Recent advances in heat-moisture modified cereal stard applications in starchy food systems

Food Chemistry 344, 128700

DOI: 10.1016/j.foodchem.2020.128700

Citation Report

#	Article	IF	CITATIONS
1	Application of microwave and hydrothermal treatments for modification of cassava starch of Manipur region, India and development of cookies. Journal of Food Science and Technology, 2022, 59, 344-354.	2.8	3
2	Effect of heatâ€moisture treatment on the structural and physicochemical characteristics of sand rice (<i>Agriophyllum squarrosum</i>) starch. Food Science and Nutrition, 2021, 9, 6720-6727.	3.4	7
3	Heat-Moisture Treatment Further Reduces In Vitro Digestibility and Enhances Resistant Starch Content of a High-Resistant Starch and Low-Glutelin Rice. Foods, 2021, 10, 2562.	4.3	10
4	A review of extrusion-modified underutilized cereal flour: chemical composition, functionality, and its modulation on starchy food quality. Food Chemistry, 2022, 370, 131361.	8.2	15
5	Effect of Thermal Pretreatments on Phosphorylation of Corypha umbraculifera L. Stem Pith Starch: A Comparative Study Using Dry-Heat, Heat-Moisture and Autoclave Treatments. Polymers, 2021, 13, 3855.	4.5	19
6	Radio frequency treatment improved the slowly digestive characteristics of rice flour. LWT - Food Science and Technology, 2022, 154, 112862.	5. 2	16
7	Drying modelling of amylose fatty acid complex formation for reducing rapidly available glucose of geographical indication rice during high-temperature fluidisation. Journal of Food Engineering, 2022, 318, 110899.	5.2	2
8	Effect of Different Hydrothermal Treatments on Pasting, Textural and Rheological Properties of Single and Dual Modified Corypha Umbraculifera L. Starch. Starch/Staerke, 0, , 2100236.	2.1	6
9	Corn Extract Effect on Broiler Chickens Productivity. Lecture Notes in Networks and Systems, 2022, , 152-159.	0.7	0
10	Dual Modification of Sago Starch via Heat Moisture Treatment and Octenyl Succinylation to Improve Starch Hydrophobicity. Polymers, 2022, 14, 1086.	4.5	26
11	Resistant starch content and physicochemical properties of non-waxy rice starches modified by pullulanase, heat-moisture treatment, and citric acid. Journal of Cereal Science, 2022, 105, 103472.	3.7	15
12	Heat-moisture modified blue wheat starch: Physicochemical properties modulated by its multi-scale structure. Food Chemistry, 2022, 386, 132771.	8.2	19
13	Influence of plasma-activated water on the morphological, functional, and digestibility characteristics of hydrothermally modified non-conventional talipot starch. Food Hydrocolloids, 2022, 130, 107709.	10.7	20
14	Modification in structural, physicochemical, functional, and in vitro digestive properties of kiwi starch by high-power ultrasound treatment. Ultrasonics Sonochemistry, 2022, 86, 106004.	8.2	21
15	Structural, gelatinization, and rheological properties of heat-moisture treated potato starch with added salt and its application in potato starch noodles. Food Hydrocolloids, 2022, 131, 107802.	10.7	33
16	Incorporating torch ginger (Etlingera elatior Jack) inflorescence essential oil onto starch-based edible film towards sustainable active packaging for chicken meat. Industrial Crops and Products, 2022, 184, 115058.	5. 2	29
17	Physicochemical, Functional, Pasting Properties and Fourier Transform Infrared Spectroscopy of Pure and Modified Cardaba Banana (Musa ABB) Starches. SSRN Electronic Journal, 0, , .	0.4	0
18	Karakteristik Mi Berbasis Ubi Jalar dengan Substitusi Pati Sagu atau Pati Ubi Banggai. Jurnal Teknologi Dan Industri Pangan, 2022, 33, 11-20.	0.3	1

#	Article	IF	CITATIONS
19	Impact of garlic oligosaccharide fractions on microcosmic, mesoscopic, or macroscopic characteristics of dough. Food Research International, 2022, 160, 111739.	6.2	2
20	Development of high strength potato starch nanocomposite films with excellent UV-blocking performance: Effect of heat moisture treatment synergistic with ligninsulfonic acid. Industrial Crops and Products, 2022, 187, 115327.	5.2	6
21	Physicochemical, Functional, Pasting Properties and Fourier Transform Infrared Spectroscopy of Native and Modified Cardaba banana (Musa ABB) Starches., 2022, 1, 100076.		3
22	Effect of V-type crystallinity and starch particle structure on the oil loading capacity and anti-oxidation. Carbohydrate Polymers, 2022, 297, 120015.	10.2	11
23	Pre-baking-steaming of oat induces stronger macromolecular interactions and more resistant starch in oat-buckwheat noodle. Food Chemistry, 2023, 400, 134045.	8.2	15
24	Modification in Physicochemical, Structural and Digestive Properties of Potato Starch During Heat-Moisture Treatment Combined with Microwave Pre- and Post-Treatment. Polish Journal of Food and Nutrition Sciences, 2022, 72, 249-261.	1.7	3
25	Effects of Bifidobacteria Fermentation on Physico-Chemical, Thermal and Structural Properties of Wheat Starch. Foods, 2022, 11, 2585.	4.3	6
26	Succeeded high-temperature acid hydrolysis of granular maize starch by introducing heat-moisture pre-treatment. International Journal of Biological Macromolecules, 2022, 222, 2868-2877.	7.5	1
27	Insight into the retardation of retrogradation of chestnut starch by heat-moisture treatment with flavonoids. Food Chemistry, 2023, 404, 134587.	8. 2	6
28	Study of Changes in Crystallinity and Functional Properties of Modified Sago Starch (Metroxylon sp.) Using Physical and Chemical Treatment. Polymers, 2022, 14, 4845.	4.5	10
29	Effect of Heat–Moisture Treatment on the Physicochemical Properties, Structure, Morphology, and Starch Digestibility of Highland Barley (Hordeum vulgare L. var. nudum Hook. f) Flour. Foods, 2022, 11, 3511.	4.3	10
30	Removing starch granule-associated surface lipids affects structure of heat-moisture treated hull-less barley starch. Carbohydrate Polymers, 2023, 303, 120477.	10.2	12
31	Effects of Heat-Moisture Treatment Whole Tartary Buckwheat Flour on Processing Characteristics, Organoleptic Quality, and Flavor of Noodles. Foods, 2022, 11, 3822.	4.3	1
32	Effects of Heat-Moisture Treatment on the Digestibility and Physicochemical Properties of Waxy and Normal Potato Starches. Foods, 2023, 12, 68.	4.3	0
33	Structure, thermal stability, and in vitro digestibility of rice starch–protein hydrolysate complexes prepared using different hydrothermal treatments. International Journal of Biological Macromolecules, 2023, 230, 123130.	7.5	6
34	Influence of pre- or post-electron beam irradiation on heat-moisture treated maize starch for multiscale structure, physicochemical properties and digestibility. Carbohydrate Polymers, 2023, 313, 120891.	10.2	4
36	Characteristics of physically modified starches. Food Science and Biotechnology, 2023, 32, 875-883.	2.6	3
37	Physicochemical properties and structure of buckwheat flour modified by steam-treatment. International Journal of Food Engineering, 2023, 19, 113-120.	1.5	0

#	Article	IF	CITATIONS
38	Determining changes in crystallinity of rice starch after heat-moisture treatment using terahertz spectroscopy. Food Chemistry, 2023, 425, 136237.	8.2	4
39	Native and modified starches from underutilized seeds: Characteristics, functional properties and potential applications. Food Research International, 2023, 169, 112875.	6.2	6
40	Changes Induced by Heat Moisture Treatment in Wheat Flour and Pasta Rheological, Physical and Starch Digestibility Properties. Gels, 2023, 9, 449.	4.5	0
41	Microwave irradiation of corn kernels: Effects on structural, thermal, functional and rheological properties of corn flour. Food Hydrocolloids, 2023, 143, 108939.	10.7	4
42	Colloidal properties and regulation of colloidal properties of starch. Scientia Sinica Chimica, 2023, , .	0.4	0
43	Insights into the aggregation structure and physicochemical properties of heat-moisture treated wheat starch and its associated effects on noodle quality. Journal of Cereal Science, 2023, 112, 103704.	3.7	5
44	Physics of Starch System: Rheological and Mechanical Properties of Hydrothermally Modified Elephant Foot Yam Starch. Food Biophysics, 2024, 19, 71-84.	3.0	1
45	Multi-scale structural characteristics of black Tartary buckwheat resistant starch by autoclaving combined with debranching modification. International Journal of Biological Macromolecules, 2023, 249, 126102.	7.5	2
46	Heat-Moisture Treatment of Starch. , 2023, , 173-186.		0
47	Impact of Heat-Moisture Treatment on the Hierarchical Structure and Functional Properties of Rice Starch., 2023,, 263-289.		0
48	Effects of explosion puffing on the native structural organization and oil adsorption properties of starch. Carbohydrate Polymers, 2024, 324, 121518.	10.2	2
49	Heat-moisture treated waxy highland barley starch: Roles of starch granule-associated surface lipids, temperature and moisture. International Journal of Biological Macromolecules, 2024, 254, 127991.	7.5	1
50	Impact of molecular structure of starch on the glutinous taste quality of cooked chestnut kernels. International Journal of Biological Macromolecules, 2024, 254, 127704.	7. 5	2
51	Characterization and Evaluation of Heat–Moisture-Modified Black and Red Rice Starch: Physicochemical, Microstructural, and Functional Properties. Foods, 2023, 12, 4222.	4.3	0
52	Ordered structural changes of retrograded instant rice noodles during the long-term storage. Food Research International, 2024, 175, 113727.	6.2	1
53	A Study on the Structural and Digestive Properties of Rice Starch–Hydrocolloid Complexes Treated with Heat–Moisture Treatment. Foods, 2023, 12, 4241.	4.3	1
54	Process optimization of wheat flour crisp puffing by radio frequency and the accompanying property changes of starch. Journal of Food Science, 0, , .	3.1	0
55	The rice SnRK family: biological roles and cell signaling modules. Frontiers in Plant Science, 0, 14, .	3.6	0

#	Article	IF	CITATIONS
56	Flours from microwave-treated buckwheat grains improve the physical properties and nutritional quality of gluten-free bread. Food Hydrocolloids, 2024, 149, 109644.	10.7	0
57	The Application of High-Hydrostatic-Pressure Processing to Improve the Quality of Baked Products: A Review. Foods, 2024, 13, 130.	4.3	1
58	Dual Modification of Cassava Starch Using Physical Treatments for Production of Pickering Stabilizers. Foods, 2024, 13, 327.	4.3	0
59	Effects of heat treatment at different moisture of mung bean flour on the structural, gelation and in vitro digestive properties of starch. Food Chemistry, 2024, 443, 138518.	8.2	0
60	Structural characteristics and paste properties of wheat starch in natural fermentation during traditional Chinese Mianpi processing. International Journal of Biological Macromolecules, 2024, 262, 129993.	7.5	0
61	Removal of the out-shell for lotus root starch improved the effect of heat-moisture modification on multi-structure, physicochemical and digestibility properties. Food Hydrocolloids, 2024, 151, 109865.	10.7	0
62	Evaluating the effects of time-dependent drying and pressure heat treatments on the variation of physicochemical and rheological properties of suran starch. International Journal of Biological Macromolecules, 2024, 263, 130071.	7.5	0
63	A review on natural biopolymers in external drug delivery systems for wound healing and atopic dermatitis. International Journal of Biological Macromolecules, 2024, 263, 130296.	7.5	0