Limb regeneration in larvae and metamorphosing individed

Journal of Morphology 110, 61-77 DOI: 10.1002/jmor.1051100105

Citation Report

#	Article	IF	CITATIONS
1	Patterns of limb regeneration inXenopus laevis. The Journal of Experimental Zoology, 1963, 154, 153-161.	1.4	32
2	The implantation of lymphosarcoma ofXenopus laevis into regenerating and non-regenerating forelimbs of that species. Journal of Morphology, 1964, 115, 225-237.	1.2	9
3	Limb regeneration and nerve fiber number inRana sylvatica andXenopus laevis. The Journal of Experimental Zoology, 1966, 162, 15-21.	1.4	37
4	Responses of tissues from larval newts to implantation into adult hosts. The Anatomical Record, 1966, 155, 315-323.	1.8	5
5	Induced Regeneration of Hindlimbs in the Newborn Opossum. American Zoologist, 1970, 10, 141-155.	0.7	37
6	XENOPUS LAEVIS AND DEVELOPMENTAL BIOLOGY. Biological Reviews, 1972, 47, 37-112.	10.4	22
7	The effect of nerve growth factor on hindlimb regeneration inXenopus laevis froglets. The Journal of Experimental Zoology, 1974, 189, 215-225.	1.4	8
8	Regeneration of digits and forelimbs in the Kenyan reed frogHyperolius viridiflavus ferniquei. Journal of Morphology, 1975, 146, 431-445.	1.2	29
9	The satellite cells of normal anuran skeletal muscle. Developmental Biology, 1976, 50, 517-524.	2.0	13
10	Phylogenic distribution of limb regeneration capacity in adultAmphibia. The Journal of Experimental Zoology, 1977, 202, 57-67.	1.4	78
11	Re-regeneration of lower jaws and the dental lamina in adult urodeles. Journal of Morphology, 1978, 157, 269-279.	1.2	15
12	Small artificial currents enhanceXenopus limb regeneration. The Journal of Experimental Zoology, 1979, 207, 217-226.	1.4	59
13	Limb regeneration in adult amphibia. Canadian Journal of Zoology, 1981, 59, 34-46.	1.0	50
14	Mice regrow the tips of their foretoes. Science, 1982, 217, 747-750.	12.6	221
15	Amphibian regeneration and cellular heterochrony. Acta Biotheoretica, 1982, 31, 181-184.	1.5	1
16	Limb regenerative capacity of four species of Japanese frogs of the families hylidae and ranidae. Journal of Morphology, 1982, 173, 129-135.	1.2	11
17	Can differences in limb regeneration ability between amphibian species be explained by differences in quantity of innervation?. The Journal of Experimental Zoology, 1982, 219, 81-85.	1.4	19
18	Stage dependency of forelimb regeneration on nerves in postmetamorphic froglets ofXenopus laevis. The Journal of Experimental Zoology, 1982, 220, 331-342.	1.4	31

ATION RE

#	Article	IF	Citations
19	Denervation Effects on Limb Regeneration in Postmetamorphic Xenopus laevis. (regeneration/denervation/Xenopus/limb). Development Growth and Differentiation, 1983, 25, 463-467.	1.5	9
20	Changes in polyamine content during limb regeneration in adultXenopus laevis. The Journal of Experimental Zoology, 1983, 227, 121-126.	1.4	10
21	Lens-forming transformations in the outer cornea of larvalXenopus laevis induced by implanted spinal ganglia. The Journal of Experimental Zoology, 1984, 230, 409-416.	1.4	10
22	Limb regeneration in anuran tadpoles following repeated amputations. The Journal of Experimental Zoology, 1984, 232, 217-229.	1.4	11
23	β-Endorphins (β-EP) in amphibians: Higher β-EP levels during regenerating stages of anuran life cycle and immunocytochemical localization of β-EP in regeneration blastemata. The Journal of Experimental Zoology, 1984, 232, 259-267.	1.4	13
24	Tissue regeneration in the amputated forelimb of Xenopus laevis froglets. Canadian Journal of Zoology, 1984, 62, 2383-2391.	1.0	41
25	Fine structure of the forelimb regenerate of the african clawed toad,xenopus laevis. The Anatomical Record, 1985, 211, 444-449.	1.8	5
26	Pattern-deficient forelimb regeneration in adult bullfrogs. The Journal of Experimental Zoology, 1985, 236, 313-326.	1.4	5
27	Effects of concomitant denervation and re-amputation through the regenerative forelimb outgrowth in Xenopus laevis froglets. Canadian Journal of Zoology, 1986, 64, 258-262.	1.0	4
29	Vitamin A enhances forelimb regeneration in juvenile leopard frogsRana pipiens. The Journal of Experimental Zoology, 1986, 237, 57-61.	1.4	11
30	Intrinsic control of regenerative loss in <i>Xenopus laevis</i> limbs. The Journal of Experimental Zoology, 1986, 240, 47-54.	1.4	104
31	Régénération à différents niveaux d'une phalange chez <i>Rana ridibunda</i> adulte: influence de la nature des tissus blessés. Canadian Journal of Zoology, 1986, 64, 2046-2052.	1.0	1
32	Hormone action in newt limb regeneration: insulin and endorphins. Biochemistry and Cell Biology, 1987, 65, 730-738.	2.0	15
33	Limb regeneration in vertebrates: regulatory factors. Biochemistry and Cell Biology, 1987, 65, 726-729.	2.0	5
34	Evidence that regenerative ability is an intrinsic property of limb cells inXenopus. The Journal of Experimental Zoology, 1988, 247, 39-44.	1.4	44
35	Position dependent expression of a homeobox gene transcript in relation to amphibian limb regeneration EMBO Journal, 1988, 7, 4275-4282.	7.8	88
36	Complementary homeo protein gradients in developing limb buds Genes and Development, 1989, 3, 641-650.	5.9	88
37	Evidence for regulation following amputation and tissue grafting in the developing mouse limb. The Journal of Experimental Zoology, 1989, 249, 55-61.	1.4	39

#	Article	IF	CITATIONS
38	Loss of Limb Regenerative Capacity after Metamorphosis in the Eastern Japanese Common Toad, <i>Bufo japonicus formosus</i> . Japanese Journal of Herpetology, 1990, 13, 126-130.	0.5	1
39	Effect of denervation on hindlimb regeneration in Xenopus laevis larvae. Differentiation, 1990, 43, 10-19.	1.9	41
40	Differential limb regeneration in diploid and triploidRana pipiens larvae with reference to spinal motor neuron development. The Journal of Experimental Zoology, 1990, 254, 276-285.	1.4	1
41	Ultrastructure of <i>Xenopus laevis</i> forelimbs: effects of denervation and delayed amputation. Canadian Journal of Zoology, 1990, 68, 53-62.	1.0	0
42	In vitro effects of implanted spinal ganglia on cartilage cells in Xenopus laevis forelimb regenerates. Canadian Journal of Zoology, 1991, 69, 1546-1549.	1.0	2
43	Two distal-less related homeobox-containing genes expressed in regeneration blastemas of the newt. Developmental Biology, 1992, 154, 55-65.	2.0	51
44	Molecular aspects of regeneration in developing vertebrate limbs. Developmental Biology, 1992, 152, 37-49.	2.0	94
45	The evolution of regeneration: Adaptive or inherent?. Journal of Theoretical Biology, 1992, 159, 241-260.	1.7	90
46	Epimorphic vs. tissue regeneration inXenopus forelimbs. The Journal of Experimental Zoology, 1992, 261, 451-457.	1.4	36
47	Regenerative responses in cultured hindlimb stumps of larvalXenopus laevis. The Journal of Experimental Zoology, 1992, 262, 446-453.	1.4	16
48	Effects of thyroxine and propyl-thiouracil on hindlimb regeneration of larvalXenopus laevis. Roux's Archives of Developmental Biology, 1994, 203, 205-214.	1.2	5
49	Acquisition of nerve dependence for the formation of a regeneration blastema in amputated hindlimbs of larvalXenopus laevis: The role of limb innervation and that of limb differentiation. The Journal of Experimental Zoology, 1995, 273, 327-341.	1.4	13
50	Effect of ammodytin L from the venom of Vipera ammodytes on xenopus laevis differentiated muscle fibres and regenerating limbs. Toxicon, 1996, 34, 81-90.	1.6	8
51	The relationship of innervation and differentiation to regenerative capacity in the reamputated hindlimb of larval Xenopus laevis. Roux's Archives of Developmental Biology, 1996, 205, 252-259.	1.2	1
52	FGF-8Is Associated with Anteroposterior Patterning and Limb Regeneration inXenopus. Developmental Biology, 1997, 192, 455-466.	2.0	240
53	Shh expression in developing and regenerating limb buds ofXenopus laevis. , 1997, 209, 227-232.		99
54	All limbs are not the same. Nature, 1998, 395, 230-231.	27.8	61
55	Does vitamin C have a pro-oxidant effect?. Nature, 1998, 395, 231-231.	27.8	34

#	Article	IF	CITATIONS
56	Does vitamin C have a pro-oxidant effect?. Nature, 1998, 395, 231-232.	27.8	53
57	Fibroblast growth factor receptors regulate the ability for hindlimb regeneration in Xenopus laevis. Wound Repair and Regeneration, 1998, 6, S-388-S-397.	3.0	31
58	Multiple Digit Formation inXenopusLimb Bud Recombinants. Developmental Biology, 1998, 196, 1-10.	2.0	27
59	Graded expression of Emx-2 in the adult newt limb and its corresponding regeneration blastema. Journal of Molecular Biology, 1998, 279, 501-511.	4.2	16
60	Expression of helix-loop-helix type negative regulators of differentiation during limb regeneration in urodeles and anurans. Development Growth and Differentiation, 1999, 41, 731-743.	1.5	24
61	Expression of five novel T-box genes and brachyury during embryogenesis, and in developing and regenerating limbs and tails of newts. Development Growth and Differentiation, 1999, 41, 321-333.	1.5	19
62	Nerve-independence of limb regeneration in larvalXenopus laevis is related to the presence of mitogenic factors in early limb tissues. The Journal of Experimental Zoology, 1999, 284, 188-196.	1.4	12
63	Regeneration in higher vertebrates: Limb buds and digit tips. Seminars in Cell and Developmental Biology, 1999, 10, 405-413.	5.0	72
64	Xenopus laevis gelatinase B (Xmmp-9): Development, regeneration, and wound healing. Developmental Dynamics, 2000, 217, 377-387.	1.8	45
65	Hind limb malformations in free-living northern leopard frogs (Rana pipiens) from Maine, Minnesota, and Vermont suggest multiple etiologies. Teratology, 2000, 62, 151-171.	1.6	76
66	Extent of ossification at the amputation plane is correlated with the decline of blastema formation and regeneration inXenopus laevis hindlimbs. Developmental Dynamics, 2000, 218, 681-697.	1.8	49
67	Mesenchyme with fgf-10 Expression Is Responsible for Regenerative Capacity in Xenopus Limb Buds. Developmental Biology, 2000, 219, 18-29.	2.0	105
68	Analysis of Gene Expressions during Xenopus Forelimb Regeneration. Developmental Biology, 2000, 220, 296-306.	2.0	133
69	An Epidermal Signal Regulates Lmx-1 Expression and Dorsal–Ventral Pattern during Xenopus Limb Regeneration. Developmental Biology, 2001, 229, 351-362.	2.0	56
70	Nerve-Independence of Limb Regeneration in Larval Xenopus laevis Is Correlated to the Level of fgf-2 mRNA Expression in Limb Tissues. Developmental Biology, 2001, 231, 436-446.	2.0	37
71	FGF-10 Stimulates Limb Regeneration Ability in Xenopus laevis. Developmental Biology, 2001, 233, 72-79.	2.0	105
72	Hind-Limb Regeneration in the Dwarf African Clawed Frog, Hymenochirus boettgeri (Anura: Pipidae). Journal of Herpetology, 2002, 36, 537-543.	0.5	8
73	The molecular basis of amphibian limb regeneration: integrating the old with the new. Seminars in Cell and Developmental Biology, 2002, 13, 345-352.	5.0	91

#	Article	IF	CITATIONS
74	Cyclopamine induces digit loss in regenerating axolotl limbs. The Journal of Experimental Zoology, 2002, 293, 186-190.	1.4	56
75	Anteroposterior axis formation inXenopus limb bud recombinants: A model of pattern formation during limb regeneration. Developmental Dynamics, 2002, 225, 277-288.	1.8	5
76	Identification of genes induced in regeneratingXenopus tadpole tails by using the differential display method. Developmental Dynamics, 2003, 226, 317-325.	1.8	18
77	Regeneration-specific expression pattern of three posterior Hox genes. Developmental Dynamics, 2003, 226, 349-355.	1.8	64
78	Regeneration research today. Developmental Dynamics, 2003, 226, 162-166.	1.8	33
79	Regeneration or scarring: An immunologic perspective. Developmental Dynamics, 2003, 226, 268-279.	1.8	243
80	Identification of genes expressed duringXenopus laevis limb regeneration by using subtractive hybridization. Developmental Dynamics, 2003, 226, 398-409.	1.8	44
81	Intercalary and supernumerary regeneration in the limbs of the frog,Xenopus laevis. Developmental Dynamics, 2003, 227, 563-572.	1.8	22
82	Molecular Pathways Needed for Regeneration of Spinal Cord and Muscle in a Vertebrate. Developmental Cell, 2003, 5, 429-439.	7.0	274
83	The Regenerative Biology of Amphibians: Gateway to a Regenerative Medicine. , 2003, 4, 1-6.		0
84	Cellular and molecular mechanisms of regeneration in Xenopus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 745-751.	4.0	110
85	Early regeneration genes: Building a molecular profile for shared expression in cornea-lens transdifferentiation and hindlimb regeneration inXenopus laevis. Developmental Dynamics, 2004, 230, 615-629.	1.8	13
86	Forelimb spike regeneration inXenopus laevis: Testing for adaptiveness. The Journal of Experimental Zoology, 2004, 301A, 150-159.	1.4	18
87	Amphibian Regeneration and Stem Cells. Current Topics in Microbiology and Immunology, 2004, 280, 1-70.	1.1	63
88	Muscle formation in regeneratingXenopus froglet limb. Developmental Dynamics, 2005, 233, 337-346.	1.8	40
89	Expression ofXenopus XISALL4 during limb development and regeneration. Developmental Dynamics, 2005, 233, 356-367.	1.8	35
90	Joint development inXenopus laevis and induction of segmentations in regenerating froglet limb (spike). Developmental Dynamics, 2005, 233, 1444-1453.	1.8	49
91	Strategies to reduce variation inXenopus regeneration studies. Developmental Dynamics, 2005, 234, 151-158.	1.8	20

#	Article	IF	CITATIONS
92	Characteristics of initiation and early events for muscle development in theXenopuslimb bud. Developmental Dynamics, 2005, 234, 846-857.	1.8	22
93	Limb regeneration in higher vertebrates: Developing a roadmap. The Anatomical Record Part B: the New Anatomist, 2005, 287B, 14-24.	1.3	145
94	Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration. Developmental Biology, 2005, 286, 361-375.	2.0	109
95	Ontogenetic Decline of Regenerative Ability and the Stimulation of Human Regeneration. Rejuvenation Research, 2005, 8, 141-153.	1.8	45
96	Wnt/β-catenin signaling regulates vertebrate limb regeneration. Genes and Development, 2006, 20, 3232-3237.	5.9	267
97	Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles. Mechanisms of Development, 2006, 123, 674-688.	1.7	108
98	Limb Regeneration inXenopus laevisFroglet. Scientific World Journal, The, 2006, 6, 26-37.	2.1	82
99	Limb Regeneration in Amphibians: Immunological Considerations. Scientific World Journal, The, 2006, 6, 1-11.	2.1	62
100	A novel Xenopus laevis larval keratin gene, xlk2: Its gene structure and expression during regeneration and metamorphosis of limb and tail. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2006, 1759, 216-224.	2.4	7
101	Analysis of scleraxis and dermo-1 genes in a regenerating limb ofXenopus laevis. Developmental Dynamics, 2006, 235, 1065-1073.	1.8	11
102	Clobal analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration. Developmental Dynamics, 2006, 235, 2667-2685.	1.8	55
103	Characterization ofXenopusdigits and regenerated limbs of the froglet. Developmental Dynamics, 2006, 235, 3316-3326.	1.8	39
105	Wnt/β-catenin signaling has an essential role in the initiation of limb regeneration. Developmental Biology, 2007, 306, 170-178.	2.0	110
106	Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Developmental Biology, 2007, 312, 171-182.	2.0	110
107	Cells of cutaneous immunity in Xenopus: Studies during larval development and limb regeneration. Developmental and Comparative Immunology, 2007, 31, 383-393.	2.3	45
108	Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes and Development, 2007, 21, 1292-1315.	5.9	270
109	Neural MMPâ€28 expression precedes myelination during development and peripheral nerve repair. Developmental Dynamics, 2007, 236, 2852-2864.	1.8	33
110	Brain regeneration in anuran amphibians. Development Growth and Differentiation, 2007, 49, 121-129.	1.5	61

#	Article	IF	CITATIONS
111	Initiation of limb regeneration: The critical steps for regenerative capacity. Development Growth and Differentiation, 2008, 50, 13-22.	1.5	109
112	Molecular and Cellular Basis of Regeneration and Tissue Repair. Cellular and Molecular Life Sciences, 2008, 65, 54-63.	5.4	124
113	Identification of genes associated with regenerative success of Xenopus laevishindlimbs. BMC Developmental Biology, 2008, 8, 66.	2.1	68
114	Regeneration in axolotls: a model to aim for!. Experimental Gerontology, 2008, 43, 968-973.	2.8	62
115	Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration. Developmental Biology, 2008, 316, 323-335.	2.0	152
116	Beyond early development: <i>Xenopus</i> as an emerging model for the study of regenerative mechanisms. Developmental Dynamics, 2009, 238, 1226-1248.	1.8	155
117	Overexpression of the transcription factor Msx1 is insufficient to drive complete regeneration of refractory stage <i>Xenopus laevis</i> hindlimbs. Developmental Dynamics, 2009, 238, 1366-1378.	1.8	19
118	Effects of activation of hedgehog signaling on patterning, growth, and differentiation in <i>Xenopus</i> froglet limb regeneration. Developmental Dynamics, 2009, 238, 1887-1896.	1.8	32
119	Limb blastema cell: A stem cell for morphological regeneration. Development Growth and Differentiation, 2010, 52, 89-99.	1.5	63
120	Stem Cells in Marine Organisms. , 2009, , .		18
120 121	Stem Cells in Marine Organisms. , 2009, , . Repatterning in amphibian limb regeneration: A model for study of genetic and epigenetic control of organ regeneration. Seminars in Cell and Developmental Biology, 2009, 20, 565-574.	5.0	18 54
120 121 122	Stem Cells in Marine Organisms. , 2009, , . Repatterning in amphibian limb regeneration: A model for study of genetic and epigenetic control of organ regeneration. Seminars in Cell and Developmental Biology, 2009, 20, 565-574. Skin wound healing in axolotls: a scarless process. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 684-697.	5.0	18 54 102
120 121 122 123	Stem Cells in Marine Organisms. , 2009, , . Repatterning in amphibian limb regeneration: A model for study of genetic and epigenetic control of organ regeneration. Seminars in Cell and Developmental Biology, 2009, 20, 565-574. Skin wound healing in axolotls: a scarless process. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 684-697. Regeneration and reprogramming compared. BMC Biology, 2010, 8, 5.	5.0 1.3 3.8	18 54 102 96
120 121 122 123 124	Stem Cells in Marine Organisms. , 2009, , . Repatterning in amphibian limb regeneration: A model for study of genetic and epigenetic control of organ regeneration. Seminars in Cell and Developmental Biology, 2009, 20, 565-574. Skin wound healing in axolotls: a scarless process. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 684-697. Regeneration and reprogramming compared. BMC Biology, 2010, 8, 5. Amphibians as research models for regenerative medicine. Organogenesis, 2010, 6, 141-150.	5.0 1.3 3.8 1.2	18 54 102 96 36
120 121 122 123 124 125	Stem Cells in Marine Organisms., 2009, , .Repatterning in amphibian limb regeneration: A model for study of genetic and epigenetic control of organ regeneration. Seminars in Cell and Developmental Biology, 2009, 20, 565-574.Skin wound healing in axolotls: a scarless process. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 684-697.Regeneration and reprogramming compared. BMC Biology, 2010, 8, 5.Amphibians as research models for regenerative medicine. Organogenesis, 2010, 6, 141-150.Proximal to distal patterning during limb development and regeneration: a review of converging disciplines. Regenerative Medicine, 2010, 5, 451-462.	5.0 1.3 3.8 1.2 1.7	 18 54 102 96 36 21
120 121 122 123 124 125	Stem Cells in Marine Organisms., 2009, , .Repatterning in amphibian limb regeneration: A model for study of genetic and epigenetic control of organ regeneration. Seminars in Cell and Developmental Biology, 2009, 20, 565-574.Skin wound healing in axolotls: a scarless process. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 684-697.Regeneration and reprogramming compared. BMC Biology, 2010, 8, 5.Amphibians as research models for regenerative medicine. Organogenesis, 2010, 6, 141-150.Proximal to distal patterning during limb development and regeneration: a review of converging disciplines. Regenerative Medicine, 2010, 5, 451-462.Vertebrates That Regenerate As Models For Guiding Stem Cels. Advances in Experimental Medicine and Biology, 2010, 695, 184-214.	5.0 1.3 3.8 1.2 1.7 1.6	 18 54 102 96 36 21 26
120 121 122 123 124 125 126 127	Stem Cells in Marine Organisms. , 2009, , .Repatterning in amphibian limb regeneration: A model for study of genetic and epigenetic control of organ regeneration. Seminars in Cell and Developmental Biology, 2009, 20, 565-574.Skin wound healing in axolotls: a scarless process. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 684-697.Regeneration and reprogramming compared. BMC Biology, 2010, 8, 5.Amphibians as research models for regenerative medicine. Organogenesis, 2010, 6, 141-150.Proximal to distal patterning during limb development and regeneration: a review of converging disciplines. Regenerative Medicine, 2010, 5, 451-462.Vertebrates That Regenerate As Models For Guiding Stem Cels. Advances in Experimental Medicine and Biology, 2010, 695, 184-214.Analysis of hoxa11 and hoxa13 expression during patterniess limb regeneration in Xenopus. Developmental Biology, 2010, 338, 148-157.	5.0 1.3 3.8 1.2 1.7 1.6 2.0	 18 54 102 96 36 21 26 46

#	Article	IF	CITATIONS
129	Different Requirement for Wnt/β-Catenin Signaling in Limb Regeneration of Larval and Adult Xenopus. PLoS ONE, 2011, 6, e21721.	2.5	44
130	Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis. European Journal of Neuroscience, 2011, 33, 9-25.	2.6	57
131	Sexually Dimorphic Fin Regeneration in Zebrafish Controlled by Androgen/GSK3 Signaling. Current Biology, 2011, 21, 1912-1917.	3.9	44
132	Prx-1 Expression in Xenopus laevis Scarless Skin-Wound Healing and Its Resemblance to Epimorphic Regeneration. Journal of Investigative Dermatology, 2011, 131, 2477-2485.	0.7	60
133	Matrix metalloproteinase expression during blastema formation in regenerationâ€competent versus regenerationâ€deficient amphibian limbs. Developmental Dynamics, 2011, 240, 1127-1141.	1.8	52
134	Looking proximally and distally: 100 years of limb regeneration and beyond. Developmental Dynamics, 2011, 240, 943-968.	1.8	105
135	Dedifferentiation and the role of sall4 in reprogramming and patterning during amphibian limb regeneration. Developmental Dynamics, 2011, 240, 979-989.	1.8	47
136	Expression of key retinoic acid modulating genes suggests active regulation during development and regeneration of the amphibian limb. Developmental Dynamics, 2011, 240, 1259-1270.	1.8	31
137	Restorative Regeneration of Digital Tips in the African Clawed Frog (<i>Xenopus laevis</i> Daudin). Anatomical Record, 2011, 294, 253-262.	1.4	3
138	The aneurogenic limb identifies developmental cell interactions underlying vertebrate limb regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13588-13593.	7.1	45
139	Histone deacetylases are required for amphibian tail and limb regeneration but not development. Mechanisms of Development, 2012, 129, 208-218.	1.7	32
140	Studying Regeneration in Xenopus. Methods in Molecular Biology, 2012, 917, 525-539.	0.9	12
141	The influence of fundamental traits on mechanisms controlling appendage regeneration. Biological Reviews, 2012, 87, 330-345.	10.4	64
142	Transgenic Analysis of Signaling Pathways Required for <i>Xenopus</i> Tadpole Spinal Cord and Muscle Regeneration. Anatomical Record, 2012, 295, 1532-1540.	1.4	22
143	The Developing <i>Xenopus</i> Limb as a Model for Studies on the Balance between Inflammation and Regeneration. Anatomical Record, 2012, 295, 1552-1561.	1.4	75
144	Micro omputed Tomography for Visualizing Limb Skeletal Regeneration in Young Xenopus Frogs. Anatomical Record, 2012, 295, 1562-1565.	1.4	7
145	Lens regenerates by means of similar processes and timeline in adults and larvae of the newt <i>Cynops pyrrhogaster</i> . Developmental Dynamics, 2012, 241, 1575-1583.	1.8	14
146	Wound Healing in Mammals and Amphibians: Toward Limb Regeneration in Mammals. Current Topics in Microbiology and Immunology, 2012, 367, 33-49.	1.1	45

#	ARTICLE Xenopus Protocols. Methods in Molecular Biology, 2012, , .	IF 0.9	Citations 6
148	Regeneration of Appendages. , 2012, , 183-226.		2
149	Herpetological Osteopathology. , 2012, , .		57
150	Survey of the differences between regenerative and nonâ€regenerative animals. Development Growth and Differentiation, 2012, 54, 143-152.	1.5	58
151	Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae. BMC Developmental Biology, 2012, 12, 9.	2.1	34
152	Limb regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 291-300.	5.9	94
153	New Perspectives in Regeneration. Current Topics in Microbiology and Immunology, 2013, 367, v-vii.	1.1	5
154	Attenuation of bone morphogenetic protein signaling during amphibian limb development results in the generation of stageâ€specific defects. Journal of Anatomy, 2013, 223, 474-488.	1.5	13
155	Imparting Regenerative Capacity to Limbs by Progenitor Cell Transplantation. Developmental Cell, 2013, 24, 41-51.	7.0	66
156	Germline Transgenic Methods for Tracking Cells and Testing Gene Function during Regeneration in the Axolotl. Stem Cell Reports, 2013, 1, 90-103.	4.8	70
157	Local Dkk1 Crosstalk from Breeding Ornaments Impedes Regeneration of Injured Male Zebrafish Fins. Developmental Cell, 2013, 27, 19-31.	7.0	36
158	Axolotl as a Model to Study Scarless Wound Healing in Vertebrates: Role of the Transforming Growth Factor Beta Signaling Pathway. Advances in Wound Care, 2013, 2, 250-260.	5.1	40
159	Changes in the Inflammatory Response to Injury and Its Resolution during the Loss of Regenerative Capacity in Developing Xenopus Limbs. PLoS ONE, 2013, 8, e80477.	2.5	84
160	Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity. Regeneration (Oxford, England), 2014, 1, 2-14.	6.3	70
161	A bioinformatics expert system linking functional data to anatomical outcomes in limb regeneration. Regeneration (Oxford, England), 2014, 1, 37-56.	6.3	12
162	Implication of two different regeneration systems in limb regeneration. Regeneration (Oxford,) Tj ETQq1 1 0.784	314 rgBT / 6.3	Oyerlock 10
163	Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl. BMC Developmental Biology, 2014, 14, 32.	2.1	39
164	Yap1, transcription regulator in the Hippo signaling pathway, is required for Xenopus limb bud regeneration. Developmental Biology, 2014, 388, 57-67.	2.0	49

#	Article	IF	CITATIONS
165	New Insights into Vertebrate Skin Regeneration. International Review of Cell and Molecular Biology, 2014, 310, 129-169.	3.2	63
168	Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration. Developmental Biology, 2014, 396, 31-41.	2.0	48
169	Distal expression of sprouty (spry) genes during Xenopus laevis limb development and regeneration. Gene Expression Patterns, 2014, 15, 61-66.	0.8	20
170	Optogenetic Control of Apoptosis in Targeted Tissues of Xenopus laevis Embryos. Journal of Cell Death, 2014, 7, JCD.S18368.	0.8	23
171	Skeletal callus formation is a nerveâ€independent regenerative response to limb amputation in mice and Xenopus. Regeneration (Oxford, England), 2015, 2, 202-216.	6.3	11
172	Application of local gene induction by infrared laserâ€mediated microscope and temperature stimulator to amphibian regeneration study. Development Growth and Differentiation, 2015, 57, 601-613.	1.5	16
173	Regeneration inducers in limb regeneration. Development Growth and Differentiation, 2015, 57, 421-429.	1.5	40
174	Immunodetection of telomeraseâ€like immunoreactivity in normal and regenerating tail of amphibians suggests it is related to their regenerative capacity. Journal of Experimental Zoology, 2015, 323, 757-766.	1.2	12
175	Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration. PLoS ONE, 2015, 10, e0133375.	2.5	16
176	Formation of a New Limb Bud at the Boundary Between a Transplanted Limb Bud and the Tail Surface ofXenopusTadpoles. Zoological Science, 2015, 32, 223-232.	0.7	1
177	Budgett's frog (Lepidobatrachus laevis): A new amphibian embryo for developmental biology. Developmental Biology, 2015, 405, 291-303.	2.0	15
178	Regenerative Skin Wound Healing in Mammals: State-of-the-Art on Growth Factor and Stem Cell Based Treatments. Cellular Physiology and Biochemistry, 2015, 36, 1-23.	1.6	159
179	Roles of <scp>H</scp> ippo signaling pathway in size control of organ regeneration. Development Growth and Differentiation, 2015, 57, 341-351.	1.5	30
180	Development of the vertebrate tailbud. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 33-44.	5.9	29
181	Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. ELife, 2016, 5, .	6.0	108
182	Genetics and Regeneration in Vertebrates. , 2016, , 339-363.		2
183	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
184	Functional joint regeneration is achieved using reintegration mechanism in <i>Xenopus laevis</i> . Regeneration (Oxford, England), 2016, 3, 26-38.	6.3	8

#	Article	IF	CITATIONS
185	The cellular and molecular mechanisms of tissue repair and regeneration as revealed by studies in <i>Xenopus</i> . Regeneration (Oxford, England), 2016, 3, 198-208.	6.3	29
186	Could we also be regenerative superheroes, like salamanders?. BioEssays, 2016, 38, 917-926.	2.5	10
187	<i>In vivo</i> tracking of histone H3 lysine 9 acetylation in <i>Xenopus laevis</i> during tail regeneration. Genes To Cells, 2016, 21, 358-369.	1.2	29
188	<i>Xenopus</i> Limb bud morphogenesis. Developmental Dynamics, 2016, 245, 233-243.	1.8	24
189	Looking Ahead to Engineering Epimorphic Regeneration of a Human Digit or Limb. Tissue Engineering - Part B: Reviews, 2016, 22, 251-262.	4.8	17
190	Inflammation and immunity in organ regeneration. Developmental and Comparative Immunology, 2017, 66, 98-110.	2.3	122
191	Kidney Development and Disease. Results and Problems in Cell Differentiation, 2017, , .	0.7	2
192	Use of Xenopus Frogs to Study Renal Development/Repair. Results and Problems in Cell Differentiation, 2017, 60, 77-107.	0.7	6
193	Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration (Oxford, England), 2017, 4, 39-53.	6.3	150
194	Cells from subcutaneous tissues contribute to scarless skin regeneration in <i>Xenopus laevis</i> froglets. Developmental Dynamics, 2017, 246, 585-597.	1.8	16
195	The heterochronic gene Lin28 regulates amphibian metamorphosis through disturbance of thyroid hormone function. Developmental Biology, 2017, 425, 142-151.	2.0	21
196	Microscopic observations show invasion of inflammatory cells in the limb blastema and epidermis in pre-metamorphic frog tadpoles which destroy the Apical Epidermal CAP and impede regeneration. Annals of Anatomy, 2017, 210, 94-102.	1.9	17
197	Mechanisms of urodele limb regeneration. Regeneration (Oxford, England), 2017, 4, 159-200.	6.3	97
198	Reactivation of larval keratin gene (krt62.L) in blastema epithelium during Xenopus froglet limb regeneration. Developmental Biology, 2017, 432, 265-272.	2.0	4
199	Dicer inactivation stimulates limb regeneration ability in Xenopus laevis. Wound Repair and Regeneration, 2018, 26, 46-53.	3.0	2
200	Hyperinnervation improves Xenopus laevis limb regeneration. Developmental Biology, 2018, 433, 276-286.	2.0	21
201	Brief Local Application of Progesterone via a Wearable Bioreactor Induces Long-Term Regenerative Response in Adult Xenopus Hindlimb. Cell Reports, 2018, 25, 1593-1609.e7.	6.4	33
202	Nerve roles in blastema induction and pattern formation in limb regeneration. International Journal of Developmental Biology, 2018, 62, 605-612.	0.6	14

#	Article	IF	CITATIONS
203	An integrative framework for salamander and mouse limb regeneration. International Journal of Developmental Biology, 2018, 62, 393-402.	0.6	17
204	Positional information specifies the site of organ regeneration and not tissue maintenance in planarians. ELife, 2018, 7, .	6.0	19
205	Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells. Frontiers in Cellular Neuroscience, 2018, 12, 45.	3.7	20
206	Robust and local positional information within a fin ray directs fin length during zebrafish regeneration. Development Growth and Differentiation, 2018, 60, 354-364.	1.5	14
207	Melanocortin Receptor 4 Signaling Regulates Vertebrate Limb Regeneration. Developmental Cell, 2018, 46, 397-409.e5.	7.0	31
208	Homeotic transformation of tails into limbs in anurans. Development Growth and Differentiation, 2018, 60, 365-376.	1.5	6
209	Cross-limb communication during <i>Xenopus</i> hind-limb regenerative response: non-local bioelectric injury signals. Development (Cambridge), 2018, 145, .	2.5	30
210	Studies of Limb Regeneration in Larval Xenopus. Cold Spring Harbor Protocols, 2019, 2019, pdb.prot100990.	0.3	1
211	Deep evolutionary origin of limb and fin regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15106-15115.	7.1	46
212	Common themes in tetrapod appendage regeneration: a cellular perspective. EvoDevo, 2019, 10, 11.	3.2	13
213	Fgf- and Bmp-signaling regulate gill regeneration in Ambystoma mexicanum. Developmental Biology, 2019, 452, 104-113.	2.0	19
214	Recovery of the Xenopus laevis heart from ROSâ€induced stress utilizes conserved pathways of cardiac regeneration. Development Growth and Differentiation, 2019, 61, 212-227.	1.5	3
215	Developmental regulation of regenerative potential in Drosophila by ecdysone through a bistable loop of ZBTB transcription factors. PLoS Biology, 2019, 17, e3000149.	5.6	32
216	More Than Just a Bandage: Closing the Gap Between Injury and Appendage Regeneration. Frontiers in Physiology, 2019, 10, 81.	2.8	18
217	Can laboratory model systems instruct human limb regeneration?. Development (Cambridge), 2019, 146,	2.5	14
218	A Comparative Perspective on Brain Regeneration in Amphibians and Teleost Fish. Developmental Neurobiology, 2019, 79, 424-436.	3.0	30
219	Chromatin dynamics underlying the precise regeneration of a vertebrate limb – Epigenetic regulation and cellular memory. Seminars in Cell and Developmental Biology, 2020, 97, 16-25.	5.0	8
220	Cellular Plasticity in Musculoskeletal Development, Regeneration, and Disease. Journal of Orthopaedic Research, 2020, 38, 708-718.	2.3	4

#	Article	IF	CITATIONS
221	Microscopic observations on amputated and scarring lizard digits show an intense inflammatory reaction. Zoology, 2020, 139, 125737.	1.2	3
222	Transcriptional analysis of scar-free wound healing during early stages of tail regeneration in the green anole lizard, Anolis carolinensis. Journal of Immunology and Regenerative Medicine, 2020, 7, 100025.	0.4	14
223	Insights regarding skin regeneration in non-amniote vertebrates: Skin regeneration without scar formation and potential step-up to a higher level of regeneration. Seminars in Cell and Developmental Biology, 2020, 100, 109-121.	5.0	18
224	Anatomical and histological analyses reveal that tail repair is coupled with regrowth in wild-caught, juvenile American alligators (Alligator mississippiensis). Scientific Reports, 2020, 10, 20122.	3.3	13
225	Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science, 2020, 369, .	12.6	147
226	Model systems for regeneration: <i>Xenopus</i> . Development (Cambridge), 2020, 147, .	2.5	39
227	von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of blastemas capable of multitissue appendage regeneration. Evolution & Development, 2020, 22, 297-311.	2.0	25
228	Cellular Heterogeneity and Lineage Restriction during Mouse Digit Tip Regeneration at Single-Cell Resolution. Developmental Cell, 2020, 52, 525-540.e5.	7.0	56
229	The power of amphibians to elucidate mechanisms of size control and scaling. Experimental Cell Research, 2020, 392, 112036.	2.6	13
230	Evolution of epimorphosis in mammals. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 165-179.	1.3	14
231	Proximal digit tip amputation initiates simultaneous blastema and transient fibrosis formation and results in partial regeneration. Wound Repair and Regeneration, 2021, 29, 196-205.	3.0	12
232	Characterizing the regenerative capacity and growth patterns of the Texas blind salamander (Eurycea) Tj ETQq1	1 0.78431 1.8	4 rgBT /Over
233	From Cell Death to Regeneration: Rebuilding After Injury. Frontiers in Cell and Developmental Biology, 2021, 9, 655048.	3.7	21
234	A cross-species analysis of systemic mediators of repair and complex tissue regeneration. Npj Regenerative Medicine, 2021, 6, 21.	5.2	11
235	Genetic, epigenetic, and postâ€transcriptional basis of divergent tissue regenerative capacities among vertebrates. Genetics & Genomics Next, 2021, 2, e10042.	1.5	13
236	Secreted inhibitors drive the loss of regeneration competence in <i>Xenopus</i> limbs. Development (Cambridge), 2021, 148, .	2.5	20
237	Appendage regeneration is context dependent at the cellular level. Open Biology, 2021, 11, 210126.	3.6	9
238	Comparing nerveâ€mediated FGF signalling in the early initiation phase of organ regeneration across mutliple amphibian species. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 529-539.	1.3	4

#	Article	IF	CITATIONS
241	Regeneration in Hemichordates and Echinoderms. , 2009, , 245-265.		17
242	Mechanisms of Blastema Formation in Regenerating Amphibian Limbs. , 2011, , 67-86.		4
243	Regeneration of Appendages. , 2006, , 363-404.		3
244	The Amphibian Limb. , 1969, , 140-190.		3
245	Zebrafish can regenerate endoskeleton in larval pectoral fin but the regenerative ability declines. Developmental Biology, 2020, 463, 110-123.	2.0	11
246	Review: The Xenopus Tadpole—A New Organism for Regeneration Research. , 2000, 1, 1-3.		3
250	Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae. BMC Developmental Biology, 2012, 12, 9.	2.1	2
251	Identification and expression of a regeneration-specific homeobox gene in the newt limb blastema. Development (Cambridge), 1991, 111, 489-496.	2.5	55
252	The regeneration of limbs in adult anurans. Development (Cambridge), 1967, 18, 259-267.	2.5	16
253	A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis. PLoS ONE, 2016, 11, e0155618.	2.5	12
254	Research proceedings on amphibian model organisms. Zoological Research, 2016, 37, 237-45.	0.6	18
255	Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development. ELife, 2019, 8, .	6.0	36
256	Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila. ELife, 2020, 9, .	6.0	41
257	Bacterial lipopolysaccharides can initiate regeneration of the Xenopus tadpole tail. IScience, 2021, 24, 103281.	4.1	11
260	The Progress of Research on the WNT/β-Catenin Pathway in Regeneration. Advances in Marine Sciences, 2017, 04, 1-7.	0.1	0
264	Position dependent expression of a homeobox gene transcript in relation to amphibian limb regeneration. EMBO Journal, 1988, 7, 4275-82.	7.8	18
265	Isolation of a binding protein for pig renin. Journal of Physiology, 1973, 232, 22P-23P.	2.9	0
266	Tissues and Cell Types of Appendage Regeneration: A Detailed Look at the Wound Epidermis and Its Specialized Forms. Frontiers in Physiology, 2021, 12, 771040.	2.8	9

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
267	Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult <i>Xenopus laevis</i> . Science Advances, 2022, 8, eabj2164.	10.3	27
268	To regenerate or not to regenerate: Vertebrate model organisms of regenerationâ€competency and â€incompetency. Wound Repair and Regeneration, 2022, 30, 623-635.	3.0	10
269	Rebuilding limbs, one cell at a time. Developmental Dynamics, 2022, 251, 1389-1403.	1.8	5
270	Sonic hedgehog is Essential for Proximal-Distal Outgrowth of the Limb Bud in Salamanders. Frontiers in Cell and Developmental Biology, 2022, 10, 797352.	3.7	4
271	A Morphological and Histological Investigation of Imperfect Lungfish Fin Regeneration. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	0
281	Cellular responses in the <scp>FGF10</scp> â€mediated improvement of hindlimb regenerative capacity in <i>Xenopus laevis</i> revealed by singleâ€cell transcriptomics. Development Growth and Differentiation, 2022, 64, 266-278.	1.5	2
282	The developmental potentialities of regeneration blastema cell nuclei as determined by nuclear transplantation. Development (Cambridge), 1967, 18, 27-41.	2.5	7
283	ElektrolytverĤderungen in Amphibiengeweben wĤrend der Larvenentwicklung, Metamorphose und Regeneration (<i>Xenopus laevis</i> Daudin und <i>Triturus cristatus carnifex</i>). Development (Cambridge), 1972, 28, 57-76.	2.5	0
284	Experiments on Anuran limb buds and their significance for principles of vertebrate limb development. Development (Cambridge), 1981, 63, 243-265.	2.5	0
285	Effects of radius—ulna removal on forelimb regeneration in <i>Xenopus laevis</i> froglets. Development (Cambridge), 1984, 82, 9-24.	2.5	7
286	Comparison of the effects of vitamin A on limb development and regeneration in <i>Xenopus laevis</i> tadpoles. Development (Cambridge), 1986, 91, 35-53.	2.5	16
287	Intravital staining to detect mineralization in <i>Xenopus tropicalis</i> during and after metamorphosis. Development Growth and Differentiation, 2022, 64, 368-378.	1.5	3
288	Evi5 is required for Xenopus limb and tail regeneration. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	1
290	Appendageâ€restricted gene induction using a heated agarose gel for studying regeneration in metamorphosed <i>Xenopus laevis</i> and <i>Pleurodeles waltl</i> . Development Growth and Differentiation, 0, , .	1.5	1
291	Embryonic and skeletal development of the albino African clawed frog (<i>Xenopus laevis</i>). Journal of Anatomy, 0, , .	1.5	0
292	Unravelling the limb regeneration mechanisms of Polypedates maculatus, a sub-tropical frog, by transcriptomics. BMC Genomics, 2023, 24, .	2.8	2
293	Structural and functional analysis of the newt lymphatic system. Scientific Reports, 2023, 13, .	3.3	3
294	The shh limb enhancer is activated in patterned limb regeneration but not in hypomorphic limb regeneration in Xenopus laevis. Developmental Biology, 2023, 500, 22-30.	2.0	0

		CHATION REPORT		
#	Article		IF	CITATIONS
295	Neural dependency in wound healing and regeneration. Developmental Dynamics, 2024, 253, 18	1-203.	1.8	0
296	Tail regeneration at different ontogenetic stages of the tiger salamander <i>Ambystoma tigrinum suggests possible changes in regeneration between larval and metamorphic individuals. Acta Zoologica, 0, , .</i>		0.8	0
299	Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Developm Biology, 2024, 507, 44-63.	ental	2.0	0