Unsupervised Learning Methods for Molecular Simulat

Chemical Reviews 121, 9722-9758 DOI: 10.1021/acs.chemrev.0c01195

Citation Report

#	Article	IF	CITATIONS
2	Physics-Inspired Structural Representations for Molecules and Materials. Chemical Reviews, 2021, 121, 9759-9815.	47.7	247
3	Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning. Jacs Au, 2021, 1, 1330-1341.	7.9	56
5	Computational strategies for protein conformational ensemble detection. Current Opinion in Structural Biology, 2022, 72, 79-87.	5.7	6
6	Variational embedding of protein folding simulations using Gaussian mixture variational autoencoders. Journal of Chemical Physics, 2021, 155, 194108.	3.0	11
7	Interpretable artificial intelligence and exascale molecular dynamics simulations to reveal kinetics: Applications to Alzheimer's disease. Current Opinion in Structural Biology, 2022, 72, 103-113.	5.7	13
8	Unsupervised modelling of a transitional boundary layer. Journal of Fluid Mechanics, 2021, 929, .	3.4	6
9	Deeptime: a Python library for machine learning dynamical models from time series data. Machine Learning: Science and Technology, 2022, 3, 015009.	5.0	37
10	Multiscale simulations of protein and membrane systems. Current Opinion in Structural Biology, 2022, 72, 203-208.	5.7	5
11	SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects. Nature Communications, 2021, 12, 7273.	12.8	108
12	Electronic structure of the solvated benzene radical anion. Journal of Chemical Physics, 2022, 156, 014501.	3.0	4
13	Learning the Hydrophobic, Hydrophilic, and Aromatic Character of Amino Acids from Thermal Relaxation and Interfacial Thermal Conductance. Journal of Physical Chemistry B, 2022, 126, 670-678.	2.6	4
14	Dimensionality reduction in machine learning for nonadiabatic molecular dynamics: Effectiveness of elemental sublattices in lead halide perovskites. Journal of Chemical Physics, 2022, 156, 054110.	3.0	4
15	Unraveling Crystallization Mechanisms and Electronic Structure of Phaseâ€Change Materials by Largeâ€Scale Ab Initio Simulations. Advanced Materials, 2022, 34, e2109139.	21.0	21
16	Nonlinear Reaction Coordinate of an Enzyme Catalyzed Proton Transfer Reaction. Journal of Physical Chemistry B, 2022, 126, 1413-1425.	2.6	3
17	Detection of multi-reference character imbalances enables a transfer learning approach for virtual high throughput screening with coupled cluster accuracy at DFT cost. Chemical Science, 2022, 13, 4962-4971.	7.4	9
18	Multiscale molecular modelling: from electronic structure to dynamics of nanosystems and beyond. Physical Chemistry Chemical Physics, 2022, 24, 9051-9081.	2.8	10
19	Combined Free-Energy Calculation and Machine Learning Methods for Understanding Ligand Unbinding Kinetics. Journal of Chemical Theory and Computation, 2022, 18, 2543-2555.	5.3	16
20	From Data to Knowledge: Systematic Review of Tools for Automatic Analysis of Molecular Dynamics Output. Frontiers in Pharmacology, 2022, 13, 844293.	3.5	1

		CITATION REPORT		
#	Article		IF	CITATIONS
21	Machine learning in computational chemistry. Scientia Sinica Chimica, 2022, 52, 858-8	68.	0.4	2
22	The atomistic modeling of light-harvesting complexes from the physical models to the protocol. Journal of Chemical Physics, 2022, 156, 120901.	computational	3.0	21
23	Significance of the Chemical Environment of an Element in Nonadiabatic Molecular Dy Selection and Dimensionality Reduction with Machine Learning. Journal of Physical Che 2021, 12, 12026-12032.	namics: Feature emistry Letters,	4.6	11
24	Chasing Collective Variables Using Autoencoders and Biased Trajectories. Journal of Ch and Computation, 2022, 18, 59-78.	emical Theory	5.3	39
25	BioExcel Building Blocks Workflows (BioBB-Wfs), an integrated web-based platform fo simulations. Nucleic Acids Research, 2022, 50, W99-W107.	r biomolecular	14.5	7
26	High-Dimensional Fluctuations in Liquid Water: Combining Chemical Intuition with Uns Learning. Journal of Chemical Theory and Computation, 2022, 18, 3136-3150.	supervised	5.3	14
27	Size-and-Shape Space Gaussian Mixture Models for Structural Clustering of Molecular Trajectories. Journal of Chemical Theory and Computation, 2022, 18, 3218-3230.	Dynamics	5.3	18
28	Method for Identifying Common Features in Reactive Trajectories of a Transition Path S Ensemble. Journal of Chemical Theory and Computation, 2022, 18, 3997-4004.	Sampling	5.3	0
30	Mechanistic Insights into Enzyme Catalysis from Explaining Machine-Learned Quantum Molecular Mechanical Minimum Energy Pathways. ACS Physical Chemistry Au, 2022, 2	ı Mechanical and , 316-330.	4.0	5
31	Worldwide bilateral geopolitical interactions network inferred from national disciplinar Physical Review Research, 2022, 4, .	y profiles.	3.6	1
32	Deep Spectral Clustering of Single-Cell RNA-seq Data. , 2022, , .			1
33	Exploiting Ligand Additivity for Transferable Machine Learning of Multireference Charac Known Transition Metal Complex Ligands. Journal of Chemical Theory and Computatio 4836-4845.	cter across n, 2022, 18,	5.3	4
35	Correlation-Based Feature Selection to Identify Functional Dynamics in Proteins. Journa Theory and Computation, 2022, 18, 5079-5088.	al of Chemical	5.3	15
36	Challenges and frontiers of computational modelling of biomolecular recognition. QRB 2022, 3, .	Discovery,	1.6	4
37	Systematic Control of Collective Variables Learned from Variational Autoencoders. Jour Chemical Physics, 0, , .	nal of	3.0	0
38	Structure and Dynamics of the Isozymes II and IX of Human Carbonic Anhydrase. ACS (31149-31166.	Dmega, 2022, 7,	3.5	2
39	Graph-component approach to defect identification in large atomistic simulations. Cor Materials Science, 2022, 214, 111700.	nputational	3.0	1
40	Neural network potentials. , 2023, , 279-294.			1

#	Article	IF	CITATIONS
41	Analysis of nonadiabatic molecular dynamics trajectories. , 2023, , 619-651.		0
42	The principal component analysis of the ring deformation in the nonadiabatic surface hopping dynamics. Physical Chemistry Chemical Physics, 0, , .	2.8	Ο
43	Information-theoretical measures identify accurate low-resolution representations of protein configurational space. Soft Matter, 2022, 18, 7064-7074.	2.7	3
44	Quantum machine learning for chemistry and physics. Chemical Society Reviews, 2022, 51, 6475-6573.	38.1	40
45	Fast exploration of potential energy surfaces with a joint venture of quantum chemistry, evolutionary algorithms and unsupervised learning. , 2022, 1, 790-805.		10
46	Collective variable discovery in the age of machine learning: reality, hype and everything in between. RSC Advances, 2022, 12, 25010-25024.	3.6	12
50	Multiagent Reinforcement Learning-Based Adaptive Sampling for Conformational Dynamics of Proteins. Journal of Chemical Theory and Computation, 2022, 18, 5422-5434.	5.3	17
52	DADApy: Distance-based analysis of data-manifolds in Python. Patterns, 2022, 3, 100589.	5.9	6
53	Integration of Quantum Chemistry, Statistical Mechanics, and Artificial Intelligence for Computational Spectroscopy: The UV–Vis Spectrum of TEMPO Radical in Different Solvents. Journal of Chemical Theory and Computation, 2022, 18, 6203-6216.	5.3	9
54	Metric learning for kernel ridge regression: assessment of molecular similarity. Machine Learning: Science and Technology, 2022, 3, 035015.	5.0	4
55	Non-Aromatic Fluorescence in Biological Matter: The Exception or the Rule?. Journal of Physical Chemistry B, 2022, 126, 7203-7211.	2.6	10
57	Machine learning, artificial intelligence, and chemistry: How smart algorithms are reshaping simulation and the laboratory. Pure and Applied Chemistry, 2022, 94, 1019-1054.	1.9	6
58	Automatic Evolution of Machine-Learning-Based Quantum Dynamics with Uncertainty Analysis. Journal of Chemical Theory and Computation, 2022, 18, 5837-5855.	5.3	6
59	Newton-X Platform: New Software Developments for Surface Hopping and Nuclear Ensembles. Journal of Chemical Theory and Computation, 2022, 18, 6851-6865.	5.3	18
60	Uncertainty quantification for predictions of atomistic neural networks. Chemical Science, 2022, 13, 13068-13084.	7.4	7
61	Thirty years of molecular dynamics simulations on posttranslational modifications of proteins. Physical Chemistry Chemical Physics, 2022, 24, 26371-26397.	2.8	9
62	SELFIES and the future of molecular string representations. Patterns, 2022, 3, 100588.	5.9	49
63	Ligand additivity relationships enable efficient exploration of transition metal chemical space. Journal of Chemical Physics, 2022, 157, .	3.0	6

#	Article	IF	CITATIONS
64	Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics. Nanoscale Advances, 2023, 5, 538-570.	4.6	23
65	Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation. Progress in Materials Science, 2023, 132, 101043.	32.8	19
66	Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations. Journal of Chemical Theory and Computation, 2022, 18, 7179-7192.	5.3	8
67	Application of Machine Learning in Spatial Proteomics. Journal of Chemical Information and Modeling, 2022, 62, 5875-5895.	5.4	16
68	Examining unsupervised ensemble learning using spectroscopy data of organic compounds. Journal of Computer-Aided Molecular Design, 0, , .	2.9	0
69	Neural network potentials for chemistry: concepts, applications and prospects. , 2023, 2, 28-58.		17
70	The Next Generation of eHealth: A Multidisciplinary Survey. IEEE Access, 2022, 10, 134623-134646.	4.2	2
71	Trajectory Propagation of Symmetrical Quasi-classical Dynamics with Meyer-Miller Mapping Hamiltonian Using Machine Learning. Journal of Physical Chemistry Letters, 2022, 13, 11678-11688.	4.6	4
72	Machine Learning-Based Analytical Systems: Food Forensics. ACS Omega, 2022, 7, 47518-47535.	3.5	4
73	Computational prediction of ï‰-transaminase selectivity by deep learning analysis of molecular dynamics trajectories. QRB Discovery, 2023, 4, .	1.6	1
74	Beyond potentials: Integrated machineÂlearning models for materials. MRS Bulletin, 2022, 47, 1045-1053.	3.5	10
76	Editorial: Mechanisms, thermodynamics and kinetics of ligand binding revealed from molecular simulations and machine learning. Frontiers in Molecular Biosciences, 0, 10, .	3.5	0
77	Machine Learning Techniques inÂReactive Atomistic Simulations. Lecture Notes in Energy, 2023, , 15-52.	0.3	0
78	Mutually beneficial confluence of structure-based modeling of protein dynamics and machine learning methods. Current Opinion in Structural Biology, 2023, 78, 102517.	5.7	11
84	Constructing Collective Variables Using Invariant Learned Representations. Journal of Chemical Theory and Computation, 2023, 19, 887-901.	5.3	5
85	Intrinsic Dimension Estimation for Discrete Metrics. Physical Review Letters, 2023, 130, .	7.8	4
86	Crystal Group Prediction for Lithiated Manganese Oxides Using Machine Learning. Batteries, 2023, 9, 112.	4.5	3
87	Machine Learning Interatomic Potentials and Long-Range Physics. Journal of Physical Chemistry A, 2023, 127, 2417-2431.	2.5	19

	CHANON R			
#	Article	IF	CITATIONS	
88	Machine Learning in Unmanned Systems for Chemical Synthesis. Molecules, 2023, 28, 2232.	3.8	2	
89	Reconstructing the infrared spectrum of a peptide from representative conformers of the full canonical ensemble. Communications Chemistry, 2023, 6, .	4.5	3	
90	Integrating Machine Learning in the Coarse-Grained Molecular Simulation of Polymers. Journal of Physical Chemistry B, 2023, 127, 2302-2322.	2.6	5	
91	Scienceâ€Driven Atomistic Machine Learning. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6	
92	Scienceâ€Driven Atomistic Machine Learning. Angewandte Chemie, 2023, 135, .	2.0	0	
93	Do Machine-Learning Atomic Descriptors and Order Parameters Tell the Same Story? The Case of Liquid Water. Journal of Chemical Theory and Computation, 2023, 19, 4596-4605.	5.3	3	
94	Fast conformational clustering of extensive molecular dynamics simulation data. Journal of Chemical Physics, 2023, 158, .	3.0	3	
95	Path separation of dissipation-corrected targeted molecular dynamics simulations of protein–ligand unbinding. Journal of Chemical Physics, 2023, 158, .	3.0	5	
96	Deep learning metal complex properties with natural quantum graphs. , 2023, 2, 618-633.		6	
97	Computational Design of Peptides for Biomaterials Applications. ACS Applied Bio Materials, 2024, 7, 617-625.	4.6	2	
98	Active Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets. Journal of Chemical Theory and Computation, 2023, 19, 4377-4388.	5.3	6	
99	Enhancing Conformational Sampling for Intrinsically Disordered and Ordered Proteins by Variational Autoencoder. International Journal of Molecular Sciences, 2023, 24, 6896.	4.1	7	
100	An Expedited Route to Optical and Electronic Properties at Finite Temperature via Unsupervised Learning. Molecules, 2023, 28, 3411.	3.8	3	
101	Exploring the Possibility of Machine Learning for Predicting Ionic Conductivity of Solid-State Electrolytes. ACS Omega, 2023, 8, 16419-16427.	3.5	3	
102	Visualizing the Residue Interaction Landscape of Proteins by Temporal Network Embedding. Journal of Chemical Theory and Computation, 2023, 19, 2985-2995.	5.3	4	
103	Distinct activation mechanisms regulate subtype selectivity of Cannabinoid receptors. Communications Biology, 2023, 6, .	4.4	3	
104	Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. Sustainability, 2023, 15, 7087.	3.2	16	
105	Artificial Intelligence in Microbiology. , 2023, , 93-109.		0	

#	Article	IF	CITATIONS
106	Equilibrium and Nonequilibrium Methods for Free-Energy Calculations With Molecular Dynamics. , 2024, , 384-400.		0
107	Matrix of orthogonalized atomic orbital coefficients representation for radicals and ions. Journal of Chemical Physics, 2023, 158, .	3.0	3
108	Computing Surface Reaction Rates by Adaptive Multilevel Splitting Combined with Machine Learning and <i>Ab Initio</i> Molecular Dynamics. Journal of Chemical Theory and Computation, 2023, 19, 3538-3550.	5.3	1
109	AlphaFold2 and Deep Learning for Elucidating Enzyme Conformational Flexibility and Its Application for Design. Jacs Au, 2023, 3, 1554-1562.	7.9	11
110	Machine Learning Methods for Small Data Challenges in Molecular Science. Chemical Reviews, 2023, 123, 8736-8780.	47.7	36
112	Selecting Features for Markov Modeling: A Case Study on HP35. Journal of Chemical Theory and Computation, 2023, 19, 3391-3405.	5.3	4
113	Relationships between Molecular Structural Order Parameters and Equilibrium Water Dynamics in Aqueous Mixtures. Journal of Physical Chemistry B, 2023, 127, 4577-4594.	2.6	3
114	<i>Time</i> SOAP: Tracking high-dimensional fluctuations in complex molecular systems via time variations of SOAP spectra. Journal of Chemical Physics, 2023, 158, .	3.0	4
115	Variable Selection for Meaningful Clustering of Multitopic Territorial Data. Mathematics, 2023, 11, 2863.	2.2	0
116	Condensed-Phase Molecular Representation to Link Structure and Thermodynamics in Molecular Dynamics. Journal of Chemical Theory and Computation, 2023, 19, 4770-4779.	5.3	0
117	Application of machine learning to the structure classification of ternary metal nanoparticles. AIP Conference Proceedings, 2023, , .	0.4	0
118	Inexact iterative numerical linear algebra for neural network-based spectral estimation and rare-event prediction. Journal of Chemical Physics, 2023, 159, .	3.0	3
119	EnGens: a computational framework for generation and analysis of representative protein conformational ensembles. Briefings in Bioinformatics, 2023, 24, .	6.5	3
120	Knowledge Gaps in Generating Cell-Based Drug Delivery Systems and a Possible Meeting with Artificial Intelligence. Molecular Pharmaceutics, 2023, 20, 3757-3778.	4.6	5
121	Autoencoders for dimensionality reduction in molecular dynamics: Collective variable dimension, biasing, and transition states. Journal of Chemical Physics, 2023, 159, .	3.0	1
122	ML meets MLn: Machine learning in ligand promoted homogeneous catalysis. , 2023, 1, 100006.		2
123	Manifold learning in atomistic simulations: a conceptual review. Machine Learning: Science and Technology, 2023, 4, 031001.	5.0	3
124	Detecting dynamic domains and local fluctuations in complex molecular systems via timelapse neighbors shuffling. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120	7.1	5

		CITATION REPORT		
#	Article		IF	CITATIONS
125	Machine Learning in Molecular Dynamics Simulations of Biomolecular Systems. , 2024	,,475-492.		1
126	Open-Source Machine Learning in Computational Chemistry. Journal of Chemical Infor Modeling, 2023, 63, 4505-4532.	mation and	5.4	3
127	Toward a Benchmark for Markov State Models: The Folding of HP35. Journal of Physica Letters, 2023, 14, 6956-6967.	al Chemistry	4.6	3
128	Optimal Reaction Coordinates and Kinetic Rates from the Projected Dynamics of Trans Journal of Chemical Theory and Computation, 2023, 19, 5701-5711.	sition Paths.	5.3	3
129	New Insights into the Cooperativity and Dynamics of Dimeric Enzymes. Chemical Revie 9940-9981.	ews, 2023, 123,	47.7	2
130	Worth the Weight: Sub-Pocket EXplorer (SubPEx), a Weighted Ensemble Method to E Binding-Pocket Conformational Sampling. Journal of Chemical Theory and Computatio	nhance n, 0, , .	5.3	0
132	Investigating Protein Structure Populations from Simulation Data using Unsupervised 2022, , .	Learning. ,		0
133	In Silico Prediction of Peptide Self-assembly into Nanostructures. , 2023, , 309-334.			0
134	Toward a structural identification of metastable molecular conformations. Journal of C Physics, 2023, 159, .	hemical	3.0	0
135	Mapping the electronic transitions of protonation sites in peptides using soft X-ray act spectroscopy. Physical Chemistry Chemical Physics, 2023, 25, 25603-25618.	tion	2.8	0
137	Photodynamics With Neural Networks and Kernel Ridge Regression. , 2024, , 413-426			0
138	Exploring the potential of Al-Chatbots in organic chemistry: An assessment of ChatGP Computers and Education Artificial Intelligence, 2023, 5, 100170.	Fand Bard.	10.8	1
139	Discovering the Active Ingredients of Medicine and Food Homologous Substances for Cyclooxygenase-2 Metabolic Pathway by Machine Learning Algorithms. Molecules, 202	Inhibiting the 23, 28, 6782.	3.8	0
141	Transition state searching for complex biomolecules: Algorithms and machine learning Xuebao/Acta Physica Sinica, 2023, 72, 248701.	. Wuli	0.5	0
143	Machine Learning-Guided Protein Engineering. ACS Catalysis, 2023, 13, 13863-13895		11.2	12
144	Damage on asphalt surfaces caused by ionic solution erosion and salt crystallization a scale. Applied Surface Science, 2024, 643, 158718.	t molecular	6.1	2
145	Advances in Computational Approaches for Estimating Passive Permeability in Drug Di Membranes, 2023, 13, 851.	scovery.	3.0	0
146	Mechanisms of Shock Dissipation in Semicrystalline Polyethylene. Polymers, 2023, 15,	4262.	4.5	0

#	Article	IF	CITATIONS
147	Unsupervised deep learning for molecular dynamics simulations: a novel analysis of protein–ligand interactions in SARS-CoV-2 M ^{pro} . RSC Advances, 2023, 13, 34249-34261.	3.6	0
148	ZundEig: The Structure of the Proton in Liquid Water from Unsupervised Learning. Journal of Physical Chemistry B, 2023, 127, 9822-9832.	2.6	0
149	Scope of machine learning in materials research—A review. Applied Surface Science Advances, 2023, 18, 100523.	6.8	4
150	Machine learning in metal-ion battery research: Advancing material prediction, characterization, and status evaluation. Journal of Energy Chemistry, 2024, 90, 191-204.	12.9	2
151	tICA-Metadynamics for Identifying Slow Dynamics in Membrane Permeation. Journal of Chemical Theory and Computation, 2023, 19, 8886-8900.	5.3	1
152	Molecular dynamics simulation of adhesion at the asphalt-aggregate interface: A review. Surfaces and Interfaces, 2024, 44, 103706.	3.0	0
153	A machine learning approach for accelerated design of magnesium alloys. Part A: Alloy data and property space. Journal of Magnesium and Alloys, 2023, 11, 3620-3633.	11.9	3
154	Unlocking the predictive power of quantum-inspired representations for intermolecular properties in machine learning. , 0, , .		0
155	Exploring the folding landscape of leptin: Insights into threading pathways. Journal of Structural Biology, 2024, 216, 108054.	2.8	1
156	pH-Dependent Structure and Dynamics of the Catalytic Domains of Human Carbonic Anhydrase II and IX. Journal of Physical Chemistry B, 2023, 127, 10279-10294.	2.6	0
157	Groundâ€State Orbital Descriptors for Accelerated Development of Organic Roomâ€Temperature Phosphorescent Materials. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
158	Groundâ€State Orbital Descriptors for Accelerated Development of Organic Roomâ€Temperature Phosphorescent Materials. Angewandte Chemie, 2024, 136, .	2.0	Ο
159	Representation of Protein Dynamics Disentangled by Time-Structure-Based Prior. Journal of Chemical Theory and Computation, 0, , .	5.3	0
160	Probing Mastoparan-like Antimicrobial Peptides Interaction with Model Membrane Through Energy Landscape Analysis. Journal of Physical Chemistry B, O, , .	2.6	1
161	Analyzing Molecular Dynamics Trajectories Thermodynamically through Artificial Intelligence. Journal of Chemical Theory and Computation, 2024, 20, 665-676.	5.3	2
162	Data-driven analysis of dynamical heterogeneity in polymer melts near surfaces. Computational Materials Science, 2024, 235, 112811.	3.0	0
163	Trajectory Statistical Learning of the Potential Mean of Force and Diffusion Coefficient from Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2024, 128, 56-66.	2.6	0
164	Graph-Neural-Network-Based Unsupervised Learning of the Temporal Similarity of Structural Features Observed in Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2024, 20, 819-831.	5.3	0

#	Article	IF	CITATIONS
166	High-throughput microfluidic systems accelerated by artificial intelligence for biomedical applications. Lab on A Chip, 2024, 24, 1307-1326.	6.0	0
167	Acceleration of Molecular Simulations by Parametric Time-Lagged tSNE Metadynamics. Journal of Physical Chemistry B, 2024, 128, 903-913.	2.6	0
168	Decoding Nanomaterialâ€Biosystem Interactions through Machine Learning. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
170	Decoding Nanomaterialâ€Biosystem Interactions through Machine Learning. Angewandte Chemie, 2024, 136, .	2.0	0
171	Mixtures Recomposition by Neural Nets: A Multidisciplinary Overview. Journal of Chemical Information and Modeling, 2024, 64, 597-620.	5.4	1
172	Use of Generative Al Tools to Facilitate Personalized Learning in the Flipped Classroom. Advances in Educational Technologies and Instructional Design Book Series, 2024, , 327-349.	0.2	0
173	Machine Learningâ€Enhanced Triboelectric Sensing Application. Advanced Materials Technologies, 2024, 9, .	5.8	0
174	Multivalent Ion-Mediated Polyelectrolyte Association and Structure. Macromolecules, 2024, 57, 1941-1949.	4.8	0
175	Data-driven discovery of statistically relevant information in quantum simulators. Physical Review B, 2024, 109, .	3.2	0
176	Special Issue "Third Edition: Advances in Molecular Simulation― International Journal of Molecular Sciences, 2024, 25, 2709.	4.1	0
177	Dynamical Properties of Coarse-Grained Linear SDEs. Multiscale Modeling and Simulation, 2024, 22, 406-435.	1.6	0
178	Data Segmentation with Improved K-Means Clustering Algorithm. , 2023, , .		0
179	Gearbox fault diagnosis method based on improved semi-supervised MTDL and GAF. Measurement and Control, 0, , .	1.8	0
180	Analyzing Multimodal Probability Measures with Autoencoders. Journal of Physical Chemistry B, 2024, 128, 2607-2631.	2.6	0
182	ELViM: Exploring Biomolecular Energy Landscapes through Multidimensional Visualization. Journal of Chemical Information and Modeling, 2024, 64, 3443-3450.	5.4	0