–organic framework (MOF) facilitated highly stretchable and fatigue-resistant ionogels for recyclable sensors. Materials Horizons, 2022, 9, 2881-2892.	12.2	31

CITATION REPORT

#	Article	IF	CITATIONS
37	Production of energy-storage paper electrodes using a pilot-scale paper machine. Journal of Materials Chemistry A, 2022, 10, 21579-21589.	10.3	2
38	Opportunities for biocompatible and safe zinc-based batteries. Energy and Environmental Science, 2022, 15, 4911-4927.	30.8	39
39	Printed Structurally Colored Cellulose Sensors and Displays. Advanced Materials Technologies, 2023, 8, .	5.8	10
40	Recent development of three-dimension printed graphene oxide and MXene-based energy storage devices. Tungsten, 2024, 6, 196-211.	4.8	11
41	3D Printed Supercapacitor: Techniques, Materials, Designs, and Applications. Advanced Functional Materials, 2023, 33, .	14.9	32
42	Bottomâ€Up Design of a Green and Transient Zincâ€Ion Battery with Ultralong Lifespan. Small, 2023, 19, .	10.0	17
43	Sustainable and Flexible Energy Storage Devices: A Review. Energy & Fuels, 2023, 37, 74-97.	5.1	16
44	Carbon Nanotube@Nickel Hydroxide Nanosheets Core–Shell Nanostructures Enabling Thermally Assisted 3Dâ€Printed Solidâ€ S tate Microsupercapacitors. Advanced Engineering Materials, 2023, 25, .	3.5	1
45	Ultrafine cellulose nanocrystal-reinforced MXene biomimetic composites for multifunctional electromagnetic interference shielding. Science China Materials, 2023, 66, 1597-1606.	6.3	19
46	Recent advances in 3D printed electrode materials for electrochemical energy storage devices. Journal of Energy Chemistry, 2023, 81, 272-312.	12.9	16
47	3D Printed Supercapacitors. Springer Series in Materials Science, 2023, , 143-166.	0.6	0
48	Customizable Supercapacitors via 3D Printed Gel Electrolyte. Advanced Functional Materials, 2023, 33, .	14.9	3
49	Foldable RF Energy Harvesting System Based on Vertically Layered Metal Electrodes within a Single Sheet of Paper. Advanced Materials, 2023, 35, .	21.0	3
50	Zinc hybrid sintering for printed transient sensors and wireless electronics. Npj Flexible Electronics, 2023, 7, .	10.7	7
51	Vim: Customizable, Decomposable Electrical Energy Storage. , 2023, , .		3
52	Recent Research Progress of Paperâ€Based Supercapacitors Based on Cellulose. Energy and Environmental Materials, 0, , .	12.8	17
53	Inspired by Wood: Thick Electrodes for Supercapacitors. ACS Nano, 2023, 17, 8866-8898.	14.6	38
54	Hygroscopically-driven transient actuator for environmental sensor deployment. , 2023, , .		0

CITATION REPORT

#	Article	IF	CITATIONS
55	Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chemical Reviews, 2023, 123, 9204-9264.	47.7	30
56	Chitin Nanofibrils from Fungi for Hierarchical Gel Polymer Electrolytes for Transient Zincâ€lon Batteries with Stable Zn Electrodeposition. Small, 2023, 19, .	10.0	3
57	Organic electrochemical transistors printed from degradable materials as disposable biochemical sensors. Scientific Reports, 2023, 13, .	3.3	1
58	Photodegradable Nonâ€Drying Hydrogel Substrates for Liquid Metal Based Sustainable Softâ€Matter Electronics. Advanced Materials Technologies, 2023, 8, .	5.8	0
59	Sustainable Robots 4D Printing. Advanced Sustainable Systems, 2023, 7, .	5.3	8
60	Sustainable stretchable batteries for next-generation wearables. Journal of Materials Chemistry A, O, ,	10.3	0
61	The Application of Cellulose Nanofibrils in Energy Systems. Batteries, 2023, 9, 399.	4.5	0
62	Microsupercapacitors Working at 250 °C. Batteries and Supercaps, 2023, 6, .	4.7	0
63	An Edible Supercapacitor Based on Zwitterionic Soy Sauceâ€Based Gel Electrolyte. Advanced Functional Materials, 2024, 34, .	14.9	0
64	Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator. ACS Applied Materials & Interfaces, 2023, 15, 51100-51109.	8.0	0
65	Dry-Printing Conductive Circuit Traces on Water-Soluble Papers. ACS Sustainable Chemistry and Engineering, 2023, 11, 16407-16416.	6.7	0
66	Impact of Acetateâ€Based Hydrogel Electrolyte on Electrical Performance and Stability of Ecoâ€Friendly Supercapacitors. ChemElectroChem, 2023, 10, .	3.4	1
67	Recyclable liquid metal – Graphene supercapacitor. Chemical Engineering Journal, 2024, 479, 147894.	12.7	1
68	Interface Engineering for 3D Printed Energy Storage Materials and Devices. Advanced Energy Materials, 2024, 14, .	19.5	0
69	New Materials for Low-carbon Supercapacitors: Latest Developments and Perspectives. , 2023, , 117-145.		0
70	Science and Technology of Shellacs. , 2023, , 1-26.		0
71	Oneâ€ S top Hybrid Printing of Bulk Metal and Polymer for 3D Electronics. Advanced Engineering Materials, 2024, 26, .	3.5	1
72	Aqueous Cellulose Nanocrystal-Colloidal Au Inks for 2D Printed Photothermia. ACS Sustainable Chemistry and Engineering, 2024, 12, 1468-1479.	6.7	0

IF CITATIONS # ARTICLE Femtosecond Laser Direct Writing of Flexible Electronic Devices: A Mini Review. Materials, 2024, 17, 2.9 73 1 557. 3D Printed Gallium Battery with Outstanding Energy Storage: Toward Fully Printed Batteryâ€onâ€theâ€Board Soft Electronics. Small, 0, , . 74 End-to-end design of ingestible electronics. Nature Electronics, 2024, 7, 102-118. 75 26.0 0 Progress of Proximity Sensors for Potential Applications in Electronic Skins. Transactions of Tianjin University, 2024, 30, 40-62. Biopolymerâ€based gel electrolytes for electrochemical energy Storage: Advances and prospects. 77 32.8 0 Progress in Materials Science, 2024, 144, 101264. 11.2

CITATION REPORT