Machine Learning and Deep Learning Based Computati Agricultural Diseases Detection: Methodologies, Applica

Archives of Computational Methods in Engineering 29, 641-677 DOI: 10.1007/s11831-021-09588-5

Citation Report

#	Article	IF	CITATIONS
1	State of the art in flexible SERS sensors toward label-free and onsite detection: from design to applications. Nano Research, 2022, 15, 4374-4394.	5.8	42
2	Contemporary machine learning applications in agriculture: Quo Vadis?. Concurrency Computation Practice and Experience, 2022, 34, .	1.4	5
4	An Industrial-Grade Solution for Crop Disease Image Detection Tasks. Frontiers in Plant Science, 0, 13, .	1.7	11
5	Machine Vision Systems for Rice Diseases Detection: A Review. , 2022, , .		0
6	Development of Deep Learning Methodology for Maize Seed Variety Recognition Based on Improved Swin Transformer. Agronomy, 2022, 12, 1843.	1.3	17
7	Deep learning-based phenotyping for genome wide association studies of sudden death syndrome in soybean. Frontiers in Plant Science, 0, 13, .	1.7	7
8	Efficient attention-based CNN network (EANet) for multi-class maize crop disease classification. Frontiers in Plant Science, 0, 13, .	1.7	7
9	Image-to-Image Translation-Based Data Augmentation for Improving Crop/Weed Classification Models for Precision Agriculture Applications. Algorithms, 2022, 15, 401.	1.2	21
10	Optimised hybrid classification approach for rice leaf disease prediction with proposed texture features. Journal of Control and Decision, 2024, 11, 84-97.	0.7	1
11	Deep learning system for paddy plant disease detection and classification. Environmental Monitoring and Assessment, 2023, 195, .	1.3	50
12	vCrop: an automated plant disease prediction using deep ensemble framework using real field images. Sadhana - Academy Proceedings in Engineering Sciences, 2022, 47, .	0.8	2
13	A Comprehensive Review of Scab Disease Detection on Rosaceae Family Fruits via UAV Imagery. Drones, 2023, 7, 97.	2.7	4
14	A Comprehensive Review onÂCrop Disease Prediction Based onÂMachine Learning andÂDeep Learning Techniques. Lecture Notes in Networks and Systems, 2023, , 481-503.	0.5	6
16	On Precision Agriculture: Enhanced Automated Fruit Disease Identification and Classification Using a New Ensemble Classification Method. Agriculture (Switzerland), 2023, 13, 500.	1.4	2
17	Control of pests and diseases in plants using IOT Technology. Measurement: Sensors, 2023, 26, 100713.	1.3	5
18	A Hybrid Convolutional Neural Network–Random Forest Model for Plant Disease Diagnosis. Smart Innovation, Systems and Technologies, 2023, , 509-517.	0.5	0
19	A Novel Deep Belief Network with Butterfly Optimization Algorithm for the Classification of Paddy Leaf Disease Detection. , 2023, , .		1
20	PPLC-Net:Neural network-based plant disease identification model supported by weather data augmentation and multi-level attention mechanism. Journal of King Saud University - Computer and Information Sciences, 2023, 35, 101555.	2.7	5

CITATION REPORT

#	Article	IF	CITATIONS
21	An Approach to Identify and Classify Agricultural Crop Diseases Using Machine Learning and Deep Learning Techniques. , 2023, , .		2
22	Leaf Disease Classification in Bell Pepper Plant using VGGNet. Journal of Innovative Image Processing, 2023, 5, 36-46.	2.6	2
30	Prediction of Nitrogen Deficiency in Paddy Leaves Using Convolutional Neural Network Model. Lecture Notes in Networks and Systems, 2023, , 711-718.	0.5	0
31	Detecting and Extracting Cocoa Pods in the Natural Environment Using Deep Learning Methods. Lecture Notes in Networks and Systems, 2023, , 164-174.	0.5	0
33	Exploring Classification of Rice Leaf Diseases using Machine Learning and Deep Learning. , 2023, , .		2
34	A Review on Deep Learning on UAV Monitoring Systems for Agricultural Applications. Studies in Computational Intelligence, 2023, , 335-368.	0.7	1
35	Runge Kutta Optimization with Deep Learning Enabled Disease Detection in Internet of Things Environment. , 2023, , .		0
42	Assessing the Effectiveness of CNNs, Decision Tree, and Voting Classifier for Plant Identification: A Comparative Study. , 2023, , .		0
46	Future of Smart Agriculture Techniques and Applications. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 365-378.	0.3	12
47	Plant Disease Detection and Segmentation using End-to-End YOLOv8: A Comprehensive Approach. , 2023, , .		0
50	Privacy-Preserving Pest Detection Using Personalized Federated Learning. Communications in Computer and Information Science, 2023, , 58-70.	0.4	0
52	Classification of the Severity Levels of Apple Rot Disease: A Hybrid Dual CNN and LSTM Deep Learning Approach. , 2023, , .		0
55	Revolutionizing Plant Disease Detection withÂCNN andÂDeep Learning. Communications in Computer and Information Science, 2024, , 415-425.	0.4	0
58	Predicting rice diseases using advanced technologies at different scales: present status and future perspectives. ABIOTECH, 2023, 4, 359-371.	1.8	1
60	Plant Disease Detection and Classification Using Machine Learning and Deep Learning Techniques: Current Trends and Challenges. Lecture Notes in Networks and Systems, 2023, , 197-217.	0.5	0
61	Towards Applications of Machine Learning Algorithms for Sustainable Systems and Precision Agriculture. Intelligent Systems Reference Library, 2023, , 313-350.	1.0	1
66	Empowering Rice Farmers: Automated Multi-Classification of Rice Diseases using YOLOv5. , 2023, , .		0
67	A Deep Learning-based Fine-tuned Convolutional Neural Network Model for Plant Leaf Disease Detection. , 2023, , .		0

#	Article	IF	CITATIONS
68	Poultry Disease Detection in Chicken Fecal Images Through Annotated Polymerase Chain Reaction Dataset Using YOLOv7 And Soft-Nms Algorithm. , 2023, , .		0
69	Leveraging the CNN Approach for Predicting Severity Levels of Bacterial Wilt Disease in Potato Leaves. , 2023, , .		0
71	ResNet/ResNetV2 Supported Framework for Rice-Plant Disease Detection Using Leaf Data. , 2023, , .		0
72	Image Analysis of Plant Stress Phenotypes Using Deep Learning and Augmented Data. , 2023, , .		0
82	Recognition of Apple Leaves Infection Using DenseNet121 with Additional Layers. Lecture Notes in Networks and Systems, 2024, , 297-307.	0.5	0