Flavins in the electron bifurcation process

Archives of Biochemistry and Biophysics 701, 108796 DOI: 10.1016/j.abb.2021.108796

Citation Report

CITATION REPORT

#	Article	IF	CITATIONS
2	Energy Conservation in Fermentations of Anaerobic Bacteria. Frontiers in Microbiology, 2021, 12, 703525.	3.5	29
3	Energy transduction by reversible electron bifurcation. Current Opinion in Electrochemistry, 2021, 29, 100767.	4.8	1
4	Electron bifurcation reactions in dark fermentation: An overview for better understanding and improvement. Bioresource Technology, 2022, 344, 126327.	9.6	4
6	Structure and electron transfer pathways of an electron-bifurcating NiFe-hydrogenase. Science Advances, 2022, 8, eabm7546.	10.3	15
7	An uncharacteristically low-potential flavin governs the energy landscape of electron bifurcation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117882119.	7.1	5
8	Contrasting roles for two conserved arginines: Stabilizing flavin semiquinone or quaternary structure, in bifurcating electron transfer flavoproteins. Journal of Biological Chemistry, 2022, 298, 101733.	3.4	5
9	Structure-based electron-confurcation mechanism of the Ldh-EtfAB complex. ELife, 0, 11, .	6.0	9
10	How a Formate Dehydrogenase Responds to Oxygen: Unexpected O ₂ Insensitivity of an Enzyme Harboring Tungstopterin, Selenocysteine, and [4Fe–4S] Clusters. ACS Catalysis, 2022, 12, 10449-10471.	11.2	9
11	Machine Learning for Efficient Prediction of Protein Redox Potential: The Flavoproteins Case. Journal of Chemical Information and Modeling, 2022, 62, 4748-4759.	5.4	5
12	Site-Differentiated Iron–Sulfur Cluster Ligation Affects Flavin-Based Electron Bifurcation Activity. Metabolites, 2022, 12, 823.	2.9	2
13	Redox properties and PAS domain structure of the Escherichia coli energy sensor Aer indicate a multistate sensing mechanism. Journal of Biological Chemistry, 2022, 298, 102598.	3.4	7
14	Electron-donor and regulatory effects of superoxide anion radicals on the processes of osteogenesis and bone remodeling: literature review. Russian Osteopathic Journal, 2022, , 126-144.	0.4	0
15	Normal vs. Inverted Ordering of Reduction Potentials in [FeFe]â€Hydrogenases Biomimetics: Effect of the Dithiolate Bulk. Chemistry - A European Journal, 2023, 29, .	3.3	2
16	Multielectron transfer sensitization of flavin cofactor recycling. Inorganic Chemistry Communication, 2023, 149, 110444.	3.9	0
17	Structural Factors and Electron Transfer Mechanisms in Flavoenzymes. Analytical Letters, 0, , 1-14.	1.8	1
18	Versatility and Specificity of Flavin-Based Oxidoreductases in the Electron Transfer Reactions. Advances in Chemical and Materials Engineering Book Series, 2023, , 327-343.	0.3	Ο
19	Unsaturated fatty acid synthesis in bacteria: Mechanisms and regulation of canonical and remarkably noncanonical pathways. Biochimie, 2024, 218, 137-151.	2.6	0
20	Characterization of the Membrane-Associated Electron-Bifurcating Flavoenzyme EtfABCX from the Hyperthermophilic Bacterium <i>Thermotoga maritima</i> . Biochemistry, 0, , .	2.5	Ο

#	Article	IF	CITATIONS
22	Ferredoxin reduction by hydrogen with iron functions as an evolutionary precursor of flavin-based electron bifurcation. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0