First-in-human study of the safety, pharmacokinetics, a first-in-class fatty acid synthase inhibitor TVB-2640 alo tumors

EClinicalMedicine 34, 100797 DOI: 10.1016/j.eclinm.2021.100797

Citation Report

#	Article	IF	CITATIONS
1	Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells, 2021, 10, 1056.	4.1	197
2	Fatty Acid Synthesis in Prostate Cancer: Vulnerability or Epiphenomenon?. Cancer Research, 2021, 81, 4385-4393.	0.9	30
5	Prostate Cancer Progression: as a Matter of Fats. Frontiers in Oncology, 2021, 11, 719865.	2.8	27
6	TVB-2640 (FASN Inhibitor) for the Treatment of Nonalcoholic Steatohepatitis: FASCINATE-1, a Randomized, Placebo-Controlled Phase 2a Trial. Gastroenterology, 2021, 161, 1475-1486.	1.3	101
7	Fibrometabolism—An emerging therapeutic frontier in pulmonary fibrosis. Science Signaling, 2021, 14, .	3.6	31
8	More Than Meets the Eye Regarding Cancer Metabolism. International Journal of Molecular Sciences, 2021, 22, 9507.	4.1	11
9	Nuclear Receptor-Mediated Metabolic Reprogramming and the Impact on HR+ Breast Cancer. Cancers, 2021, 13, 4808.	3.7	5
10	Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharmaceutica Sinica B, 2022, 12, 558-580.	12.0	181
11	Review on target domains and natural compoundâ€based inhibitors of fatty acid synthase for anticancer drug discovery. Chemical Biology and Drug Design, 2021, 98, 869-884.	3.2	9
13	Fatty acid synthase (FASN) regulates the mitochondrial priming of cancer cells. Cell Death and Disease, 2021, 12, 977.	6.3	33
14	Lipid metabolism in metastasis and therapy. Current Opinion in Systems Biology, 2021, 28, 100401.	2.6	10
15	Unravelling the Anticancer Mechanisms of Traditional Herbal Medicines with Metabolomics. Molecules, 2021, 26, 6541.	3.8	13
16	Lipid metabolism reprogramming in renal cell carcinoma. Cancer and Metastasis Reviews, 2022, 41, 17-31.	5.9	37
17	The Epithelial–Mesenchymal Transition at the Crossroads between Metabolism and Tumor Progression. International Journal of Molecular Sciences, 2022, 23, 800.	4.1	59
18	Lipogenesis inhibitors: therapeutic opportunities and challenges. Nature Reviews Drug Discovery, 2022, 21, 283-305.	46.4	124
19	Unraveling and targeting RAS-driven metabolic signaling for therapeutic gain. Advances in Cancer Research, 2022, 153, 267-304.	5.0	2
20	Therapeutic efficacy of FASN inhibition in preclinical models of HCC. Hepatology, 2022, 76, 951-966.	7.3	25
21	Clinical development of metabolic inhibitors for oncology. Journal of Clinical Investigation, 2022, 132, .	8.2	59

CITATION REPORT

#	Article	IF	CITATIONS
22	Personalized Medicine for Prostate Cancer: Is Targeting Metabolism a Reality?. Frontiers in Oncology, 2021, 11, 778761.	2.8	8
23	The Renaissance of KRAS Targeting in Advanced Non-Small-Cell Lung Cancer: New Opportunities Following Old Failures. Frontiers in Oncology, 2021, 11, 792385.	2.8	1
24	Defining the landscape of metabolic dysregulations in cancer metastasis. Clinical and Experimental Metastasis, 2022, 39, 345-362.	3.3	8
25	Suppressing fatty acid synthase by type I interferon and chemical inhibitors as a broad spectrum anti-viral strategy against SARS-CoV-2. Acta Pharmaceutica Sinica B, 2022, 12, 1624-1635.	12.0	12
26	Cancer Stem Cells in Ovarian Cancer—A Source of Tumor Success and a Challenging Target for Novel Therapies. International Journal of Molecular Sciences, 2022, 23, 2496.	4.1	24
27	Synthesis and Evaluation of 11C-Labeled Triazolones as Probes for Imaging Fatty Acid Synthase Expression by Positron Emission Tomography. Molecules, 2022, 27, 1552.	3.8	0
28	Lipid Metabolism and Epigenetics Crosstalk in Prostate Cancer. Nutrients, 2022, 14, 851.	4.1	17
29	Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers, 2021, 13, 6231.	3.7	13
31	Fatty acid synthase as a potential new therapeutic target for cervical cancer. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20210670.	0.8	4
32	Fatty acid synthase: a druggable driver of breast cancer brain metastasis. Expert Opinion on Therapeutic Targets, 2022, 26, 427-444.	3.4	10
33	The interactive role of inflammatory mediators and metabolic reprogramming in pancreatic cancer. Trends in Cancer, 2022, 8, 556-569.	7.4	13
35	Tissue-Specific Downregulation of Fatty Acid Synthase Suppresses Intestinal Adenoma Formation via Coordinated Reprograming of Transcriptome and Metabolism in the Mouse Model of Apc-Driven Colorectal Cancer. International Journal of Molecular Sciences, 2022, 23, 6510.	4.1	9
36	Manipulating Metabolic Alterations and their Consequences to Unleash the Potential of Antitumor Immunotherapy. Current Protein and Peptide Science, 2022, 23, 585-601.	1.4	1
37	Genomic Characteristics, Metabolic Signature and Immune Microenvironment of <i>Clonorchis Sinensis</i> -Related Intrahepatic Cholangiocarcinoma. SSRN Electronic Journal, 0, , .	0.4	0
38	MYCN-driven fatty acid uptake is a metabolic vulnerability in neuroblastoma. Nature Communications, 2022, 13, .	12.8	18
39	Tumor metabolic reprogramming in lung cancer progression (Review). Oncology Letters, 2022, 24, .	1.8	13
40	The Deubiquitinase USP13 Maintains Cancer Cell Stemness by Promoting FASN Stability in Small Cell Lung Cancer. Frontiers in Oncology, 0, 12, .	2.8	5
41	Emerging roles of fatty acid metabolism in cancer and their targeted drug development. European Journal of Medicinal Chemistry, 2022, 240, 114613.	5.5	4

		CITATION REPORT		
#	Article		IF	CITATIONS
42	Lipid Metabolism in Glioblastoma: From De Novo Synthesis to Storage. Biomedicines, 2022, 10	, 1943.	3.2	19
43	KRAS-Mutant Non-Small-Cell Lung Cancer: From Past Efforts to Future Challenges. Internationa Journal of Molecular Sciences, 2022, 23, 9391.		4.1	13
44	The vacuole shapes the nucleus and the ribosomal DNA loop during mitotic delays. Life Science Alliance, 2022, 5, e202101161.		2.8	2
45	FASN inhibitor TVB-3166 prevents S-acylation of the spike protein of human coronaviruses. Jou Lipid Research, 2022, 63, 100256.	rnal of	4.2	5
46	TGF-Î ² signaling in the tumor metabolic microenvironment and targeted therapies. Journal of Hematology and Oncology, 2022, 15, .		17.0	35
47	Lipid metabolism in pancreatic cancer: emerging roles and potential targets. Cancer Communic 2022, 42, 1234-1256.	ations,	9.2	21
48	Interplay between fat cells and immune cells in bone: Impact on malignant progression and the response. , 2022, 238, 108274.	rapeutic		0
49	Energy metabolism pathways in breast cancer progression: The reprogramming, crosstalk, and potential therapeutic targets. Translational Oncology, 2022, 26, 101534.		3.7	5
50	The role of fatty acids metabolism on cancer progression and therapeutics development. , 2023 101-132.	},,		0
51	Heterogeneity of triple negative breast cancer: Current advances in subtyping and treatment implications. Journal of Experimental and Clinical Cancer Research, 2022, 41, .		8.6	35
53	FASN inhibition targets multiple drivers of NASH by reducing steatosis, inflammation and fibros preclinical models. Scientific Reports, 2022, 12, .	is in	3.3	17
54	A MIR17HG-derived Long Noncoding RNA Provides an Essential Chromatin Scaffold for Protein Interaction and Myeloma Growth. Blood, 0, , .		1.4	7
55	Fatty acid metabolism reprogramming in ccRCC: mechanisms and potential targets. Nature Rev Urology, 2023, 20, 48-60.	iews	3.8	24
56	Revisiting potential value of antitumor drugs in the treatment of COVID-19. Cell and Bioscience 12, .	, 2022,	4.8	1
57	Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules, 2022, 12, 1590.		4.0	6
58	The role of lipids in cancer progression and metastasis. Cell Metabolism, 2022, 34, 1675-1699.		16.2	82
59	Acetyl-CoA: An interplay between metabolism and epigenetics in cancer. Frontiers in Molecular Medicine, 0, 2, .		1.9	1
60	Progress of potential drugs targeted in lipid metabolism research. Frontiers in Pharmacology, O	13,.	3.5	5

#	Article	IF	CITATIONS
61	Overview of Cancer Metabolism and Signaling Transduction. International Journal of Molecular Sciences, 2023, 24, 12.	4.1	9
62	Biological Role and Mechanism of Lipid Metabolism Reprogramming Related Gene ECHS1 in Cancer. Technology in Cancer Research and Treatment, 2022, 21, 153303382211406.	1.9	4
63	Fatty Acid Synthase (FASN): A Patent Review Since 2016-Present. Recent Patents on Anti-Cancer Drug Discovery, 2023, 18, .	1.6	1
64	Proteomic markers in breast cancer diagnosis and treatment. Makedonsko Farmacevtski Bilten, 2022, 68, 355-356.	0.0	0
65	Targeting lipid metabolism in metastatic prostate cancer. Therapeutic Advances in Medical Oncology, 2023, 15, 175883592311528.	3.2	5
66	The role of cancer cell bioenergetics in dormancy and drug resistance. Cancer and Metastasis Reviews, 2023, 42, 87-98.	5.9	6
67	Recent updates on targeting the molecular mediators of NAFLD. Journal of Molecular Medicine, 2023, 101, 101-124.	3.9	3
68	Metabolic reprogramming in colorectal cancer: regulatory networks and therapy. Cell and Bioscience, 2023, 13, .	4.8	9
69	Impact of genetic variants involved in the lipid metabolism pathway on progression free survival in patients receiving bevacizumab-based chemotherapy in metastatic colorectal cancer: a retrospective analysis of FIRE-3 and MAVERICC trials. EClinicalMedicine, 2023, 57, 101827.	7.1	0
70	ncRNA-mediated fatty acid metabolism reprogramming in HCC. Trends in Endocrinology and Metabolism, 2023, 34, 278-291.	7.1	8
72	Metabolomics in oncology. Cancer Reports, 2023, 6, .	1.4	3
73	Fatty acids in cancer: Metabolic functions and potential treatment. , 2023, 2, .		2
74	Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers, 2023, 15, 1936.	3.7	6
75	Prostate Cancer: Advances in Genetic Testing and Clinical Implications. Uro, 2023, 3, 91-103.	0.8	1
76	Involvement of the pro-oncogenic enzyme fatty acid synthase in the hallmarks of cancer: a promising target in anti-cancer therapies. Oncogenesis, 2023, 12, .	4.9	9
77	PHF6 recruits BPTF to promote HIF-dependent pathway and progression in YAP-high breast cancer. Journal of Translational Medicine, 2023, 21, .	4.4	0
78	Fatty acid metabolism: A new therapeutic target for cervical cancer. Frontiers in Oncology, 0, 13, .	2.8	2
79	The Metabolic Landscape of Breast Cancer and Its Therapeutic Implications. Molecular Diagnosis and Therapy, 0, , .	3.8	2

#	Article	IF	CITATIONS
80	Metabolic dependencies and targets in ovarian cancer. , 2023, 245, 108413.		8
81	Pharmacological induction of membrane lipid poly-unsaturation sensitizes melanoma to ROS inducers and overcomes acquired resistance to targeted therapy. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	8.6	1
82	Obesity-induced changes in cancer cells and their microenvironment: Mechanisms and therapeutic perspectives to manage dysregulated lipid metabolism. Seminars in Cancer Biology, 2023, 93, 36-51.	9.6	6
83	Phase II Investigation of TVB-2640 (Denifanstat) with Bevacizumab in Patients with First Relapse High-Grade Astrocytoma. Clinical Cancer Research, 2023, 29, 2419-2425.	7.0	6
84	Physiological and pathological roles of lipogenesis. Nature Metabolism, 2023, 5, 735-759.	11.9	21
85	NFYA promotes malignant behavior of triple-negative breast cancer in mice through the regulation of lipid metabolism. Communications Biology, 2023, 6, .	4.4	3
86	Metabolic reprogramming of clear cell renal cell carcinoma. Frontiers in Endocrinology, 0, 14, .	3.5	1
87	The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules, 2023, 13, 944.	4.0	1
88	Atomic model for core modifying region of human fatty acid synthase in complex with Denifanstat. Nature Communications, 2023, 14, .	12.8	4
89	An integrated cellular and molecular model of gastric neuroendocrine cancer evolution highlights therapeutic targets. Cancer Cell, 2023, 41, 1327-1344.e10.	16.8	5
90	Exploiting Therapeutic Vulnerabilities in Triple-Negative Breast Cancer: Successes, Challenges, and Opportunities. Current Breast Cancer Reports, 0, , .	1.0	0
91	<scp>BCKDHA</scp> contributes to melanoma progression by promoting the expressions of lipogenic enzymes <scp>FASN</scp> and <scp>ACLY</scp> . Experimental Dermatology, 0, , .	2.9	1
92	Lipid metabolism in the immune niche of tumor-prone liver microenvironment. Journal of Leukocyte Biology, 2024, 115, 68-84.	3.3	2
93	FAM120A couples SREBP-dependent transcription and splicing of lipogenesis enzymes downstream of mTORC1. Molecular Cell, 2023, 83, 3010-3026.e8.	9.7	2
94	Fatty acids in cancer chemoresistance. Cancer Letters, 2023, 572, 216352.	7.2	1
95	Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. Journal of Hematology and Oncology, 2023, 16, .	17.0	11
96	Tumor microenvironmental nutrients, cellular responses, and cancer. Cell Chemical Biology, 2023, 30, 1015-1032.	5.2	2
97	Targeting fatty acid uptake and metabolism in cancer cells: A promising strategy for cancer treatment. Biomedicine and Pharmacotherapy, 2023, 167, 115591.	5.6	1

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
98	BCAT2 promotes melanoma progression by activating lipogenesis via the epigenetic regulation of FASN and ACLY expressions. Cellular and Molecular Life Sciences, 2023, 80, .	5.4	0
99	Acetyl-CoA metabolism as a therapeutic target for cancer. Biomedicine and Pharmacotherapy, 2023, 168, 115741.	5.6	2
100	Metabolic pathway analysis using stable isotopes in patients with cancer. Nature Reviews Cancer, 2023, 23, 863-878.	28.4	6
101	Computational study on natural molecules targeting \hat{I}^2 -ketoacyl reductase domain of fatty acid synthase for the identification of selective inhibitors. Journal of Biomolecular Structure and Dynamics, 0, , 1-22.	3.5	Ο
102	Targeting dysregulated lipid metabolism in the tumor microenvironment. Archives of Pharmacal Research, 0, , .	6.3	0
103	Fatty Acid Synthase Inhibitors Enhance Microtubule-Stabilizing and Microtubule-Destabilizing Drugs in Taxane-Resistant Prostate Cancer Cells. ACS Pharmacology and Translational Science, 2023, 6, 1859-1869.	4.9	0
104	The lipid metabolism remodeling: A hurdle in breast cancer therapy. Cancer Letters, 2024, 582, 216512.	7.2	1
105	Mitochondrial metabolism as a dynamic regulatory hub to malignant transformation and anti-cancer drug resistance. Biochemical and Biophysical Research Communications, 2024, 694, 149382.	2.1	0
106	Adipose Triglyceride Lipase Is a Therapeutic Target in Advanced Prostate Cancer That Promotes Metabolic Plasticity. Cancer Research, 2024, 84, 703-724.	0.9	0
107	Targeting lipid metabolism in cancer metastasis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2024, 1879, 189051.	7.4	0
108	FASN Gene Methylation is Associated with Fatty Acid Synthase Expression and Clinical-Genomic Features of Prostate Cancer. Cancer Research Communications, 0, , .	1.7	0
109	Metabolomics at the tumor microenvironment interface: Decoding cellular conversations. Medicinal Research Reviews, 2024, 44, 1121-1146.	10.5	0
110	The Fatty Acid Synthase (FASN) signalome: A molecular guide for precision oncology. Molecular Oncology, 0, , .	4.6	0
111	The lipid droplet in cancer: From being a tumorâ€supporting hallmark to clinical therapy. Acta Physiologica, 2024, 240, .	3.8	Ο
112	Real-Time NMR-Based Drug Discovery to Identify Inhibitors against Fatty Acid Synthesis in Living Cancer Cells. Analytical Chemistry, 0, , .	6.5	0
113	Metabolic basis of cardiac dysfunction in cancer patients. Current Opinion in Cardiology, 2024, 39, 138-147.	1.8	Ο
114	Lipid droplets provide metabolic flexibility for cancer progression. FEBS Letters, 0, , .	2.8	0
115	Altered lipid metabolism in APC-driven colorectal cancer: the potential for therapeutic intervention. Frontiers in Oncology, 0, 14, .	2.8	0