Complete map of SARS-CoV-2 RBD mutations that esca and its cocktail with LY-CoV016

Cell Reports Medicine 2, 100255 DOI: 10.1016/j.xcrm.2021.100255

Citation Report

#	Article	IF	CITATIONS
1	Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science, 2021, 371, 850-854.	6.0	700
7	The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Science Translational Medicine, 2021, 13, .	5.8	347
19	Post-Vaccination Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infections and Incidence of the Presumptive B.1.427/B.1.429 Variant Among Healthcare Personnel at a Northern California Academic Medical Center. Clinical Infectious Diseases, 2022, 74, 821-828.	2.9	47
20	Use of Lateral Flow Immunoassay to Characterize SARS-CoV-2 RBD-Specific Antibodies and Their Ability to React with the UK, SA and BR P.1 Variant RBDs. Diagnostics, 2021, 11, 1190.	1.3	10
21	New variants of SARS-CoV-2. Revista Espanola De Quimioterapia, 2021, 34, 419-428.	0.5	49
22	Sequence Analysis of 20,453 Severe Acute Respiratory Syndrome Coronavirus 2 Genomes from the Houston Metropolitan Area Identifies the Emergence and Widespread Distribution of Multiple Isolates of All Major Variants of Concern. American Journal of Pathology, 2021, 191, 983-992.	1.9	42
24	Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection. Science Translational Medicine, 2021, 13, .	5.8	198
26	In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature, 2021, 596, 103-108.	13.7	222
27	SARS-CoV-2 Variants: A Synopsis of In Vitro Efficacy Data of Convalescent Plasma, Currently Marketed Vaccines, and Monoclonal Antibodies. Viruses, 2021, 13, 1211.	1.5	35
28	Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Reports, 2021, 35, 109292.	2.9	375
29	Tackling COVID-19 with neutralizing monoclonal antibodies. Cell, 2021, 184, 3086-3108.	13.5	309
31	Characterization of a Lineage C.36 SARS-CoV-2 Isolate with Reduced Susceptibility to Neutralization Circulating in Lombardy, Italy. Viruses, 2021, 13, 1514.	1.5	12
33	The virological impacts of SARS-CoV-2 D614G mutation. Journal of Molecular Cell Biology, 2021, 13, 712-720.	1.5	21
34	SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science, 2021, 373, 648-654.	6.0	385
37	Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature, 2021, 596, 276-280.	13.7	1,803
39	SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination. Cell Reports, 2021, 36, 109415.	2.9	206
41	Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nature Communications, 2021, 12, 4196.	5.8	332
44	The monoclonal antibody combination REGEN-COV protects against SARS-CoV-2 mutational escape in preclinical and human studies. Cell, 2021, 184, 3949-3961.e11.	13.5	171

#	Article	IF	CITATIONS
48	An overview of the preclinical discovery and development of bamlanivimab for the treatment of novel coronavirus infection (COVID-19): reasons for limited clinical use and lessons for the future. Expert Opinion on Drug Discovery, 2021, 16, 1403-1414.	2.5	14
49	SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 2021, 597, 97-102.	13.7	385
51	Emergence of Q493R mutation in SARS-CoV-2 spike protein during bamlanivimab/etesevimab treatment and resistance to viral clearance. Journal of Infection, 2022, 84, 248-288.	1.7	34
52	Emergence of E484K Mutation Following Bamlanivimab Monotherapy among High-Risk Patients Infected with the Alpha Variant of SARS-CoV-2. Viruses, 2021, 13, 1642.	1.5	39

Probing the Increased Virulence of Severe Acute Respiratory Syndrome Coronavirus 2 B.1.617 (Indian) Tj ETQq0 0 0 rgBT /Ovgrlock 10 T

55	Introduction of SARS OVâ€2 C.37 (WHO VOI lambda) from Peru to Italy. Journal of Medical Virology, 2021, 93, 6460-6461.	2.5	16
56	SARS-CoV-2 Infection, COVID-19, and long covid: Saga of erratic immune response, waning immunity, and immune system failure. Journal of Pulmonology and Respiratory Research, 2021, 5, 078-087.	0.0	0
57	The Emergence and Spread of Novel SARS-CoV-2 Variants. Frontiers in Public Health, 2021, 9, 696664.	1.3	24
58	A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity, 2021, 54, 2399-2416.e6.	6.6	79
59	Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clinical Microbiology and Infection, 2021, 27, 1109-1117.	2.8	290
60	Lack of efficacy of monoâ€mode of action therapeutics in COVIDâ€19 therapy ―How the lack of predictive power of preclinical cell and animal studies leads developments astray. Chemical Biology and Drug Design, 2021, , .	1.5	1
61	B.1.617.2 enters and fuses lung cells with increased efficiency and evades antibodies induced by infection and vaccination. Cell Reports, 2021, 37, 109825.	2.9	73
64	Neutralizing antibodies for the prevention and treatment of COVID-19. Cellular and Molecular Immunology, 2021, 18, 2293-2306.	4.8	91
65	Shooting at a Moving Target—Effectiveness and Emerging Challenges for SARS-CoV-2 Vaccine Development. Vaccines, 2021, 9, 1052.	2.1	22
66	The biological and clinical significance of emerging SARS-CoV-2 variants. Nature Reviews Genetics, 2021, 22, 757-773.	7.7	778
67	Identification of SARS-CoV-2ÂS RBD escape mutants using yeast screening and deep mutational scanning. STAR Protocols, 2021, 2, 100869.	0.5	4
68	Emerging SARS-CoV-2 Variants of Concern (VOCs): An Impending Global Crisis. Biomedicines, 2021, 9, 1303.	1.4	87
69	Emergence of the E484K mutation in SARS-COV-2-infected immunocompromised patients treated with bamlanivimab in Germany. Lancet Regional Health - Europe, The, 2021, 8, 100164.	3.0	83

#	Article	IF	CITATIONS
70	Receptor binding, immune escape, and protein stability direct the natural selection of SARS-CoV-2 variants. Journal of Biological Chemistry, 2021, 297, 101208.	1.6	37
71	Initial reports of the <scp>SARSâ€CoV</scp> â€2 Delta variant (B.1.617.2 lineage) in Bangladeshi patients: Risks of crossâ€border transmission from India. Health Science Reports, 2021, 4, e366.	0.6	12
72	mRNA vaccination of naive and COVID-19-recovered individuals elicits potent memory B cells that recognize SARS-CoV-2 variants. Immunity, 2021, 54, 2893-2907.e5.	6.6	107
73	The Potential Beneficial Effects of Vaccination on Antigenically Evolving Pathogens. American Naturalist, 2022, 199, 223-237.	1.0	6
75	Influence of treatment with neutralizing monoclonal antibodies on the SARS-CoV-2 nasopharyngeal load and quasispecies. Clinical Microbiology and Infection, 2022, 28, 139.e5-139.e8.	2.8	30
76	Impact of the Delta variant on vaccine efficacy and response strategies. Expert Review of Vaccines, 2021, 20, 1201-1209.	2.0	177
77	The neutralization potency of anti-SARS-CoV-2 therapeutic human monoclonal antibodies is retained against viral variants. Cell Reports, 2021, 36, 109679.	2.9	12
78	Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	68
79	A tetrameric ACE2 protein broadly neutralizes SARS-CoV-2 spike variants of concern with elevated potency. Antiviral Research, 2021, 194, 105147.	1.9	11
80	COVID-19, the first pandemic in the post-genomic era. Current Opinion in Virology, 2021, 50, 40-48.	2.6	40
81	SARS-CoV-2 Variants in Immunocompromised Patient Given Antibody Monotherapy. Emerging Infectious Diseases, 2021, 27, 2725-2728.	2.0	22
82	Emergence of SARS-COV-2 Spike Protein Escape Mutation Q493R after Treatment for COVID-19. Emerging Infectious Diseases, 2021, 27, 2728-2731.	2.0	64
83	Breakthrough Infections of E484K-Harboring SARS-CoV-2 Delta Variant, Lombardy, Italy. Emerging Infectious Diseases, 2021, 27, 3180-3182.	2.0	21
84	An overview of methods for the structural and functional mapping of epitopes recognized by anti-SARS-CoV-2 antibodies. RSC Chemical Biology, 2021, 2, 1580-1589.	2.0	4
85	Clobal Prevalence of Adaptive and Prolonged Infections' Mutations in the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein. Viruses, 2021, 13, 1974.	1.5	9
86	Structure–Function Analysis of Resistance to Bamlanivimab by SARS-CoV-2 Variants Kappa, Delta, and Lambda. Journal of Chemical Information and Modeling, 2021, 61, 5133-5140.	2.5	21
87	Comprehensive mapping of binding hot spots of SARS-CoV-2 RBD-specific neutralizing antibodies for tracking immune escape variants. Genome Medicine, 2021, 13, 164.	3.6	42
88	The challenges of COVIDâ€19 Delta variant: Prevention and vaccine development. MedComm, 2021, 2, 846-854.	3.1	37

#	Article	IF	CITATIONS
90	Molecular rationale for SARS-CoV-2 spike circulating mutations able to escape bamlanivimab and etesevimab monoclonal antibodies. Scientific Reports, 2021, 11, 20274.	1.6	33
91	Analysis of the Delta Variant B.1.617.2 COVID-19. Clinics and Practice, 2021, 11, 778-784.	0.6	198
92	Mutational Hotspot in the SARS-CoV-2 Spike Protein N-Terminal Domain Conferring Immune Escape Potential. Viruses, 2021, 13, 2114.	1.5	10
93	Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 2022, 23, 3-20.	16.1	1,532
94	Change sign detection with differential MDL change statistics and its applications to COVID-19 pandemic analysis. Scientific Reports, 2021, 11, 19795.	1.6	6
97	Key Substitutions in the Spike Protein of SARS-CoV-2 Variants Can Predict Resistance to Monoclonal Antibodies, but Other Substitutions Can Modify the Effects. Journal of Virology, 2022, 96, JVI0111021.	1.5	29
98	Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implications and Vaccine Efficacy. Vaccines, 2021, 9, 1195.	2.1	90
100	Severity, Pathogenicity and Transmissibility of Delta and Lambda Variants of SARS-CoV-2, Toxicity of Spike Protein and Possibilities for Future Prevention of COVID-19. Microorganisms, 2021, 9, 2167.	1.6	36
101	The Alpha variant was not associated with excess nosocomial SARS-CoV-2 infection in a multi-centre UK hospital study. Journal of Infection, 2021, 83, 693-700.	1.7	11
102	Isolation of a panel of ultra-potent human antibodies neutralizing SARS-CoV-2 and viral variants of concern. Cell Discovery, 2021, 7, 96.	3.1	21
104	Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. New England Journal of Medicine, 2021, 385, 1941-1950.	13.9	832
105	Pan-ebolavirus protective therapy by two multifunctional human antibodies. Cell, 2021, 184, 5593-5607.e18.	13.5	21
106	Epistasis at the SARS-CoV-2 RBD Interface and the Propitiously Boring Implications for Vaccine Escape. SSRN Electronic Journal, 0, , .	0.4	0
107	Development of Inactivated FAKHRAVAC® Vaccine against SARS-CoV-2 Virus: Preclinical Study in Animal Models. Vaccines, 2021, 9, 1271.	2.1	18
108	SARS-CoV-2 variants and effectiveness of vaccines: a review of current evidence. Epidemiology and Infection, 2021, 149, 1-24.	1.0	43
112	Circulation and Evolution of SARS-CoV-2 in India: Let the Data Speak. Viruses, 2021, 13, 2238.	1.5	8
113	Genomic surveillance reveals the detection of SARS oVâ€2 delta, beta, and gamma VOCs during the third wave in Pakistan. Journal of Medical Virology, 2022, 94, 1115-1129.	2.5	21
115	A Bacterial Cell-Based Assay To Study SARS-CoV-2 Protein-Protein Interactions. MBio, 2021, , e0293621.	1.8	1

#	Article	IF	CITATIONS
116	Coronavirus Diseases (COVID-19): Features, Epidemiology, Mutational variations and Treatments Across India. Journal of Pure and Applied Microbiology, 2021, 15, 1798-1808.	0.3	1
117	Comparative structural analyses of selected spike protein-RBD mutations in SARS-CoV-2 lineages. Immunologic Research, 2022, 70, 143-151.	1.3	13
119	The emergence of SARS-CoV-2 variants threatens to decrease the efficacy of neutralizing antibodies and vaccines. Biochemical Society Transactions, 2021, 49, 2879-2890.	1.6	16
120	Structure and Mutations of SARS-CoV-2 Spike Protein: A Focused Overview. ACS Infectious Diseases, 2022, 8, 29-58.	1.8	32
121	COVID-19 variants that escape vaccine immunity: Global and Indian context—are more vaccines needed?. Journal of Biosciences, 2021, 46, 1.	0.5	2
122	A comprehensive overview of identified mutations in SARS CoV-2 spike glycoprotein among Iranian patients. Gene, 2022, 813, 146113.	1.0	8
125	Syndecan-4 Is a Key Facilitator of the SARS-CoV-2 Delta Variant's Superior Transmission. International Journal of Molecular Sciences, 2022, 23, 796.	1.8	10
127	SARS-CoV-2 Beta and Delta variants trigger Fc effector function with increased cross-reactivity. Cell Reports Medicine, 2022, 3, 100510.	3.3	51
128	Rapid detection of the widely circulating B.1.617.2 (Delta) SARS-CoV-2 variant. Pathology, 2022, 54, 351-356.	0.3	13
130	COVID-19, Influenza and RSV: Surveillance-informed prevention and treatment – Meeting report from an isirv-WHO virtual conference. Antiviral Research, 2022, 197, 105227.	1.9	19
132	Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science, 2022, 375, 449-454.	6.0	108
133	Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science, 2022, 375, .	6.0	68
134	No evidence for increased cell entry or antibody evasion by Delta sublineage AY.4.2. Cellular and Molecular Immunology, 2022, 19, 449-452.	4.8	7
135	Viral Load in COVID-19 Patients: Implications for Prognosis and Vaccine Efficacy in the Context of Emerging SARS-CoV-2 Variants. Frontiers in Medicine, 2021, 8, 836826.	1.2	15
136	Etesevimab in combination with JS026 neutralizing SARS-CoV-2 and its variants. Emerging Microbes and Infections, 2022, 11, 548-551.	3.0	8
137	Bamlanivimab for the Prevention of Hospitalizations and Emergency Department Visits in SARS-CoV-2–Positive Patients in a Regional Health Care System. Infectious Diseases in Clinical Practice, 2022, 30, 1-4.	0.1	1
138	Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, 0, , .	13.7	61
140	Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. Journal of Biomedical Science, 2022, 29, 1.	2.6	144

#	Article	IF	CITATIONS
141	Predicting the mutational drivers of future SARS-CoV-2 variants of concern. Science Translational Medicine, 2022, 14, eabk3445.	5.8	101
142	SARS-CoV-2 Variants of Concern and Variants of Interest Receptor Binding Domain Mutations and Virus Infectivity. Frontiers in Immunology, 2022, 13, 825256.	2.2	54
143	Advances in the development of therapeutic strategies against COVID-19 and perspectives in the drug design for emerging SARS-CoV-2 variants. Computational and Structural Biotechnology Journal, 2022, 20, 824-837.	1.9	49
144	Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, 2022, 603, 679-686.	13.7	1,210
145	An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nature Medicine, 2022, 28, 490-495.	15.2	577
146	An exploratory study on the propagation of SARSâ€CoVâ€2 variants: Omicron is the most predominant variant. Journal of Medical Virology, 2022, 94, 2414-2421.	2.5	16
147	mRNA Covid-19 vaccines in pregnancy: A systematic review. PLoS ONE, 2022, 17, e0261350.	1.1	50
148	Ultrapotent neutralizing antibodies against SARS-CoV-2 with a high degree of mutation resistance. Journal of Clinical Investigation, 2022, 132, .	3.9	14
149	Immunity to SARS-CoV-2 up to 15Âmonths after infection. IScience, 2022, 25, 103743.	1.9	56
150	Emergence of a recurrent insertion in the N-terminal domain of the SARS-CoV-2 spike glycoprotein. Virus Research, 2022, 310, 198674.	1.1	24
151	Mutations in human SARS-CoV-2 spike proteins, potential drug binding and epitope sites for COVID-19 therapeutics development. Current Research in Structural Biology, 2022, 4, 41-50.	1.1	25
152	Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell, 2022, 185, 896-915.e19.	13.5	189
154	SARS-CoV-2 Variants and Vaccination. Zoonoses, 2022, 2, .	0.5	16
158	A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations. Frontiers in Immunology, 2022, 13, 801522.	2.2	73
159	Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. Nature Communications, 2022, 13, 635.	5.8	121
160	A SARS-CoV-2 variant elicits an antibody response with a shifted immunodominance hierarchy. PLoS Pathogens, 2022, 18, e1010248.	2.1	48
161	SARS oVâ€2 Omicron variant: Characteristics and prevention. MedComm, 2021, 2, 838-845.	3.1	364
162	Emerging SARS-CoV-2 Variants: Genetic Variability and Clinical Implications. Current Microbiology, 2022, 79, 20.	1.0	48

#	Article	IF	CITATIONS
163	Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 0, , .	13.7	90
164	Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 0, , .	13.7	72
165	Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 2022, 602, 657-663.	13.7	1,350
166	Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 2022, 602, 676-681.	13.7	1,038
167	Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 Omicron Variant by Sera From BNT162b2 or CoronaVac Vaccine Recipients. Clinical Infectious Diseases, 2022, 75, e822-e826.	2.9	322
175	Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. Science, 2021, 374, 1621-1626.	6.0	232
176	Emergence of SARS-CoV-2 resistance mutations in a patient who received anti-SARS-COV2 spike protein monoclonal antibodies: a case report. BMC Infectious Diseases, 2021, 21, 1223.	1.3	7
178	Analysis of Immune Escape Variants from Antibody-Based Therapeutics against COVID-19: A Systematic Review. International Journal of Molecular Sciences, 2022, 23, 29.	1.8	35
179	SARS-CoV-2 Delta Variant Displays Moderate Resistance to Neutralizing Antibodies and Spike Protein Properties of Higher Soluble ACE2 Sensitivity, Enhanced Cleavage and Fusogenic Activity. Viruses, 2021, 13, 2485.	1.5	23
180	Responses to a Neutralizing Monoclonal Antibody for Hospitalized Patients With COVID-19 According to Baseline Antibody and Antigen Levels. Annals of Internal Medicine, 2022, 175, 234-243.	2.0	56
181	Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science, 2021, , eabl6251.	6.0	12
182	COVID-19 variants that escape vaccine immunity: Global and Indian context-are more vaccines needed?. Journal of Biosciences, 2021, 46, .	0.5	0
183	Monoclonal antibody therapies in the management of SARS-CoV-2 infection. Expert Opinion on Investigational Drugs, 2022, 31, 41-58.	1.9	26
184	Inhibitor screening using microarray identifies the high capacity of neutralizing antibodies to Spike variants in SARS-CoV-2 infection and vaccination. Theranostics, 2022, 12, 2519-2534.	4.6	3
185	Origin of the tight binding mode to ACE2 triggered by multi-point mutations in the omicron variant: a dynamic insight. Physical Chemistry Chemical Physics, 2022, 24, 8724-8737.	1.3	11
188	In-Silico Analysis of Monoclonal Antibodies against SARS-CoV-2 Omicron. Viruses, 2022, 14, 390.	1.5	7
189	Whole genome sequence analysis showing unique SARS-CoV-2 lineages of B.1.524 and AU.2 in Malaysia. PLoS ONE, 2022, 17, e0263678.	1.1	8
190	Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants. PLoS Pathogens, 2022, 18, e1010260.	2.1	81

#	Article	IF	CITATIONS
191	Evolutionary dynamics of the severe acute respiratory syndrome coronavirus 2 genomes. Medical Review, 2022, 2, 3-22.	0.3	7
192	Early Genomic, Epidemiological, and Clinical Description of the SARS-CoV-2 Omicron Variant in Mexico City. Viruses, 2022, 14, 545.	1.5	23
193	Update on SARS-CoV-2 Omicron Variant of Concern and Its Peculiar Mutational Profile. Microbiology Spectrum, 2022, 10, e0273221.	1.2	35
194	Monoclonal antibody targeting the conserved region of the SARS-CoV-2 spike protein to overcome viral variants. JCI Insight, 2022, 7, .	2.3	10
195	Optimization of Anti-SARS-CoV-2 Neutralizing Antibody Therapies: Roadmap to Improve Clinical Effectiveness and Implementation. Frontiers in Medical Technology, 2022, 4, 867982.	1.3	11
196	E-Volve: understanding the impact of mutations in SARS-CoV-2 variants spike protein on antibodies and ACE2 affinity through patterns of chemical interactions at protein interfaces. PeerJ, 2022, 10, e13099.	0.9	3
197	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	13.7	117
198	Spike mutations in SARS-CoV-2 AY sublineages of theÂDelta variant of concern: implications for the future of the pandemic. Future Microbiology, 2022, 17, 219-221.	1.0	9
199	Epistasis at the SARS-CoV-2 Receptor-Binding Domain Interface and the Propitiously Boring Implications for Vaccine Escape. MBio, 2022, 13, e0013522.	1.8	35
201	An antibody-escape estimator for mutations to the SARS-CoV-2 receptor-binding domain. Virus Evolution, 2022, 8, veac021.	2.2	93
202	Coronavirus Genomes and Unique Mutations in Structural and Non-Structural Proteins in Pakistani SARS-CoV-2 Delta Variants during the Fourth Wave of the Pandemic. Genes, 2022, 13, 552.	1.0	13
204	Fusogenicity and neutralization sensitivity of the SARS-CoV-2 Delta sublineage AY.4.2. EBioMedicine, 2022, 77, 103934.	2.7	10
205	Antibody escape and global spread of SARS-CoV-2 lineage A.27. Nature Communications, 2022, 13, 1152.	5.8	20
206	Impact of new variants on SARS-CoV-2 infectivity and neutralization: A molecular assessment of the alterations in the spike-host protein interactions. IScience, 2022, 25, 103939.	1.9	32
207	SARS-CoV-2 variants, immune escape, and countermeasures. Frontiers of Medicine, 2022, 16, 196-207.	1.5	39
208	Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science, 2022, 376, eabn8897.	6.0	119
209	Coronavirus Resistance Database (CoV-RDB): SARS-CoV-2 susceptibility to monoclonal antibodies, convalescent plasma, and plasma from vaccinated persons. PLoS ONE, 2022, 17, e0261045.	1.1	70
211	Severe Acute Respiratory Syndrome Coronavirus 2 Delta Vaccine Breakthrough Transmissibility in Alachua County, Florida. Clinical Infectious Diseases, 2022, 75, 1618-1627.	2.9	4

#	Article	IF	CITATIONS
214	Prolonged shedding of infectious viruses with haplotype switches of SARS-CoV-2 in an immunocompromised patient. Journal of Infection and Chemotherapy, 2022, 28, 1001-1004.	0.8	6
215	Effect of Sotrovimab on Hospitalization or Death Among High-risk Patients With Mild to Moderate COVID-19. JAMA - Journal of the American Medical Association, 2022, 327, 1236.	3.8	203
216	Epitope mapping of neutralising antiâ€SARSâ€CoVâ€2 monoclonal antibodies: Implications for immunotherapy and vaccine design. Reviews in Medical Virology, 2022, 32, e2347.	3.9	7
217	Molecular Dynamics and MM-PBSA Analysis of the SARS-CoV-2 Gamma Variant in Complex with the hACE-2 Receptor. Molecules, 2022, 27, 2370.	1.7	10
219	Analysis of mRNA vaccination-elicited RBD-specific memory B cells reveals strong but incomplete immune escape of the SARS-CoV-2 Omicron variant. Immunity, 2022, 55, 1096-1104.e4.	6.6	42
220	Mechanistic Origin of Different Binding Affinities of SARS-CoV and SARS-CoV-2 Spike RBDs to Human ACE2. Cells, 2022, 11, 1274.	1.8	8
221	The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape. International Journal of Biological Macromolecules, 2022, 208, 105-125.	3.6	41
222	Identification, propagation and molecular characterization of SARS-CoV-2 delta variant isolated from Egyptian COVID-19 patients. Infection, Genetics and Evolution, 2022, 100, 105278.	1.0	2
223	A proposed workflow for proactive virus surveillance and prediction of variants for vaccine design. PLoS Computational Biology, 2021, 17, e1009624.	1.5	2
226	The Development of SARS-CoV-2 Variants: The Gene Makes the Disease. Journal of Developmental Biology, 2021, 9, 58.	0.9	27
229	Endogenous Antibody Responses to SARS-CoV-2 in Patients With Mild or Moderate COVID-19 Who Received Bamlanivimab Alone or Bamlanivimab and Etesevimab Together. Frontiers in Immunology, 2021, 12, 790469.	2.2	15
230	Structures of Omicron spike complexes and implications for neutralizing antibody development. Cell Reports, 2022, 39, 110770.	2.9	47
231	Emulation of a Target Trial From Observational Data to Compare Effectiveness of Casirivimab/Imdevimab and Bamlanivimab/Etesevimab for Early Treatment of Non-Hospitalized Patients With COVID-19. Frontiers in Immunology, 2022, 13, 868020.	2.2	3
232	COVID-19: A Systematic Review of the Transmissibility, Pathogenesis, Entry Factors, and Signature Immune Response. Biochem, 2022, 2, 115-144.	0.5	1
233	Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Science Translational Medicine, 2022, 14, eabn1252.	5.8	68
234	SARS-CoV-2 variants C.1.2 and B.1.621 (Mu) partially evade neutralization by antibodies elicited upon infection or vaccination. Cell Reports, 2022, 39, 110754.	2.9	5
235	Variant Analysis and Strategic Clustering to Sub-Lineage of Double Mutant Strain B.1.617 of SARS-CoV-2. Covid, 2022, 2, 513-531.	0.7	1
236	Expansion of L452R-Positive SARS-CoV-2 Omicron Variant, Northern Lombardy, Italy. Emerging Infectious Diseases, 2022, 28, .	2.0	9

#	Article	IF	CITATIONS
237	Increased resistance of SARS-CoV-2 Lambda variant to antibody neutralization. Journal of Clinical Virology, 2022, 150-151, 105162.	1.6	7
238	Challenges of SARS-CoV-2 Omicron Variant and appropriate countermeasures. Journal of Microbiology, Immunology and Infection, 2022, 55, 387-394.	1.5	29
239	Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs, 2022, 36, 231-323.	2.2	24
240	SARS-CoV-2: An Overview of the Genetic Profile and Vaccine Effectiveness of the Five Variants of Concern. Pathogens, 2022, 11, 516.	1.2	10
242	Nanobodies Protecting From Lethal SARS-CoV-2 Infection Target Receptor Binding Epitopes Preserved in Virus Variants Other Than Omicron. Frontiers in Immunology, 2022, 13, 863831.	2.2	10
243	Peptide-Based Strategies Against SARS-CoV-2 Attack: An Updated In Silico Perspective. Frontiers in Drug Discovery, 2022, 2, .	1.1	6
245	Delta variant (B.1.617.2) of SARS-CoV-2: Mutations, impact, challenges and possible solutions. Human Vaccines and Immunotherapeutics, 2022, 18, 2068883.	1.4	44
246	Biophysical Fitness Landscape of the SARS-CoV-2 Delta Variant Receptor Binding Domain. Journal of Molecular Biology, 2022, 434, 167622.	2.0	3
247	Can we succeed in the fight against SARS-CoV-2 with its emerging new variants?. Current Pharmaceutical Design, 2022, 28, .	0.9	1
248	Three SARS-CoV-2 antibodies provide broad and synergistic neutralization against variants of concern, including Omicron. Cell Reports, 2022, 39, 110862.	2.9	9
249	Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120976119.	3.3	27
250	Massively multiplexed affinity characterization of therapeutic antibodies against SARS-CoV-2 variants. Antibody Therapeutics, 2022, 5, 130-137.	1.2	5
251	COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduction and Targeted Therapy, 2022, 7, 146.	7.1	153
252	Monoclonal Antibodies as Potential COVID-19 Therapeutic Agents. Covid, 2022, 2, 599-620.	0.7	6
253	Analysis of a SARS-CoV-2 convalescent cohort identified a common strategy for escape of vaccine-induced anti-RBD antibodies by Beta and Omicron variants. EBioMedicine, 2022, 80, 104025.	2.7	13
254	Antibody-mediated neutralization of SARS-CoV-2. Immunity, 2022, 55, 925-944.	6.6	74
255	Deep mutational engineering of broadly-neutralizing nanobodies accommodating SARS-CoV-1 and 2 antigenic drift. MAbs, 2022, 14, 2076775.	2.6	5
256	Molecular and Clinical Investigation of COVID-19: From Pathogenesis and Immune Responses to Novel Diagnosis and Treatment. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	4

#	Article	IF	CITATIONS
258	VH3-53/66-Class RBD-Specific Human Monoclonal Antibody iB20 Displays Cross-Neutralizing Activity against Emerging SARS-CoV-2 Lineages. Journal of Personalized Medicine, 2022, 12, 895.	1.1	2
259	Characteristics of COVID-19 Breakthrough Infections among Vaccinated Individuals and Associated Risk Factors: A Systematic Review. Tropical Medicine and Infectious Disease, 2022, 7, 81.	0.9	15
260	Could a Lower Toll-like Receptor (TLR) and NF-κB Activation Due to a Changed Charge Distribution in the Spike Protein Be the Reason for the Lower Pathogenicity of Omicron?. International Journal of Molecular Sciences, 2022, 23, 5966.	1.8	9
261	Evaluation of strategies to modify Anti-SARS-CoV-2 monoclonal antibodies for optimal functionality as therapeutics. PLoS ONE, 2022, 17, e0267796.	1.1	3
263	Omicron BA.1 breakthrough infection drives cross-variant neutralization and memory B cell formation against conserved epitopes. Science Immunology, 2022, 7, .	5.6	144
264	Structural Characterization of a Neutralizing Nanobody With Broad Activity Against SARS-CoV-2 Variants. Frontiers in Microbiology, 2022, 13, .	1.5	5
265	Mutational analysis of SARS-CoV-2 variants of concern reveals key tradeoffs between receptor affinity and antibody escape. PLoS Computational Biology, 2022, 18, e1010160.	1.5	14
266	Induction of high affinity monoclonal antibodies against SARS-CoV-2 variant infection using a DNA prime-protein boost strategy. Journal of Biomedical Science, 2022, 29, .	2.6	4
267	Susceptibility of SARS-CoV-2 Omicron Variants to Therapeutic Monoclonal Antibodies: Systematic Review and Meta-analysis. Microbiology Spectrum, 2022, 10, .	1.2	53
268	The anti–SARS-CoV-2 monoclonal antibody bamlanivimab minimally affects the endogenous immune response to COVID-19 vaccination. Science Translational Medicine, 2022, 14, .	5.8	19
271	SARS-CoV-2: phenotype, genotype, and characterization of different variants. Cellular and Molecular Biology Letters, 2022, 27, .	2.7	12
272	Production and Quality Assurance of Human Polyclonal Hyperimmune Immunoglobulins Against SARS-CoV-2. Transfusion Medicine Reviews, 2022, 36, 125-132.	0.9	8
273	Characterization of mutations modulating enhanced transmissibility of SARS-CoV-2 B.1.617+ (Delta) variant using In Silico tools. Gene Reports, 2022, 27, 101636.	0.4	0
274	SPEAR: Systematic ProtEin AnnotatoR. Bioinformatics, 2022, 38, 3827-3829.	1.8	1
275	Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	59
276	The SARS-CoV-2 Delta variant induces an antibody response largely focused on class 1 and 2 antibody epitopes. PLoS Pathogens, 2022, 18, e1010592.	2.1	13
277	Immune Escape Mechanisms of SARS-CoV-2 Delta and Omicron Variants against Two Monoclonal Antibodies That Received Emergency Use Authorization. Journal of Physical Chemistry Letters, 2022, 13, 6064-6073.	2.1	14
278	Fast Prediction of Binding Affinities of SARS-CoV-2 Spike Protein and Its Mutants with Antibodies through Intermolecular Interaction Modeling-Based Machine Learning. Journal of Physical Chemistry B. 2022, 126, 5194-5206.	1.2	4

#	Article	IF	CITATIONS
279	Virtual Screening of Repurposed Drugs as Potential Spike Protein Inhibitors of Different SARS-CoV-2 Variants: Molecular Docking Study. Current Issues in Molecular Biology, 2022, 44, 3018-3029.	1.0	6
280	A comprehensive review on Covid-19 Omicron (B.1.1.529) variant. Saudi Journal of Biological Sciences, 2022, 29, 103372.	1.8	15
281	Monoclonal antibody therapies against SARS-CoV-2. Lancet Infectious Diseases, The, 2022, 22, e311-e326.	4.6	114
282	Differences between Omicron SARS-CoV-2 RBD and other variants in their ability to interact with cell receptors and monoclonal antibodies. Journal of Biomolecular Structure and Dynamics, 2023, 41, 5707-5727.	2.0	7
285	Understanding and Modulating Antibody Fine Specificity: Lessons from Combinatorial Biology. Antibodies, 2022, 11, 48.	1.2	2
286	Functional mutations of SARS-CoV-2: implications to viral transmission, pathogenicity and immune escape. Chinese Medical Journal, 0, Publish Ahead of Print, .	0.9	3
287	From Alpha to Delta—Genetic Epidemiology of SARS-CoV-2 (hCoV-19) in Southern Poland. Pathogens, 2022, 11, 780.	1.2	6
288	Insight into Genetic Characteristics of Identified SARS-CoV-2 Variants in Egypt from March 2020 to May 2021. Pathogens, 2022, 11, 834.	1.2	9
289	Engineering ACE2 decoy receptors to combat viral escapability. Trends in Pharmacological Sciences, 2022, 43, 838-851.	4.0	22
291	Understanding the Excitation Wavelength Dependence and Thermal Stability of the SARS-CoV-2 Receptor-Binding Domain Using Surface-Enhanced Raman Scattering and Machine Learning. ACS Photonics, 2022, 9, 2963-2972.	3.2	10
292	The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK. Virus Evolution, 2022, 8, .	2.2	75
293	Missense mutations in spike protein of SARSâ€CoVâ€2 delta variant contribute to the alteration in viral structure and interaction with hACE2 receptor. Immunity, Inflammation and Disease, 2022, 10, .	1.3	6
294	Conformational flexibility in neutralization of SARS-CoV-2 by naturally elicited anti-SARS-CoV-2 antibodies. Communications Biology, 2022, 5, .	2.0	5
295	Engineering SARS-CoV-2 neutralizing antibodies for increased potency and reduced viral escape pathways. IScience, 2022, 25, 104914.	1.9	5
296	SARS-CoV-2 RBD-Specific Antibodies Induced Early in the Pandemic by Natural Infection and Vaccination Display Cross-Variant Binding and Inhibition. Viruses, 2022, 14, 1861.	1.5	4
298	Structural analysis of Spike proteins from SARS-CoV-2 variants of concern highlighting their functional alterations. Future Virology, 2022, 17, 723-732.	0.9	7
299	The neutralizing breadth of antibodies targeting diverse conserved epitopes between SARS-CoV and SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
301	Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infectious Diseases, 2022, 8, 1758-1814.	1.8	47

		CITATION REPORT		
#	Article		IF	CITATIONS
302	Multi-task learning for predicting SARS-CoV-2 antibody escape. Frontiers in Genetics, C), 13, .	1.1	1
303	Introduction, Spread and Impact of the SARS-CoV-2 Omicron Variants BA.1 and BA.2 ir Microorganisms, 2022, 10, 1688.	n Cyprus.	1.6	2
304	Structures of the SARS-CoV-2 spike glycoprotein and applications for novel drug devel Frontiers in Pharmacology, 0, 13, .	opment.	1.6	9
305	Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis effectiveness of vaccination. International Immunopharmacology, 2022, 111, 109128.	s and the	1.7	9
306	Omicron variant: Current insights and future directions. Microbiological Research, 202	2, 265, 127204.	2.5	32
307	Antibody-mediated immunity to SARS-CoV-2 spike. Advances in Immunology, 2022, , 1	-69.	1.1	12
308	Clinical features and high-resolution chest computerized tomography findings of child by the B.1.617.2 variant of coronavirus disease 2019. Annals of Medicine, 2022, 54, 23	ren infected 391-2401.	1.5	1
309	Genomic epidemiology and emergence of SARS-CoV-2 variants of concern in the Unite Scientific Reports, 2022, 12, .	d Arab Emirates.	1.6	4
310	Deep mutational learning predicts ACE2 binding and antibody escape to combinatorial SARS-CoV-2 receptor-binding domain. Cell, 2022, 185, 4008-4022.e14.	l mutations in the	13.5	55
311	Design of immunogens for eliciting antibody responses that may protect against SARS PLoS Computational Biology, 2022, 18, e1010563.	-CoV-2 variants.	1.5	4
313	Antibodies Produced Toward Recombinant RBD and Nucleocapsid Neutralize SARS-CO Journal of Medical Biotechnology, 0, , .	V-2. Avicenna	0.2	0
315	Epitope mapping of severe acute respiratory syndrome coronavirus 2 neutralizing rece domain-specific monoclonal antibodies. Frontiers in Medicine, 0, 9, .	ptor binding	1.2	5
316	Long-term memory CD8+ T cells specific for SARS-CoV-2 in individuals who received th vaccine. Nature Communications, 2022, 13, .	e BNT162b2 mRNA	5.8	11
317	Omicron BA.2 breakthrough infection enhances cross-neutralization of BA.2.12.1 and Immunology, 2022, 7, .	BA.4/BA.5. Science	5.6	49
318	Dual Monoclonal Antibodies on Sars-Cov-2 Alpha and Delta Variants: Clinical and Virolo Microbiology Spectrum, 0, , .	ogical Efficacy.	1.2	0
319	Deep mutational scanning identifies SARS-CoV-2 Nucleocapsid escape mutations of curapid antigen tests. Cell, 2022, 185, 3603-3616.e13.	irrently available	13.5	26
320	Structural heterogeneity and precision of implications drawn from cryo-electron micro structures: SARS-CoV-2 spike-protein mutations as a test case. European Biophysics Jo 555-568.	scopy urnal, 2022, 51,	1.2	4
321	Differential patterns of cross-reactive antibody response against SARS-CoV-2 spike pro for chronically ill and healthy COVID-19 naÃīve individuals. Scientific Reports, 2022, 12	tein detected 2, .	1.6	8

#	Article	IF	CITATIONS
322	The Omicron variant of concern: Diversification and convergent evolution in spike protein, and escape from anti-Spike monoclonal antibodies. Drug Resistance Updates, 2022, 65, 100882.	6.5	31
323	Screening, Expression, and Identification of Nanobody against SARS-CoV-2 Spike Protein. Cells, 2022, 11, 3355.	1.8	3
324	SARS-CoV-2 variants of concern and spike protein mutational dynamics in a Swedish cohort during 2021, studied by Nanopore sequencing. Virology Journal, 2022, 19, .	1.4	5
325	Comparative effectiveness of neutralising monoclonal antibodies in high risk COVID-19 patients: a Bayesian network meta-analysis. Scientific Reports, 2022, 12, .	1.6	4
326	Early detection of emerging SARS-CoV-2 variants of interest for experimental evaluation. Frontiers in Bioinformatics, 0, 2, .	1.0	6
327	Emergence of SARS-CoV-2 escape mutations during Bamlanivimab therapy in a phase II randomized clinical trial. Nature Microbiology, 2022, 7, 1906-1917.	5.9	22
328	Stability and expression of SARS-CoV-2 spike-protein mutations. Molecular and Cellular Biochemistry, 2023, 478, 1269-1280.	1.4	4
329	Genetic diversity and evolutionary convergence of cryptic SARS- CoV-2 lineages detected via wastewater sequencing. PLoS Pathogens, 2022, 18, e1010636.	2.1	32
331	Susceptibility to SARS-CoV-2 omicron following ChAdOx1 nCoV-19 and BNT162b2 versus CoronaVac vaccination. IScience, 2022, 25, 105379.	1.9	4
332	Genome characterization, phylogenomic assessment and spatio-temporal dynamics study of highly mutated BA variants from India. Indian Journal of Medical Microbiology, 2022, , .	0.3	1
333	The Increased Amyloidogenicity of Spike RBD and pH-Dependent Binding to ACE2 May Contribute to the Transmissibility and Pathogenic Properties of SARS-CoV-2 Omicron as Suggested by In Silico Study. International Journal of Molecular Sciences, 2022, 23, 13502.	1.8	6
334	The effect of mutations on binding interactions between the SARS-CoV-2 receptor binding domain and neutralizing antibodies B38 and CB6. Scientific Reports, 2022, 12, .	1.6	3
335	The Delta and Omicron Variants of SARS-CoV-2: What We Know So Far. Vaccines, 2022, 10, 1926.	2.1	29
336	Potent SARS-CoV-2 neutralizing antibodies with therapeutic effects in two animal models. IScience, 2022, 25, 105596.	1.9	8
337	Host Cell Entry and Neutralization Sensitivity of SARS-CoV-2 Lineages B.1.620 and R.1. Viruses, 2022, 14, 2475.	1.5	0
338	Probing the biophysical constraints of SARS-CoV-2 spike N-terminal domain using deep mutational scanning. Science Advances, 2022, 8, .	4.7	16
339	SARS-CoV-2 Delta Variant: Interplay between Individual Mutations and Their Allosteric Synergy. Biomolecules, 2022, 12, 1742.	1.8	6
342	Bayesian Molecular Dating Analyses Combined with Mutational Profiling Suggest an Independent Origin and Evolution of SARS-CoV-2 Omicron BA.1 and BA.2 Sub-Lineages. Viruses, 2022, 14, 2764.	1.5	2

~			~	
C		ON	REDC	DT
\sim	плі		NLFC	

#	Article	IF	CITATIONS
343	Genome Evolution and Early Introductions of the SARS-CoV-2 Omicron Variant in Mexico. Virus Evolution, 2022, 8, .	2.2	3
344	The SARS-CoV-2 Delta (B.1.617.2) variant with Spike N501Y mutation in the shadow of Omicron emergence. Heliyon, 2022, , e12650.	1.4	0
345	Neutralizing and enhancing antibodies against SARS-CoV-2. Inflammation and Regeneration, 2022, 42, .	1.5	6
346	Effectiveness of COVID-19 Vaccines against SARS-CoV-2 Omicron Variant (B.1.1.529): A Systematic Review with Meta-Analysis and Meta-Regression. Vaccines, 2022, 10, 2180.	2.1	16
347	A biophysical model of viral escape from polyclonal antibodies. Virus Evolution, 2022, 8, .	2.2	16
348	Omicron Variant of SARS-CoV-2: An Indian Perspective of Vaccination and Management. Vaccines, 2023, 11, 160.	2.1	10
349	Cross-variant proof predictive vaccine design based on SARS-CoV-2 spike protein using immunoinformatics approach. Beni-Suef University Journal of Basic and Applied Sciences, 2023, 12, .	0.8	1
350	Prediction of antibody binding to SARS-CoV-2 RBDs. Bioinformatics Advances, 2023, 3, .	0.9	2
351	Fast and direct identification of <scp>SARS oV</scp> â€2 variants via <scp>2D InSe</scp> fieldâ€effect transistors. InformaÄnÃ-Materiály, 2023, 5, .	8.5	4
352	Accelerated SARS-CoV-2 intrahost evolution leading to distinct genotypes during chronic infection. Cell Reports Medicine, 2023, 4, 100943.	3.3	31
353	The Potential of Nanobodies for COVID-19 Diagnostics and Therapeutics. Molecular Diagnosis and Therapy, 2023, 27, 193-226.	1.6	6
354	Alpha to Omicron (Variants of Concern): Mutation Journey, Vaccines, and Therapy. Viral Immunology, 0, , .	0.6	1
355	The role of spike protein entry inhibitors in the treatment of mild-to-moderate covid-19 in nonhospitalized patients. Journal of Lung, Pulmonary & Respiratory Research, 2022, 9, 52-59.	0.3	0
356	PF-D-Trimer, a protective SARS-CoV-2 subunit vaccine: immunogenicity and application. Npj Vaccines, 2023, 8, .	2.9	0
357	Negative Conversion of Polymerase Chain Reaction and Clinical Outcomes according to the SARS-CoV-2 Variant in Critically III Patients with COVID-19. Tuberculosis and Respiratory Diseases, 2023, 86, 142-149.	0.7	0
358	The landscape of antibody binding affinity in SARS-CoV-2 Omicron BA.1 evolution. ELife, 0, 12, .	2.8	21
359	An update on COVID-19: SARS-CoV-2 variants, antiviral drugs, and vaccines. Heliyon, 2023, 9, e13952.	1.4	28
360	Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody against antigenically distinct Omicron subvariants. Journal of Clinical Investigation, 2023, 133, .	3.9	4

#	Article	IF	CITATIONS
361	Research progress in spike mutations of SARSâ€CoVâ€2 variants and vaccine development. Medicinal Research Reviews, 2023, 43, 932-971.	5.0	7
362	Genome surveillance of SARS-CoV-2 variants and their role in pathogenesis focusing on second wave of COVID-19 in India. Scientific Reports, 2023, 13, .	1.6	4
363	Understanding Mutations in Human SARS-CoV-2 Spike Glycoprotein: A Systematic Review & Meta-Analysis. Viruses, 2023, 15, 856.	1.5	10
364	Rational strategies for enhancing mAb binding to SARS-CoV-2 variants through CDR diversification and antibody-escape prediction. Frontiers in Immunology, 0, 14, .	2.2	1
365	Multiplex RT Real-Time PCR Based on Target Failure to Detect and Identify Different Variants of SARS-CoV-2: A Feasible Method That Can Be Applied in Clinical Laboratories. Diagnostics, 2023, 13, 1364.	1.3	1
366	Total escape of SARS-CoV-2 from dual monoclonal antibody therapy in an immunocompromised patient. Nature Communications, 2023, 14, .	5.8	5