Flax fiber–based polymer composites: a review

Advanced Composites and Hybrid Materials 5, 1-20

DOI: 10.1007/s42114-021-00246-9

Citation Report

#	Article	IF	CITATIONS
1	A Review of Flax Fiber Reinforced Thermoset Polymer Composites: Structure and Mechanical Performance. Journal of Natural Fibers, 2022, 19, 9656-9680.	3.1	9
2	Effects of two different enzyme treatments on the microstructure of outer surface of wheat straw. Advanced Composites and Hybrid Materials, 2022, 5, 934-947.	21.1	12
3	A comprehensive review on polymer matrix composites: material selection, fabrication, and application. Polymer Bulletin, 2023, 80, 47-87.	3.3	30
4	Magnetic polypropylene composites with selectively localized reactive nano-Fe3O4 in toughener of POE-g-MAH: Towards super toughness, high flexibility and balanced strength. Materials and Design, 2022, 217, 110607.	7.0	2
5	A Competitive Study of the Static and Fatigue Performance of Flax, Glass, and Flax/Glass Hybrid Composites on the Structural Example of a Light Railway Axle Tie. Frontiers in Materials, 2022, 9, .	2.4	6
6	Combined bactericidal process of lignin and silver in a hybrid nanoparticle on E. coli. Advanced Composites and Hybrid Materials, 2022, 5, 1841-1851.	21.1	36
7	Fabrication and electromagnetic wave absorption properties of RGO/Fe3O4/FeCO3-based composite. Journal of Materials Science: Materials in Electronics, 2022, 33, 12476-12489.	2.2	2
8	An anti-freezing and strong wood-derived hydrogel for high-performance electronic skin and wearable sensing. Composites Part B: Engineering, 2022, 239, 109954.	12.0	41
9	Building blend from recycling acrylonitrile–butadiene–styrene and high impact-resistance polystyrene through dextro-glucose. Reactive and Functional Polymers, 2022, 175, 105287.	4.1	6
10	Knitting integral conformal all-textile strain sensor with commercial apparel characteristics for smart textiles. Applied Materials Today, 2022, 27, 101508.	4.3	16
11	Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Advanced Composites and Hybrid Materials, 2022, 5, 641-650.	21,1	106
12	Opuntia Ficus Indica based green composites for NPK fertilizer controlled release produced by compression molding and fused deposition modeling. Composites Part A: Applied Science and Manufacturing, 2022, 159, 107030.	7.6	17
13	Protein-Based Flexible Conductive Aerogels for Piezoresistive Pressure Sensors. ACS Applied Bio Materials, 2022, 5, 3360-3370.	4.6	4
14	Electrospun poly(vinyl alcohol)/silica film for radiative cooling. Advanced Composites and Hybrid Materials, 2022, 5, 1966-1975.	21.1	40
15	Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Advanced Composites and Hybrid Materials, 2022, 5, 1976-1987.	21,1	112
16	Bioinspired Nanoheterogeneous Alternating Multiarched Architecture: Toward a Superior Strength–Toughness Integration. ACS Applied Materials & Diterfaces, 2022, 14, 32395-32403.	8.0	2
17	Hybrid biocomposites based on polylactic acid and natural fillers from Chamaerops humilis dwarf palm and Posidonia oceanica leaves. Advanced Composites and Hybrid Materials, 2022, 5, 1988-2001.	21.1	16
19	Preparation and characterization of a low viscosity epoxy resin derived from m-divinylbenzene. High Performance Polymers, 2023, 35, 153-165.	1.8	2

#	Article	IF	CITATIONS
20	Sustainable Fiberâ€Reinforced Composites: A Review. Advanced Sustainable Systems, 2022, 6, .	5.3	61
21	Fabrication and characterization of <scp>Fe₂O₃â€OPEFBâ€PTFE</scp> nanocomposites for microwave shielding applications. Polymer Engineering and Science, 2022, 62, 3577-3588.	3.1	5
22	A comprehensive review on phenolâ€formaldehyde resinâ€based composites and foams. Polymer Composites, 2022, 43, 8602-8621.	4.6	13
23	Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. International Journal of Nanomedicine, 0, Volume 17, 4137-4162.	6.7	48
24	Interaction of Geopolymer Filler and Alkali Molarity Concentration towards the Fire Properties of Glass-Reinforced Epoxy Composites Fabricated Using Filament Winding Technique. Materials, 2022, 15, 6495.	2.9	3
25	Interfacial Behaviors of Basalt Fiber-Reinforced Polymeric Composites: A Short Review. Advanced Fiber Materials, 2022, 4, 1414-1433.	16.1	17
26	Green composites based on biodegradable polymers and anchovy (Engraulis Encrasicolus) waste suitable for 3D printing applications. Composites Science and Technology, 2022, 230, 109768.	7.8	23
27	Thermogravimetric analysis of lignocellulosic leaf-based fiber-reinforced thermosets polymer composites: an overview. Biomass Conversion and Biorefinery, 0, , .	4.6	7
29	Investigation on 3D Printing of Graphene and Multi-walled Carbon Nanotube Mixed Flexible Electrically Conductive Parts Using Fused Filament Fabrication. Journal of Materials Engineering and Performance, 2023, 32, 6319-6328.	2.5	3
30	Comparison between Tencel-Flax Blended Slub Yarn and Cotton-Flax Blended Slub Yarn. Journal of Textile Science and Technology, 2022, 08, 221-230.	0.7	O
31	Investigation of Natural Fiber Composite in EMI Shielding under the Influence of Hematite and Rice Husk Ash Filler., 0,,.		1
32	Enhancing the Thermo-Mechanical Properties of Thermoplastic Starch Films Using Rice Straw Fibers as Reinforcement. Chemistry Africa, 2023, 6, 2321-2329.	2.4	3
33	Design and manufacture of 3D-cylindrical scaffolds based on PLA/TPU/n-HA with the help of dual salt leaching technique suggested for use in cancellous bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 1430-1452.	3.5	1
34	Sustainable Green Composites From Flax Fiber Reinforced Biopolymer Matrices. , 2023, , 1-13.		O
35	Fabrication of self-cross-linking silicified polyvinylidene chloride emulsions with core–shell structure and its film properties. Polymer Bulletin, 2024, 81, 1651-1673.	3.3	0
36	Analysis of decarburisation mechanism of Fe-C alloy strip. Materials Science and Technology, 2023, 39, 1361-1371.	1.6	0
37	Challenges associated with cellulose composite material: Facet engineering and prospective. Environmental Research, 2023, 223, 115429.	7. 5	28
38	Plant fiber-reinforced polymer composites: a review on modification, fabrication, properties, and applications. Polymer Bulletin, 2024, 81, 1-85.	3.3	13

3

#	Article	IF	CITATIONS
39	Polyamide 11 Composites Reinforced with Diatomite Biofiller—Mechanical, Rheological and Crystallization Properties. Polymers, 2023, 15, 1563.	4.5	1
40	Design and Development of Copper Trimesic Acid Anchored sPEEK/Polyimide Composite Membranes for Fuel Cell Applications. ChemistrySelect, 2023, 8, .	1.5	3
41	Enhanced mechanical properties of ramie fabric/epoxy composite laminates by silicon polymer. Industrial Crops and Products, 2023, 199, 116778.	5.2	2
42	Enhanced interfacial adhesion of CF/PEEK-titanium hybrid laminates via rare-earth coordination interaction. Composites Science and Technology, 2023, 239, 110070.	7.8	5
43	Characterization of friction and wear of phenolic resin matrix composites reinforced by bamboo fibers of alkaline and LaCl3 treatment. Materials Today Communications, 2023, 35, 106361.	1.9	3
44	Machine Learning-Assisted Tensile Modulus Prediction for Flax Fiber/Shape Memory Epoxy Hygromorph Composites. Applied Mechanics, 2023, 4, 752-762.	1.5	1
45	Strengthening soybean protein adhesive anti-mildew properties: Design strategies, enhancing mechanisms and application potential studies. Materials Today Communications, 2023, 36, 106426.	1.9	1
46	Recycling textile waste into innovative carbon black and applications to smart textiles: a sustainable approach. Biomass Conversion and Biorefinery, 0, , .	4.6	1
47	Effect of stacking sequence and thickness variation on the thermo-mechanical properties of flax-kenaf laminated biocomposites and prediction of the optimal configuration using a decision-making framework. International Polymer Processing, 2023, 38, 404-423.	0.5	3
48	Effect of aspect ratio of synthetic Wollastonite nanofibers on mechanical, thermal and flammability properties of polyoxymethylene nanocomposites. Polymer Composites, 2023, 44, 5839-5851.	4.6	0
50	Potential of Non-wood Fibers as Sustainable Reinforcements for Polymeric Composites—A Review. Environmental Footprints and Eco-design of Products and Processes, 2023, , 123-150.	1,1	0
51	Bamboo fiber strengthened poly(lactic acid) composites with enhanced interfacial compatibility through a multi-layered coating of synergistic treatment strategy. International Journal of Biological Macromolecules, 2023, 249, 126018.	7.5	4
52	Hybrid jute/carbon fiber composites: optimum post-curing time. Iranian Polymer Journal (English) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50 2
53	Circular Production, Designing, and Mechanical Testing of Polypropylene-Based Reinforced Composite Materials: Statistical Analysis for Potential Automotive and Nuclear Applications. Polymers, 2023, 15, 3410.	4.5	1
54	Improving the Technology of Primary Purification of the Safflower Oil Using Secondary Products of Processing on a Biological Basis. Foods, 2023, 12, 3275.	4.3	0
55	Investigation on the Influence of Process Parameters on the Mechanical Properties of Extruded Bio-Based and Biodegradable Continuous Fiber-Reinforced Thermoplastic Sheets. Polymers, 2023, 15, 3830.	4.5	0
56	Extraction of natural cellulosic fiber from Myriostachia wightiana stems using chemical retting and its characterization for bio-composite applications. Cellulose, 2023, 30, 8819-8837.	4.9	1
57	Polymer-ceramic composites for bone challenging applications: Materials and manufacturing processes. Journal of Thermoplastic Composite Materials, 0, , .	4.2	1

#	Article	IF	CITATIONS
58	Molecular dynamics simulations guided the preparation of nano-silica/polyimide/cellulose composite insulating paper. Materials and Design, 2023, 233, 112176.	7.0	0
59	Evaluation of the properties of natural rubber bio composite and guava residue (Psidium guajava L.) as sustainable application. Materials Research, 2023, 26, .	1.3	0
60	Effect of Wet and Dry Environments in CNC/MWCNTs/Ag ₂ 0 Electrically Conductive Films: Material Characterization and Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2023, 127, 20749-20761.	3.1	0
61	Evolution of stiffness in flax yarn within flax fiber reinforced composites during moisture absorption. Composites Part B: Engineering, 2024, 268, 111096.	12.0	0
62	Genome of Linum usitatissimum convar. crepitans expands the view on the section Linum. Frontiers in Genetics, 0, 14 , .	2.3	0
63	Flax fiber-chitosan biocomposites with tailored structure and switchable physicochemical properties. Carbohydrate Polymer Technologies and Applications, 2023, 6, 100397.	2.6	1
64	ITS and 16S rDNA metagenomic dataset of different soils from flax fields. Data in Brief, 2024, 52, 109827.	1.0	0
65	Hybridization Effect on Interlaminar Bond Strength, Flexural Properties, and Hardness of Carbon–Flax Fiber Thermoplastic Bio-Composites. Polymers, 2023, 15, 4619.	4.5	1
66	Tensile, impact, and the damping performance of woven flax arbon hybrid polyamide biocomposites. Polymer Composites, 0, , .	4.6	0
67	Biological and bioinspired Bouligand structural materials: Recent advances and perspectives. Matter, 2024, 7, 378-407.	10.0	0
68	Cellulose based materials to accelerate the transition towards sustainability. Industrial Crops and Products, 2024, 210, 118078.	5.2	0
69	Transforming lignin into value-added products: Perspectives on lignin chemistry, lignin-based biocomposites, and pathways for augmenting ligninolytic enzyme production. Advanced Composites and Hybrid Materials, 2024, 7, .	21.1	0
71	Determination of shear strength of additively manufactured poly lactic acid/flax fibre bio-composite via the iosipescu test. Composites Communications, 2024, 47, 101858.	6.3	0