Baseline maps of potentially toxic elements in the soils Assessment of their ecoâ€environmental and human he

Land Degradation and Development 32, 3856-3869

DOI: 10.1002/ldr.3984

Citation Report

#	Article	IF	CITATIONS
1	Optimization of Electric Field Assisted Mining Process Applied to Rare Earths in Soils. Applied Sciences (Switzerland), 2021, 11, 6316.	1.3	3
2	GIS, Multivariate Statistics Analysis and Health Risk Assessment of Water Supply Quality for Human Use in Central Mexico. Water (Switzerland), 2021, 13, 2196.	1.2	2
3	Vulnerability of Human Populations to Contamination from Petroleum Exploitation in the Napo River Basin: An Approach for Spatially Explicit Risk Assessment. Sustainability, 2021, 13, 9230.	1.6	5
4	Regeneration Potential of Forest Vegetation of Churdhar Wildlife Sanctuary of India: Implication for Forest Management. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	6
5	Influence of Aspect and Elevational Gradient on Vegetation Pattern, Tree Characteristics and Ecosystem Carbon Density in Northwestern Himalayas. Land, 2021, 10, 1109.	1.2	21
6	Evaluating Metal(loid)s Contamination in Soil of a Typical In-Dustry Smelting Site in South Central China: Levels, Possible Sources and Human Health Risk Analysis. Sustainability, 2021, 13, 11294.	1.6	3
7	COVID-19 and Greenhouse Gas Emission Mitigation: Modeling the Impact on Environmental Sustainability and Policies. Frontiers in Environmental Science, 2021, 9, .	1.5	17
8	Quantifying Tree Diversity, Carbon Stocks, and Sequestration Potential for Diverse Land Uses in Northeast India. Frontiers in Environmental Science, 2021, 9, .	1.5	21
9	Biomass Production Assessment in a Protected Area of Dry Tropical forest Ecosystem of India: A Field to Satellite Observation Approach. Frontiers in Environmental Science, 2021, 9, .	1.5	13
10	Assessment of the Heavy Metals Pollution and Ecological Risk in Sediments of Mediterranean Sea Drain Estuaries in Egypt and Phytoremediation Potential of Two Emergent Plants. Sustainability, 2021, 13, 12244.	1.6	6
11	Assessment of land degradation and restoration in coal mines of central India: A time series analysis. Ecological Engineering, 2022, 175, 106493.	1.6	26
12	Modeling Management and Climate Change Impacts on Water Pollution by Heavy Metals in the Nizhnekamskoe Reservoir Watershed. Water (Switzerland), 2021, 13, 3214.	1.2	4
13	Insights for Landfill Site Selection Using GIS: A Case Study in the Tanjero River Basin, Kurdistan Region, Iraq. Sustainability, 2021, 13, 12602.	1.6	12
14	Isotopic Assessment of Groundwater Salinity: A Case Study of the Southwest (SW) Region of Punjab, India. Water (Switzerland), 2022, 14, 133.	1.2	15
15	Heavy Metal Concentrations of Soil, Rock, and Coal Gangue in the Geological Profile of a Large Open-Pit Coal Mine in China. Sustainability, 2022, 14, 1020.	1.6	11
16	Environmental capacity of heavy metals in intensive agricultural soils: Insights from geochemical baselines and source apportionment. Science of the Total Environment, 2022, 819, 153078.	3.9	20
17	Geo-Temporal Signatures of Physicochemical and Heavy Metals Pollution in Groundwater of Khulais Region—Makkah Province, Saudi Arabia. Frontiers in Environmental Science, 2022, 9, .	1.5	15
18	Decontamination of cationic dye brilliant green from the aqueous media. Applied Water Science, 2022, 12, 1.	2.8	20

#	Article	IF	Citations
19	Utilization of Incense Stick Ash in Hydrometallurgy Methods for Extracting Oxides of Fe, Al, Si, and Ca. Materials, 2022, 15, 1879.	1.3	9
20	Integrated Geochemical and Mineralogical Investigation of Soil from the Volcanic Fogo Island (Cape) Tj ETQq1	1 0.78431 <i>4</i>	∤rgBT/Over€
21	Impacts of Fishing Vessels on the Heavy Metal Contamination in Sediments: A Case Study of Qianzhen Fishing Port in Southern Taiwan. Water (Switzerland), 2022, 14, 1174.	1.2	24
22	Assessment of Daily Streamflow, Sediment Fluxes, and Erosion Rate of a Pro-glacial Stream Basin, Central Himalaya, Uttarakhand. Water, Air, and Soil Pollution, 2022, 233, 1.	1.1	19
23	Groundwater Quality Monitoring Using In-Situ Measurements and Hybrid Machine Learning with Empirical Bayesian Kriging Interpolation Method. Applied Sciences (Switzerland), 2022, 12, 132.	1.3	14
24	Removal of Copper, Nickel, and Zinc Ions from an Aqueous Solution through Electrochemical and Nanofiltration Membrane Processes. Applied Sciences (Switzerland), 2022, 12, 280.	1.3	10
25	Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review. Sustainability, 2021, 13, 14041.	1.6	44
26	Realizing United Nations Sustainable Development Goals for Greener Remediation of Heavy Metals-Contaminated Soils by Biochar: Emerging Trends and Future Directions. Sustainability, 2021, 13, 13825.	1.6	15
27	Hydrological Effects of Prefabricated Permeable Pavements on Parking Lots. Water (Switzerland), 2022, 14, 45.	1.2	4
28	Utilization of constructed wetland for the removal of heavy metal through fly ash bricks manufactured using harvested plant biomass. Ecohydrology, 2022, 15, .	1.1	10
29	Biomass and soil carbon stocks along altitudinal gradients of Shopa-Bultum Natural Forest, Ethiopia. Arabian Journal of Geosciences, 2022, 15 , 1 .	0.6	2
30	Carbon density and Câ€sequestration of tree plantation ecosystems in the midâ€hills of the <scp>NWâ€</scp> Himalayas: Implications for climate change mitigation. Land Degradation and Development, 2022, 33, 2115-2126.	1.8	10
31	Diversity of wild edible fruit plant species and their threatened status in the Aceh Province, Indonesia. Biodiversitas, 2022, 23, .	0.2	4
32	Environmental literacy scenarios lead to land degradation and changes in riparian zones: Implications for policy in China. Land Degradation and Development, 2023, 34, 156-172.	1.8	12
33	Biodiversity conservation and carbon storage of Acacia catechu willd. Dominated northern tropical dry deciduous forest ecosystems in north-western Himalaya: Implications of different forest management regimes. Frontiers in Environmental Science, 0, 10, .	1.5	1
34	Digital mapping and predicting the urban growth: integrating scenarios into cellular automata—Markov chain modeling. Applied Geomatics, 2022, 14, 695-705.	1.2	17
35	Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review. Chemosphere, 2023, 318, 137894.	4.2	35
36	Establishment and Optimization of Soil Cd Risk Threshold in Typical Karst Area with Potato Production, China. Bulletin of Environmental Contamination and Toxicology, 2023, 110, .	1.3	0

ARTICLE IF CITATIONS

A comprehensive review of Uranium in the terrestrial and aquatic environment: bioavailability, immobilization, tolerance and remediation approaches. Plant and Soil, 2023, 490, 31-65.

1.8 1