The Influence of Hydropower and Coal Consumption of Comparison between China and India

Water (Switzerland) 13, 1387 DOI: 10.3390/w13101387

Citation Report

#	Article	IF	CITATIONS
1	Coal chars recovered from fly ash as promising electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 34679-34688.	3.8	5
2	A state-of-the-art review of greenhouse gas emissions from Indian hydropower reservoirs. Journal of Cleaner Production, 2021, 320, 128806.	4.6	47
3	Minimizing greenhouse gas emissions of an industrial wastewater treatment plant in terms of water–energy nexus. Applied Water Science, 2021, 11, 1.	2.8	11
4	A review on operation and maintenance of hydropower plants. Sustainable Energy Technologies and Assessments, 2022, 49, 101704.	1.7	21
5	Testing the Persistence of Shocks on Ecological Footprint and Sub-accounts: Evidence from the Big Ten Emerging Markets. International Journal of Environmental Research, 2022, 16, 1.	1.1	11
6	The Impacts of Energy Use, Tourism and Foreign Workers on CO2 Emissions in Malaysia. Sustainability, 2022, 14, 2461.	1.6	16
7	The impact of the US interest rate and oil prices on renewable energy in Turkey: a bootstrap ARDL approach. Environmental Science and Pollution Research, 2022, 29, 50352-50361.	2.7	24
8	Evolution of Hydropower Support Schemes in Poland and Their Assessment Using the LCOE Method. Energies, 2021, 14, 8473.	1.6	4
9	Revisiting the EKC Hypothesis With Export Diversification and Ecological Footprint Pressure Index for India: A RALS-Fourier Cointegration Test. Frontiers in Environmental Science, 2022, 10, .	1.5	10
10	Retesting the Influences on CO2 Emissions in China: Evidence From Dynamic ARDL Approach. Frontiers in Environmental Science, 2022, 10, .	1.5	46
11	Energy Use Greenization, Carbon Dioxide Emissions, and Economic Growth: An Empirical Analysis Based in China. Frontiers in Environmental Science, 0, 10, .	1.5	2
12	Impact of coal mining on land use changes, deforestation, biomass, and C losses in Central India: Implications for offsetting CO ₂ emissions. Land Degradation and Development, 2022, 33, 3731-3747.	1.8	6
13	Modeling and Estimation of CO2 Emissions in China Based on Artificial Intelligence. Computational Intelligence and Neuroscience, 2022, 2022, 1-14.	1.1	0
14	The Impact of Hydropower Energy in Malaysia Under the EKC Hypothesis: Evidence From Quantile ARDL Approach. SAGE Open, 2022, 12, 215824402211095.	0.8	26
15	A Nexus of CO2, Tourism Industry, GDP Growth, and Fossil Fuels. Frontiers in Environmental Science, 0, 10, .	1.5	2
16	Economic performance index assessment of an industrial wastewater treatment plant in terms of the European Green Deal: effect of greenhouse gas emissions. Journal of Water and Climate Change, 2022, 13, 3100-3118.	1.2	13
17	Regional Differences in the Emission-Reduction Effect of Environmental Regulation Based on the Perspective of Embodied Carbon Spatial Transfer Formed by Inter-Regional Trade. Sustainability, 2022, 14, 9707.	1.6	4
18	Appraising the availability of biomass residues in India and their bioenergy potential. Waste Management, 2022, 152, 38-47.	3.7	24

#	Article	IF	CITATIONS
19	How does hydropower energy asymmetrically affect environmental quality? Evidence from quantile-based econometric estimation. Sustainable Energy Technologies and Assessments, 2022, 53, 102564.	1.7	29
20	The roles of hydro, nuclear and biomass energy towards carbon neutrality target in China: A policy-based analysis. Energy, 2023, 262, 125303.	4.5	105
21	Persistence of CO2 emissions in G7 countries: a different outlook from wavelet-based linear and nonlinear unit root tests. Environmental Science and Pollution Research, 2023, 30, 15267-15281.	2.7	7
22	Carbon Footprint Research Based on Input–Output Model—A Global Scientometric Visualization Analysis. International Journal of Environmental Research and Public Health, 2022, 19, 11343.	1.2	7
23	How effective are renewable energy, tourism, trade openness, and foreign direct investment on CO2 emissions? An EKC analysis for ASEAN countries. Environmental Science and Pollution Research, 2023, 30, 14821-14837.	2.7	64
24	Exploring the role of coal consumption, solar, and wind power generation on ecological footprint: evidence from India using Fourier ADL cointegration test. Environmental Science and Pollution Research, 2023, 30, 24077-24087.	2.7	8
25	On the COP26 and coal's phase-out agenda: Striking a balance among the environmental, economic, and health impacts of coal consumption. Journal of Environmental Management, 2023, 328, 116872.	3.8	3
26	Is reducing fossil fuel intensity important for environmental management and ensuring ecological efficiency in China?. Journal of Environmental Management, 2023, 329, 117080.	3.8	42
27	Super-SBM DEA and DTW-based analysis of the energy-environmental efficiency in emerging economies. Energy Sources, Part B: Economics, Planning and Policy, 2022, 17, .	1.8	2
28	A comparison of CO2 emissions, load capacity factor, and ecological footprint for Thailand's environmental sustainability. Environment, Development and Sustainability, 2024, 26, 2203-2223.	2.7	35
29	Does hydropower energy help to reduce CO2 emissions in European Union countries? evidence from quantile estimation. Environmental Development, 2023, 45, 100794.	1.8	25
30	The detrimental effects of dirty energy, foreign investment, and corruption on environmental quality: New evidence from Indonesia. Frontiers in Environmental Science, 0, 10, .	1.5	9
31	Asymmetric nexus of coal consumption with environmental quality and economic growth: Evidence from BRICS, E7, and Fragile Five countries by novel quantile approaches. Energy and Environment, 0, , 0958305X2311516.	2.7	3
32	Role of nuclear energy in carbon mitigation to achieve United Nations net zero carbon emission: evidence from Fourier bootstrap Toda-Yamamoto. Environmental Science and Pollution Research, 2023, 30, 46185-46203.	2.7	5
33	Modeling the linkage between climate-tech, energy transition, and CO2 emissions: Do environmental regulations matter?. Gondwana Research, 2024, 127, 131-143.	3.0	15
34	Effects of possible changes in natural gas, nuclear, and coal energy consumption on CO2 emissions: Evidence from France under Russia's gas supply cuts by dynamic ARDL simulations approach. Applied Energy, 2023, 339, 120983.	5.1	65
35	Do the Kyoto Protocol, geopolitical risks, human capital and natural resources affect the sustainability limit? A new environmental approach based on the LCC hypothesis. Resources Policy, 2023, 81, 103352.	4.2	53
36	The Effect of Land Consolidation Projects on Carbon Footprint. Land, 2023, 12, 507.	1.2	2

CITATION REPORT

		CITATION	itation Report		
#	Article		IF	CITATIONS	
37	Steam Coal Price Forecasting Via LK-LC Ridge Regression Ensemble Learning. Fractals, 0, , .		1.8	0	
38	Directions for Sustainable Development of China's Coal Industry in the Post-Epider Sustainability, 2023, 15, 6518.	mic Era.	1.6	6	
39	The Spatiotemporal Measurement of Coordinated Development of Resource-Environm Based on Empirical Analysis from China's 30 Provinces. Sustainability, 2023, 15, 69	ent-Economy 995.	1.6	2	
43	Optimizing biomass pathways to bioenergy and biochar application in electricity gener production, and biohydrogen production. Environmental Chemistry Letters, 2023, 21,	ation, biodiesel 2639-2705.	8.3	14	