Combination of a smart phone based low-cost portable liquid-liquid microextraction for speciation and determ

Microchemical Journal 164, 105991 DOI: 10.1016/j.microc.2021.105991

Citation Report

#	Article	IF	CITATIONS
1	Comparison of different microextraction based sample preparation methods for Pt (IV) and Pd (II) ions in environmental water samples followed by flame atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 0, , 1-18.	3.3	0
2	Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchemical Journal, 2022, 175, 107077.	4.5	7
3	Combination of a methylene blue-iodide system with a smartphone-based portable colorimeter for the on-site determination of nitrite. New Journal of Chemistry, 2022, 46, 3231-3235.	2.8	5
4	Mechanism Adsorption–Reduction into the Incorporation of Microbial Fuel Cell–Metal Organic Framework and Overview of Hydrodynamics Effects for Enhanced Reduction of Cr(Vi). SSRN Electronic Journal, 0, , .	0.4	0
5	Development of portable colorimeter for on-site determination of water quality in aquaculture. Pigment and Resin Technology, 2022, ahead-of-print, .	0.9	0
6	Development of a double monitoring system for the determination of Cr(VI) in different water matrices by HPLC–UV and digital image-based colorimetric detection method with the help of a metal sieve-linked double syringe system in complexation. Environmental Monitoring and Assessment, 2022, 194.	2.7	0
7	Mechanism adsorption–reduction into the incorporation of microbial fuel cell–metal organic framework and overview of hydrodynamics effects for enhanced reduction of Cr(VI). Journal of Water Process Engineering, 2022, 49, 103095.	5.6	6
8	A novel separation and preconcentration methodology based on direct immersion dual-drop microextraction for speciation of inorganic chromium in environmental water samples. Talanta, 2023, 255, 123902.	5.5	4
9	Green Downscaling of Solvent Extractive Determination Employing Coconut Oil as Natural Solvent with Smartphone Colorimetric Detection: Demonstrating the Concept via Cu(II) Assay Using 1,5-Diphenylcarbazide. Molecules, 2022, 27, 8622.	3.8	1
10	A Novel, Simple, and Reliable Spectrophotometric Determination of Total Hexavalent Chromium by Complexation with a New Reagent of Thiazole Linked to 2H-Chromen-2-One. International Journal of Analytical Chemistry, 2023, 2023, 1-6.	1.0	0
11	A Low-cost Digital Spectrophotometer for Heavy Metal Absorbance Measurements. Instruments and Experimental Techniques, 2023, 66, 147-155.	0.5	0
12	Using Smartphones in Chemical Analysis. Journal of Analytical Chemistry, 2023, 78, 426-449.	0.9	4
13	Smartphone-based digital images in analytical chemistry: Why, when, and how to use. TrAC - Trends in Analytical Chemistry, 2023, 168, 117284.	11.4	5
14	Dispersive Surfactant Micelle-Mediated Extraction Combined with a Smartphone-based Portable Colorimeter: A Cost-Effective and Simple Approach for Cobalt Determination. Analytical Methods, 0, , .	2.7	1