Observations of Clouds, Aerosols, Precipitation, and Sur Ocean: An Overview of CAPRICORN, MARCUS, MICRE,

Bulletin of the American Meteorological Society 102, E894-E928

DOI: 10.1175/bams-d-20-0132.1

Citation Report

#	Article	IF	CITATIONS
1	How Well Do Largeâ€Eddy Simulations and Global Climate Models Represent Observed Boundary Layer Structures and Low Clouds Over the Summertime Southern Ocean?. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002205.	1.3	26
2	Organic composition of three different size ranges of aerosol particles over the Southern Ocean. Aerosol Science and Technology, 2021, 55, 268-288.	1.5	13
3	Southern Ocean Cloud Properties Derived From CAPRICORN and MARCUS Data. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033368.	1.2	25
4	Cloudâ€Nucleating Particles Over the Southern Ocean in a Changing Climate. Earth's Future, 2021, 9, e2020EF001673.	2.4	33
5	High-resolution in situ observations of atmospheric thermodynamics using dropsondes during the Organization of Tropical East Pacific Convection (OTREC) field campaign. Earth System Science Data, 2021, 13, 1107-1117.	3.7	11
6	Measurement report: Cloud processes and the transport of biological emissions affect southern ocean particle and cloud condensation nuclei concentrations. Atmospheric Chemistry and Physics, 2021, 21, 3427-3446.	1.9	35
7	Evaluation of MODIS and Himawariâ $\in 8$ Low Clouds Retrievals Over the Southern Ocean With In Situ Measurements From the SOCRATES Campaign. Earth and Space Science, 2021, 8, e2020EA001397.	1.1	11
8	Shallow Convection and Precipitation Over the Southern Ocean: A Case Study During the CAPRICORN 2016 Field Campaign. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034088.	1.2	14
9	Influences of Recent Particle Formation on Southern Ocean Aerosol Variability and Low Cloud Properties. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033529.	1.2	32
10	Analyzing the Thermodynamic Phase Partitioning of Mixed Phase Clouds Over the Southern Ocean Using Passive Satellite Observations. Geophysical Research Letters, 2021, 48, e2021GL093225.	1.5	4
11	Challenging and Improving the Simulation of Mid‣evel Mixedâ€Phase Clouds Over the Highâ€Latitude Southern Ocean. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033490.	1.2	20
12	Melting Layer Detection and Observation with the NCAR Airborne W-Band Radar. Remote Sensing, 2021, 13, 1660.	1.8	7
14	Wintertime In Situ Cloud Microphysical Properties of Mixedâ€Phase Clouds Over the Southern Ocean. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034832.	1.2	14
15	Sources, Occurrence and Characteristics of Fluorescent Biological Aerosol Particles Measured Over the Pristine Southern Ocean. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034811.	1.2	15
16	The NCAR Airborne 94-GHz Cloud Radar: Calibration and Data Processing. Data, 2021, 6, 66.	1.2	6
17	Clarifying remotely-retrieved precipitation of shallow marine clouds from the NSF/NCAR Gulfstream V. Journal of Atmospheric and Oceanic Technology, 2021, , .	0.5	1
18	lce in Southern Ocean Clouds With Cloud Top Temperatures Exceeding â^'5°C. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034574.	1.2	5
19	Mixedâ€Phase Clouds Over the Southern Ocean as Observed From Satellite and Surface Based Lidar and Radar. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034569.	1.2	19

CITATION REPORT

#	Article	IF	CITATIONS
20	Southern Ocean latitudinal gradients of cloud condensation nuclei. Atmospheric Chemistry and Physics, 2021, 21, 12757-12782.	1.9	20
21	Understanding the Global Three-dimensional Distribution of Precipitation Mean Particle Size with the Global Precipitation Measurement Mission. Journal of Climate, 2021, , 1-62.	1.2	ο
22	Phase Characterization of Cold Sector Southern Ocean Cloud Tops: Results From SOCRATES. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033673.	1.2	12
24	Seasonal Change in Satelliteâ€Retrieved Lowerâ€Tropospheric Iceâ€Cloud Fraction Over the Southern Ocean. Geophysical Research Letters, 2021, 48, .	1.5	5
25	The University of Washington Ice–Liquid Discriminator (UWILD) improves single-particle phase classifications of hydrometeors within Southern Ocean clouds using machine learning. Atmospheric Measurement Techniques, 2021, 14, 7079-7101.	1.2	6
26	Observations and Modeling of Rime Splintering in Southern Ocean Cumuli. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035479.	1.2	9
27	Predicting Frigid Mixedâ€Phase Clouds for Pristine Coastal Antarctica. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035112.	1.2	5
28	Key challenges for tropospheric chemistry in the Southern Hemisphere. Elementa, 2022, 10, .	1.1	7
29	Orographic Flow Influence on Precipitation During an Atmospheric River Event at Davis, Antarctica. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	13
30	Opportunistic experiments to constrain aerosol effective radiative forcing. Atmospheric Chemistry and Physics, 2022, 22, 641-674.	1.9	44
31	Rainfall microphysics. , 2022, , 1-26.		1
32	An extensive data set for in situ microphysical characterization of low-level clouds in a Finnish sub-Arctic site. Earth System Science Data, 2022, 14, 637-649.	3.7	2
33	Hemispheric contrasts in ice formation in stratiform mixed-phase clouds: disentangling the role of aerosol and dynamics with ground-based remote sensing. Atmospheric Chemistry and Physics, 2021, 21, 17969-17994.	1.9	18
34	A climatology of open and closed mesoscale cellular convection over the Southern Ocean derived from Himawari-8 observations. Atmospheric Chemistry and Physics, 2022, 22, 2135-2152.	1.9	6
35	Southern Ocean Precipitation Characteristics Observed From CloudSat and Ground Instrumentation During the Macquarie Island Cloud & Radiation Experiment (MICRE): April 2016 to March 2017. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	13
36	The COMBLE Campaign: A Study of Marine Boundary Layer Clouds in Arctic Cold-Air Outbreaks. Bulletin of the American Meteorological Society, 2022, 103, E1371-E1389.	1.7	17
37	Coalescence Scavenging Drives Droplet Number Concentration in Southern Ocean Low Clouds. Geophysical Research Letters, 2022, 49, .	1.5	12
38	Ice and Supercooled Liquid Water Distributions Over the Southern Ocean Based on In Situ Observations and Climate Model Simulations. Journal of Geophysical Research D: Atmospheres, 2021, 126	1.2	9

#	Article	IF	CITATIONS
39	Biases in the thermodynamic structure over the Southern Ocean in <scp>ERA5</scp> and their radiative implications. International Journal of Climatology, 2022, 42, 7685-7702.	1.5	4
40	Iceâ€Nucleating Particles That Impact Clouds and Climate: Observational and Modeling Research Needs. Reviews of Geophysics, 2022, 60, .	9.0	29
41	How Accurately Can Warm Rain Realistically Be Retrieved with Satellite Sensors? Part I: DSD Uncertainties. Journal of Applied Meteorology and Climatology, 2022, 61, 1087-1105.	0.6	2
42	Cloud and Precipitation Particle Identification Using Cloud Radar and Lidar Measurements: Retrieval Technique and Validation. Earth and Space Science, 2022, 9, .	1.1	5
43	Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 1: assessing E3SM aerosol predictions using aircraft, ship, and surface measurements. Geoscientific Model Development, 2022, 15, 4055-4076.	1.3	3
44	Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign. Atmospheric Measurement Techniques, 2022, 15, 3761-3777.	1.2	1
45	An evaluation of the liquid cloud droplet effective radius derived from MODIS, airborne remote sensing, and in situ measurements from CAMP ² Ex. Atmospheric Chemistry and Physics, 2022, 22, 8259-8285.	1.9	7
46	The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data. Atmospheric Measurement Techniques, 2022, 15, 3875-3892.	1.2	15
47	Impact of downward longwave radiative deficits on Antarctic sea-ice extent predictability during the sea ice growth period. Environmental Research Letters, 2022, 17, 084008.	2.2	3
48	Automated identification of local contamination in remote atmospheric composition time series. Atmospheric Measurement Techniques, 2022, 15, 4195-4224.	1.2	11
49	Circum-Antarctic abundance and properties of CCN and INPs. Atmospheric Chemistry and Physics, 2022, 22, 9721-9745.	1.9	13
50	Vertically Resolved Convective–Stratiform Echo-Type Identification and Convectivity Retrieval for Vertically Pointing Radars. Journal of Atmospheric and Oceanic Technology, 2022, 39, 1705-1716.	0.5	3
51	Exploring relations between cloud morphology, cloud phase, and cloud radiative properties in Southern Ocean's stratocumulus clouds. Atmospheric Chemistry and Physics, 2022, 22, 10247-10265.	1.9	5
52	Analysis of MONARC and ACTIVATE Airborne Aerosol Data for Aerosol-Cloud Interaction Investigations: Efficacy of Stairstepping Flight Legs for Airborne In Situ Sampling. Atmosphere, 2022, 13, 1242.	1.0	4
53	Significant continental source of ice-nucleating particles at the tip of Chile's southernmost Patagonia region. Atmospheric Chemistry and Physics, 2022, 22, 10505-10525.	1.9	7
54	Southern Ocean precipitation: Toward a processâ€level understanding. Wiley Interdisciplinary Reviews: Climate Change, 2022, 13, .	3.6	5
55	Ground-Based Measurements of Cloud Properties at the Bucharest–Măgurele Cloudnet Station: First Results. Atmosphere, 2022, 13, 1445.	1.0	4
56	Cloud Phase Simulation at High Latitudes in EAMv2: Evaluation Using CALIPSO Observations and Comparison With EAMv1. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5

CITATION REPORT

#	Article	IF	CITATIONS
57	Aerosol-boundary layer dynamics and its effect on aerosol radiative forcing and atmospheric heating rate in the Indian Ocean sector of Southern Ocean. Science of the Total Environment, 2023, 858, 159770.	3.9	3
58	Can DSD Assumptions Explain the Differences in Satellite Estimates of Warm Rain?. Journal of Atmospheric and Oceanic Technology, 2022, 39, 1889-1901.	0.5	0
59	Estimation of Sea Spray Aerosol Surface Area Over the Southern Ocean Using Scattering Measurements. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	1
60	Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right?. Atmospheric Chemistry and Physics, 2022, 22, 14603-14630.	1.9	6
61	Southern Ocean Solar Reflection Biases in CMIP6 Models Linked to Cloud Phase and Vertical Structure Representations. Geophysical Research Letters, 2022, 49, .	1.5	12
62	Thermodynamic characteristics of marine atmospheric boundary layer across frontal regions of the Indian Ocean Sector of the Southern Ocean based on three field campaigns. Atmospheric Research, 2023, 286, 106678.	1.8	Ο
63	Natural marine cloud brightening in the Southern Ocean. Atmospheric Chemistry and Physics, 2023, 23, 1677-1685.	1.9	2
64	Important Ice Processes Are Missed by the Community Earth System Model in Southern Ocean Mixedâ€Phase Clouds: Bridging SOCRATES Observations to Model Developments. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	4
65	Construction of SIoT CG virtual reality framework under ubiquitous clouds environment. International Journal of Systems Assurance Engineering and Management, 0, , .	1.5	0
66	Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part III: clouds and extreme precipitation. Ukrainian Antarctic Journal, 2022, 20, .	0.1	0
67	Influence of air mass origin on microphysical properties of low-level clouds in a subarctic environment. Atmospheric Chemistry and Physics, 2023, 23, 2483-2498.	1.9	0
68	Simulating Southern Ocean Aerosol and Ice Nucleating Particles in the Community Earth System Model Version 2. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	2
69	Cloud Top Thermodynamic Phase from Synergistic Lidar-Radar Cloud Products from Polar Orbiting Satellites: Implications for Observations from Geostationary Satellites. Remote Sensing, 2023, 15, 1742.	1.8	0
70	Measurements of Aerosol Particle Size Distributions and INPs Over the Southern Ocean in the Late Austral Summer of 2017 on Board the R/V <i>Mirai</i> : Importance of the Marine Boundary Layer Structure. Earth and Space Science, 2023, 10, .	1.1	3
71	Measurement report: Understanding the seasonal cycle of Southern Ocean aerosols. Atmospheric Chemistry and Physics, 2023, 23, 3749-3777.	1.9	4
72	Nudging allows direct evaluation of coupled climate models with in situ observations: a case study from the MOSAiC expedition. Geoscientific Model Development, 2023, 16, 1857-1873.	1.3	0
73	Untangling the influence of Antarctic and Southern Ocean life on clouds. Elementa, 2023, 11, .	1.1	5
74	Marine aerosol feedback on biogeochemical cycles and the climate in the Anthropocene: lessons learned from the Pacific Ocean, Environmental Science Atmospheres, 2023, 3, 782-798.	0.9	2

CITATION REPORT

ARTICLE

IF CITATIONS