COVID-19 immune features revealed by a large-scale sin

Cell 184, 1895-1913.e19 DOI: 10.1016/j.cell.2021.01.053

Citation Report

#	Article	IF	CITATIONS
1	Identification of Distinct Immune Cells Associated with Various Clinical Presentations of COVID-19. SSRN Electronic Journal, 0, , .	0.4	0
2	scAdapt: virtual adversarial domain adaptation network for single cell RNA-seq data classification across platforms and species. Briefings in Bioinformatics, 2021, 22, .	3.2	13
7	Next-generation crop engineering. Nature Plants, 2021, 7, 241-241.	4.7	3
9	BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell, 2021, 184, 2167-2182.e22.	13.5	131
13	Circulating Calprotectin as a Biomarker of COVID-19 Severity. Expert Review of Clinical Immunology, 2021, 17, 431-443.	1.3	70
14	Single-cell multi-omics analysis of the immune response in COVID-19. Nature Medicine, 2021, 27, 904-916.	15.2	452
15	COVID-19: complexity of disease severity revealed by systemic and localized single cell immune atlas. Signal Transduction and Targeted Therapy, 2021, 6, 156.	7.1	1
19	Multidisciplinary approach for post-acute COVID-19 syndrome: time to break down the walls. European Respiratory Journal, 2021, 58, 2101090.	3.1	18
20	Transcriptional Changes in CD16+ Monocytes May Contribute to the Pathogenesis of COVID-19. Frontiers in Immunology, 2021, 12, 665773.	2.2	20
22	Integrative genomics analysis reveals a 21q22.11 locus contributing risk to COVID-19. Human Molecular Genetics, 2021, 30, 1247-1258.	1.4	28
23	Dysregulation of Pulmonary Responses in Severe COVID-19. Viruses, 2021, 13, 957.	1.5	17
24	Immune profiling of COVID-19: preliminary findings and implications for the pandemic. , 2021, 9, e002550.		15
27	A cohort autopsy study defines COVID-19 systemic pathogenesis. Cell Research, 2021, 31, 836-846.	5.7	93
28	Therapeutic Targeting of Transcription Factors to Control the Cytokine Release Syndrome in COVID-19. Frontiers in Pharmacology, 2021, 12, 673485.	1.6	10
31	Clinical and molecular characteristics of COVID-19 patients with persistent SARS-CoV-2 infection. Nature Communications, 2021, 12, 3501.	5.8	40
32	SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms, 2021, 9, 1389.	1.6	4
35	SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity, 2021, 54, 1304-1319.e9.	6.6	115
39	An Impaired Inflammatory and Innate Immune Response in COVID-19. Molecules and Cells, 2021, 44, 384-391.	1.0	13

#	Article	IF	CITATIONS
40	Exploring the utility of extracellular vesicles in ameliorating viral infection-associated inflammation, cytokine storm and tissue damage. Translational Oncology, 2021, 14, 101095.	1.7	23
42	CRISPR Technique Incorporated with Single-Cell RNA Sequencing for Studying Hepatitis B Infection. Analytical Chemistry, 2021, 93, 10756-10761.	3.2	9
43	Multimodal single-cell omics analysis identifies epithelium–immune cell interactions and immune vulnerability associated with sex differences in COVID-19. Signal Transduction and Targeted Therapy, 2021, 6, 292.	7.1	13
45	Interactomes of SARSâ€CoVâ€2 and human coronaviruses reveal host factors potentially affecting pathogenesis. EMBO Journal, 2021, 40, e107776.	3.5	53
48	Natural killer cells and unconventional T cells in COVID-19. Current Opinion in Virology, 2021, 49, 176-182.	2.6	28
50	Integrated single-cell analysis unveils diverging immune features of COVID-19, influenza, and other community-acquired pneumonia. ELife, 2021, 10, .	2.8	12
51	Inflammasome activation at the crux of severe COVID-19. Nature Reviews Immunology, 2021, 21, 694-703.	10.6	210
53	Cell therapy strategies for COVID-19: Current approaches and potential applications. Science Advances, 2021, 7, .	4.7	20
54	Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. Nature, 2021, 598, 342-347.	13.7	230
55	Integrated single-cell analysis revealed immune dynamics during Ad5-nCoV immunization. Cell Discovery, 2021, 7, 64.	3.1	22
56	Transcriptomic Signatures of Airway Epithelium Infected With SARS-CoV-2: A Balance Between Anti-infection and Virus Load. Frontiers in Cell and Developmental Biology, 2021, 9, 735307.	1.8	3
57	Exploring COVID-19 at the single-cell level. Journal of Bio-X Research, 2021, Publish Ahead of Print, .	0.3	Ο
58	Rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren's syndrome shared megakaryocyte expansion in peripheral blood. Annals of the Rheumatic Diseases, 2022, 81, 379-385.	0.5	31
59	COVID-19 Immunobiology: Lessons Learned, New Questions Arise. Frontiers in Immunology, 2021, 12, 719023.	2.2	28
60	Genome-wide CRISPR activation screen identifies candidate receptors for SARS-CoV-2 entry. Science China Life Sciences, 2022, 65, 701-717.	2.3	48
61	Diversity of Macrophages in Lung Homeostasis and Diseases. Frontiers in Immunology, 2021, 12, 753940.	2.2	96
62	The precursors of CD8+ tissue resident memory T cells: from lymphoid organs to infected tissues. Nature Reviews Immunology, 2022, 22, 283-293.	10.6	85
63	Gene Expression Nebulas (GEN): a comprehensive data portal integrating transcriptomic profiles across multiple species at both bulk and single-cell levels. Nucleic Acids Research, 2022, 50, D1016-D1024.	6.5	18

#	Article	IF	Citations
64	Interleukin-1RA Mitigates SARS-CoV-2–Induced Inflammatory Lung Vascular Leakage and Mortality in Humanized K18-hACE-2 Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2773-2785.	1.1	20
65	Single-cell analysis of COVID-19, sepsis, and HIV infection reveals hyperinflammatory and immunosuppressive signatures in monocytes. Cell Reports, 2021, 37, 109793.	2.9	29
66	Application of omics technology to combat the COVIDâ€19 pandemic. MedComm, 2021, 2, 381-401.	3.1	11
67	Methods and platforms for analysis of nucleic acids from single-cell based on microfluidics. Microfluidics and Nanofluidics, 2021, 25, 87.	1.0	14
68	Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell, 2021, 184, 4713-4733.e22.	13.5	206
69	On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Frontiers in Immunology, 2021, 12, 705646.	2.2	9
71	Gut Microbiome Alterations in COVID-19. Genomics, Proteomics and Bioinformatics, 2021, 19, 679-688.	3.0	62
72	Immunotherapy Summary for Cytokine Storm in COVID-19. Frontiers in Pharmacology, 2021, 12, 731847.	1.6	9
74	Multiomics: unraveling the panoramic landscapes of SARS-CoV-2 infection. Cellular and Molecular Immunology, 2021, 18, 2313-2324.	4.8	31
78	Development and application of therapeutic antibodies against COVID-19. International Journal of Biological Sciences, 2021, 17, 1486-1496.	2.6	47
79	Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Briefings in Bioinformatics, 2021, 22, .	3.2	53
81	Future Applications of Metagenomic Next-Generation Sequencing for Infectious Diseases Diagnostics. Journal of the Pediatric Infectious Diseases Society, 2021, 10, S112-S117.	0.6	11
82	HumanNet v3: an improved database of human gene networks for disease research. Nucleic Acids Research, 2022, 50, D632-D639.	6.5	53
84	Comprehensive investigations revealed consistent pathophysiological alterations after vaccination with COVID-19 vaccines. Cell Discovery, 2021, 7, 99.	3.1	58
85	Signaling pathways in the regulation of cytokine release syndrome in human diseases and intervention therapy. Signal Transduction and Targeted Therapy, 2021, 6, 367.	7.1	31
86	Human placental biology at singleâ€cell resolution: a contemporaneous review. BJOG: an International Journal of Obstetrics and Gynaecology, 2022, 129, 208-220.	1.1	12
87	Immune Response in Severe and Non-Severe Coronavirus Disease 2019 (COVID-19) Infection: A Mechanistic Landscape. Frontiers in Immunology, 2021, 12, 738073.	2.2	24
89	Meta-analysis of COVID-19 single-cell studies confirms eight key immune responses. Scientific Reports, 2021, 11, 20833.	1.6	11

#	Article	IF	CITATIONS
90	Efficient and precise single-cell reference atlas mapping with Symphony. Nature Communications, 2021, 12, 5890.	5.8	100
91	Robust Virus-Specific Adaptive Immunity in COVID-19 Patients with SARS-CoV-2 Δ382 Variant Infection. Journal of Clinical Immunology, 2022, 42, 214-229.	2.0	15
93	iTTCA-RF: a random forest predictor for tumor T cell antigens. Journal of Translational Medicine, 2021, 19, 449.	1.8	28
94	Comprehensive analyses of bioinformatics applications in the fight against COVID-19 pandemic. Computational Biology and Chemistry, 2021, 95, 107599.	1.1	21
95	COVID-19 in Early Life: Infants and Children Are Affected Too. Physiology, 2021, 36, 359-366.	1.6	5
97	The Effect of a Combined Ganciclovir, Methylprednisolone, and Immunoglobulin Regimen on Survival and Functional Outcomes in Patients With Japanese Encephalitis. Frontiers in Neurology, 2021, 12, 711674.	1.1	3
101	Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Research, 2022, 32, 24-37.	5.7	98
102	Human immune diversity: from evolution to modernity. Nature Immunology, 2021, 22, 1479-1489.	7.0	64
103	"Multiomics―Approaches to Understand and Treat COVID-19: Mass Spectrometry and Next-Generation Sequencing. Biochem, 2021, 1, 210-237.	0.5	5
104	Single-Cell Genomics: Enabling the Functional Elucidation of Infectious Diseases in Multi-Cell Genomes. Pathogens, 2021, 10, 1467.	1.2	1
106	Metformin Suppresses Monocyte Immunometabolic Activation by SARS-CoV-2 Spike Protein Subunit 1. Frontiers in Immunology, 2021, 12, 733921.	2.2	17
107	Single-cell landscape of peripheral immune responses to fatal SFTS. Cell Reports, 2021, 37, 110039.	2.9	19
108	Genetic ancestry effects on the response to viral infection are pervasive but cell type specific. Science, 2021, 374, 1127-1133.	6.0	68
109	Metabolic imbalance of T cells in COVID-19 is hallmarked by basigin and mitigated by dexamethasone. Journal of Clinical Investigation, 2021, 131, .	3.9	25
110	Human bronchial-pulmonary proteomics in coronavirus disease 2019 (COVID-19) pandemic: applications and implications. Expert Review of Proteomics, 2021, 18, 925-938.	1.3	2
111	Integrated immunovirological profiling validates plasma SARS-CoV-2 RNA as an early predictor of COVID-19 mortality. Science Advances, 2021, 7, eabj5629.	4.7	32
112	Pathogenesis of Respiratory Viral and Fungal Coinfections. Clinical Microbiology Reviews, 2022, 35, e0009421.	5.7	64
113	Transcriptional Profiling and Machine Learning Unveil a Concordant Biosignature of Type I Interferon-Inducible Host Response Across Nasal Swab and Pulmonary Tissue for COVID-19 Diagnosis. Frontiers in Immunology, 2021, 12, 733171.	2.2	20

щ		IF	CITATIONS
#	ARTICLE People critically ill with COVID-19 exhibit peripheral immune profiles predictive of mortality and	IF 3.3	CITATIONS
	reflective of SARS-CoV-2 lung viral burden. Cell Reports Medicine, 2021, 2, 100476. Immune system cells from COVID-19 patients display compromised mitochondrial-nuclear expression		
115	co-regulation and rewiring toward glycolysis. IScience, 2021, 24, 103471.	1.9	20
117	A robust and scalable graph neural network for accurate single-cell classification. Briefings in Bioinformatics, 2022, 23, .	3.2	15
118	A universal approach for integrating super large-scale single-cell transcriptomes by exploring gene rankings. Briefings in Bioinformatics, 2022, 23, .	3.2	2
119	Specific inhibition of the NLRP3 inflammasome suppresses immune overactivation and alleviates COVID-19 like pathology in mice. EBioMedicine, 2022, 75, 103803.	2.7	68
120	Cathepsin B is a potential therapeutic target for coronavirus disease 2019 patients with lung adenocarcinoma. Chemico-Biological Interactions, 2022, 353, 109796.	1.7	11
121	Complex biological questions being addressed using single cell sequencing technologies. SLAS Technology, 2021, , .	1.0	2
122	Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19. Nature Communications, 2022, 13, 440.	5.8	100
123	Safety and immunogenicity of the SARS-CoV-2 ARCoV mRNA vaccine in Chinese adults: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Microbe, The, 2022, 3, e193-e202.	3.4	45
124	Immune-Guided Therapy of COVID-19. Cancer Immunology Research, 2022, 10, 384-402.	1.6	20
125	Innate immunological pathways in COVID-19 pathogenesis. Science Immunology, 2022, 7, eabm5505.	5.6	101
127	Single-Cell Analysis Reveals the Immune Characteristics of Myeloid Cells and Memory T Cells in Recovered COVID-19 Patients With Different Severities. Frontiers in Immunology, 2021, 12, 781432.	2.2	13
128	Agingâ€related cell typeâ€specific pathophysiologic immune responses that exacerbate disease severity in aged COVIDâ€19 patients. Aging Cell, 2022, 21, e13544.	3.0	11
129	Single-cell immune profiling reveals functional diversity of T cells in tuberculous pleural effusion. Journal of Experimental Medicine, 2022, 219, .	4.2	12
130	OUP accepted manuscript. Briefings in Bioinformatics, 2022, , .	3.2	11
131	Multiple early factors anticipate post-acute COVID-19 sequelae. Cell, 2022, 185, 881-895.e20.	13.5	605
133	Endothelial thrombomodulin downregulation caused by hypoxia contributes to severe infiltration and coagulopathy in COVID-19 patient lungs. EBioMedicine, 2022, 75, 103812.	2.7	39
134	Hyper-inflammatory responses in COVID-19 and anti-inflammatory therapeutic approaches. BMB Reports, 2022, 55, 11-19.	1.1	7

#	Article	IF	CITATIONS
136	Coinfection with SARS-CoV-2 and Influenza A Virus Increases Disease Severity and Impairs Neutralizing Antibody and CD4 ⁺ T Cell Responses. Journal of Virology, 2022, 96, jvi0187321.	1.5	38
137	Integrated hepatic single-cell RNA sequencing and untargeted metabolomics reveals the immune and metabolic modulation of Qing-Fei-Pai-Du decoction in mice with coronavirus-induced pneumonia. Phytomedicine, 2022, 97, 153922.	2.3	13
139	A road map for happiness: The psychological factors related cell types in various parts of human body from single cell RNA-seq data analysis. Computers in Biology and Medicine, 2022, 143, 105286.	3.9	3
142	Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. Nature Communications, 2022, 13, 679.	5.8	30
143	Azvudine is a thymus-homing anti-SARS-CoV-2 drug effective in treating COVID-19 patients. Signal Transduction and Targeted Therapy, 2021, 6, 414.	7.1	91
144	A single-cell transcriptomic landscape of the lungs of patients with COVID-19. Nature Cell Biology, 2021, 23, 1314-1328.	4.6	91
146	Cell specific peripheral immune responses predict survival in critical COVID-19 patients. Nature Communications, 2022, 13, 882.	5.8	19
147	Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads. ELife, 2022, 11, .	2.8	37
148	Single-cell eQTL analysis of activated T cell subsets reveals activation and cell type–dependent effects of disease-risk variants. Science Immunology, 2022, 7, eabm2508.	5.6	32
149	Increased Expression of Tim-3 Is Associated With Depletion of NKT Cells In SARS-CoV-2 Infection. Frontiers in Immunology, 2022, 13, 796682.	2.2	8
150	Dysbiosis of Oral and Gut Microbiomes in SARS-CoV-2 Infected Patients in Bangladesh: Elucidating the Role of Opportunistic Gut Microbes. Frontiers in Medicine, 2022, 9, 821777.	1.2	33
152	Identification of Distinct Immune Cell Subsets Associated With Asymptomatic Infection, Disease Severity, and Viral Persistence in COVID-19 Patients. Frontiers in Immunology, 2022, 13, 812514.	2.2	12
153	Integrating single-cell sequencing data with GWAS summary statistics reveals CD16+monocytes and memory CD8+T cells involved in severe COVID-19. Genome Medicine, 2022, 14, 16.	3.6	25
154	How has academia responded to the urgent needs created by COVID-19? A multi-level global, regional analysis. Journal of Information Science, 2024, 50, 162-188.	2.0	1
157	Mechanistic Insights Into the Immune Pathophysiology of COVID-19; An In-Depth Review. Frontiers in Immunology, 2022, 13, 835104.	2.2	28
158	Proteomic and Single-Cell Transcriptomic Dissection of Human Plasmacytoid Dendritic Cell Response to Influenza Virus. Frontiers in Immunology, 2022, 13, 814627.	2.2	8
159	Singleâ€cell RNA sequencing technologies and applications: A brief overview. Clinical and Translational Medicine, 2022, 12, e694.	1.7	218
160	Metabolic Landscape of Bronchoalveolar Lavage Fluid in Coronavirus Disease 2019 at Single Cell Resolution. Frontiers in Immunology, 2022, 13, 829760.	2.2	1

#	Article	IF	CITATIONS
161	Sincast: a computational framework to predict cell identities in single-cell transcriptomes using bulk atlases as references. Briefings in Bioinformatics, 2022, 23, .	3.2	4
162	Molecular and Clinical Prognostic Biomarkers of COVID-19 Severity and Persistence. Pathogens, 2022, 11, 311.	1.2	16
163	Neutrophil transit time and localization within the megakaryocyte define morphologically distinct forms of emperipolesis. Blood Advances, 2022, 6, 2081-2091.	2.5	3
164	Combinatorial analysis reveals highly coordinated early-stage immune reactions that predict later antiviral immunity in mild COVID-19 patients. Cell Reports Medicine, 2022, 3, 100600.	3.3	10
165	ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal Transduction and Targeted Therapy, 2022, 7, 83.	7.1	88
166	Humanized mice reveal a macrophage-enriched gene signature defining human lung tissue protection during SARS-CoV-2 infection. Cell Reports, 2022, 39, 110714.	2.9	14
167	MutCov: A pipeline for evaluating the effect of mutations in spike protein on infectivity and antigenicity of SARS-CoV-2. Computers in Biology and Medicine, 2022, 145, 105509.	3.9	2
168	Cardiovascular signatures of COVID-19 predict mortality and identify barrier stabilizing therapies. EBioMedicine, 2022, 78, 103982.	2.7	17
169	Correctness of Cell Labels in Public Single Cell Transcriptomics Datasets. , 2021, , .		0
170	Crystal Structures of Bat and Human Coronavirus ORF8 Protein Ig-Like Domain Provide Insights Into the Diversity of Immune Responses. Frontiers in Immunology, 2021, 12, 807134.	2.2	15
171	Spatio-Temporal Modeling of Immune Response to SARS-CoV-2 Infection. Mathematics, 2021, 9, 3274.	1.1	5
172	Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic. Frontiers in Immunology, 2021, 12, 789317.	2.2	34
173	Single cell sequencing analysis identifies genetics-modulated ORMDL3+ cholangiocytes having higher metabolic effects on primary biliary cholangitis. Journal of Nanobiotechnology, 2021, 19, 406.	4.2	16
174	SARS-CoV-2-triggered mast cell rapid degranulation induces alveolar epithelial inflammation and lung injury. Signal Transduction and Targeted Therapy, 2021, 6, 428.	7.1	44
177	Adaptive total-variation joint learning model for analyzing single cell RNA seq data. , 2021, , .		0
179	Biologics for Psoriasis During the COVID-19 Pandemic. Frontiers in Medicine, 2021, 8, 759568.	1.2	10
180	SARS-CoV-2 productively infects primary human immune system cells <i>in vitro</i> and in COVID-19 patients. Journal of Molecular Cell Biology, 2022, 14, .	1.5	26
181	A parameter-free deep embedded clustering method for single-cell RNA-seq data. Briefings in Bioinformatics, 2022, 23, .	3.2	6

#	Article	IF	CITATIONS
182	Angiotensin-converting enzyme 2 in peripheral lung club cells modulates the susceptibility to SARS-CoV-2 in chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L712-L721.	1.3	8
184	Identification of Neutrophil-Related Factor LCN2 for Predicting Severity of Patients With Influenza A Virus and SARS-CoV-2 Infection. Frontiers in Microbiology, 2022, 13, 854172.	1.5	6
185	Matrix Metalloproteinases on Severe COVID-19 Lung Disease Pathogenesis: Cooperative Actions of MMP-8/MMP-2 Axis on Immune Response through HLA-G Shedding and Oxidative Stress. Biomolecules, 2022, 12, 604.	1.8	28
186	Landscape of the Peripheral Immune Response Induced by Local Microwave Ablation in Patients with Breast Cancer. Advanced Science, 2022, 9, e2200033.	5.6	22
187	Overview of structural variation calling: Simulation, identification, and visualization. Computers in Biology and Medicine, 2022, 145, 105534.	3.9	4
188	Immune features of COVID-19 convalescent individuals revealed by a single-cell RNA sequencing. International Immunopharmacology, 2022, 108, 108767.	1.7	8
189	Hyper-inflammatory responses in COVID-19 and anti-inflammatory therapeutic approaches BMB Reports, 2021, , .	1.1	0
190	Treatment of Moderate to Severe Psoriasis during the COVID-19 Pandemic: Lessons Learned and Opportunities. Journal of Clinical Medicine, 2022, 11, 2422.	1.0	0
191	Cellular Heterogeneity of the Heart. Frontiers in Cardiovascular Medicine, 2022, 9, 868466.	1.1	7
192	Singling out motor neurons in the age of single-cell transcriptomics. Trends in Genetics, 2022, 38, 904-919.	2.9	9
193	JAK inhibitor blocks COVID-19 cytokine–induced JAK/STAT/APOL1 signaling in glomerular cells and podocytopathy in human kidney organoids. JCI Insight, 2022, 7, .	2.3	21
194	Exploring the Utility of NK Cells in COVID-19. Biomedicines, 2022, 10, 1002.	1.4	12
195	Single-cell transcriptomics reveal a unique memory-like NK cell subset that accumulates with ageing and correlates with disease severity in COVID-19. Genome Medicine, 2022, 14, 46.	3.6	19
196	Transcriptome profiling in swine macrophages infected with African swine fever virus at single-cell resolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201288119.	3.3	39
197	Classification and severity progression measure of COVID-19 patients using pairs of multi-omic factors. Journal of Applied Statistics, 2023, 50, 2473-2503.	0.6	1
198	The constellation of cholesterol-dependent processes associated with SARS-CoV-2 infection. Progress in Lipid Research, 2022, 87, 101166.	5.3	10
199	Immunosuppressant Therapies in COVID-19: Is the TNF Axis an Alternative?. Pharmaceuticals, 2022, 15, 616.	1.7	7
200	Intracranial Aneurysms Induced by RUNX1 Through Regulation of NFKB1 in Patients With Hypertension-An Integrated Analysis Based on Multiple Datasets and Algorithms. Frontiers in Neurology, 2022–13	1.1	5

#	Article	IF	CITATIONS
201	Singleâ€cell transcriptomics provides insights into the origin and microenvironment of human oesophageal highâ€grade intraepithelial neoplasia. Clinical and Translational Medicine, 2022, 12, .	1.7	5
202	Cytokine storm promoting T cell exhaustion in severe COVID-19 revealed by single cell sequencing data analysis. Precision Clinical Medicine, 2022, 5, .	1.3	11
204	An Integrative Analysis of the Immune Features of Inactivated SARS-CoV-2 Vaccine (CoronaVac). Vaccines, 2022, 10, 878.	2.1	4
206	The putative mechanism of lymphopenia in COVID-19 patients. Journal of Molecular Cell Biology, 2022, 14, .	1.5	5
207	Spatial region-resolved proteome map reveals mechanism of COVID-19-associated heart injury. Cell Reports, 2022, 39, 110955.	2.9	16
208	Suitability assessment of CD24 targeted-therapy in the cancer patients with COVID-19: Preliminary results from pan-cancer. Journal of Infection, 2022, 85, 334-363.	1.7	1
209	Multiomic analysis reveals cell-type-specific molecular determinants of COVID-19 severity. Cell Systems, 2022, 13, 598-614.e6.	2.9	10
210	Leucine-tRNA-synthetase-2-expressing B cells contribute to colorectal cancer immunoevasion. Immunity, 2022, 55, 1067-1081.e8.	6.6	21
211	A systems biology approach identifies candidate drugs to reduce mortality in severely ill patients with COVID-19. Science Advances, 2022, 8, .	4.7	14
212	Gut bacterial isoamylamine promotes age-related cognitive dysfunction by promoting microglial cell death. Cell Host and Microbe, 2022, 30, 944-960.e8.	5.1	37
214	Single-cell transcriptome profiling of the immune space-time landscape reveals dendritic cell regulatory program in polymicrobial sepsis. Theranostics, 2022, 12, 4606-4628.	4.6	17
219	Efferocytosis of SARS-CoV-2-infected dying cells impairs macrophage anti-inflammatory functions and clearance of apoptotic cells. ELife, 0, 11, .	2.8	31
220	Calprotectin: The Link Between Acute Lung Injury and Gastrointestinal Injury in Covid-19: Ban or Boon. Current Protein and Peptide Science, 2022, 23, 310-320.	0.7	16
221	Comprehensive Profiling Analysis of CD209 in Malignancies Reveals the Therapeutic Implication for Tumor Patients Infected With SARS-CoV-2. Frontiers in Genetics, 0, 13, .	1.1	1
222	T Lymphocytes as Targets for SARS-CoV-2. Biochemistry (Moscow), 2022, 87, 566-576.	0.7	6
223	Infection of lung megakaryocytes and platelets by SARS-CoV-2 anticipate fatal COVID-19. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	28
225	COVID-19 and liver disease. Gut, 2022, 71, 2350-2362.	6.1	48
226	Single-cell analyses highlight the proinflammatory contribution of C1q-high monocytes to Behçet's disease. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	35

#	Article	IF	CITATIONS
227	Diabetes and SARS-CoV-2–Is There a Mutual Connection?. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
228	Integration and Reanalysis of Four RNA-Seq Datasets Including BALF, Nasopharyngeal Swabs, Lung Biopsy, and Mouse Models Reveals Common Immune Features of COVID-19. Immune Network, 2022, 22, .	1.6	4
229	Tracing the cell-type-specific modules of immune responses during COVID-19 progression using scDisProcema. Computational and Structural Biotechnology Journal, 2022, 20, 3545-3555.	1.9	1
230	Context-aware deconvolution of cellâ \in "cell communication with Tensor-cell2cell. Nature Communications, 2022, 13, .	5.8	32
231	Gene Networks of Hyperglycemia, Diabetic Complications, and Human Proteins Targeted by SARS-CoV-2: What Is the Molecular Basis for Comorbidity?. International Journal of Molecular Sciences, 2022, 23, 7247.	1.8	5
232	A Landscape Study on COVID-19 Immunity at the Single-Cell Level. Frontiers in Immunology, 0, 13, .	2.2	1
233	The role of multi-omics in the diagnosis of COVID-19 and the prediction of new therapeutic targets. Virulence, 2022, 13, 1101-1110.	1.8	7
234	The Dynamic Role of FOXP3+ Tregs and Their Potential Therapeutic Applications During SARS-CoV-2 Infection. Frontiers in Immunology, 0, 13, .	2.2	13
236	Progressive membrane-binding mechanism of SARS-CoV-2 variant spike proteins. IScience, 2022, 25, 104722.	1.9	8
237	Singleâ€cell transcriptomic atlas reveals distinct immunological responses between COVIDâ€19 vaccine and natural SARSâ€CoVâ€2 infection. Journal of Medical Virology, 2022, 94, 5304-5324.	2.5	17
238	Singleâ€cell immune profiling reveals longâ€term changes in myeloid cells and identifies a novel subset of CD9 ⁺ monocytes associated with COVIDâ€19 hospitalization. Journal of Leukocyte Biology, 0, , .	1.5	5
239	Delineating COVID-19 immunological features using single-cell RNA sequencing. Innovation(China), 2022, 3, 100289.	5.2	9
240	Evaluation of SARS-CoV-2-Neutralizing Nanobody Using Virus Receptor Binding Domain-Administered Model Mice. Research, 2022, 2022, .	2.8	4
242	Coupled Analysis of Single-Cell Transcriptome and TCR Sequencing Uncovers the Role of TRAV1-2 ⁺ /J33 ⁺ MAIT Cells in Immune Reconstitution of Hiv-Infected Patients Under Antiretroviral Therapy. SSRN Electronic Journal, 0, , .	0.4	0
243	CXCR4high megakaryocytes regulate host-defense immunity against bacterial pathogens. ELife, 0, 11, .	2.8	10
245	<i>propeller:</i> testing for differences in cell type proportions in single cell data. Bioinformatics, 2022, 38, 4720-4726.	1.8	59
246	Contrastive learning enables rapid mapping to multimodal single-cell atlas of multimillion scale. Nature Machine Intelligence, 2022, 4, 696-709.	8.3	14
247	Dysregulated autophagy-related genes in septic cardiomyopathy: Comprehensive bioinformatics analysis based on the human transcriptomes and experimental validation. Frontiers in Cardiovascular Medicine, 0, 9	1.1	2

#	Article	IF	CITATIONS
248	The pulmonary vasculature in lethal COVID-19 and idiopathic pulmonary fibrosis at single-cell resolution. Cardiovascular Research, 2023, 119, 520-535.	1.8	14
249	Metacells untangle large and complex single-cell transcriptome networks. BMC Bioinformatics, 2022, 23, .	1.2	14
250	Single-cell RNA profiling ofÂPlasmodium vivax-infected hepatocytes reveals parasite- and host- specific transcriptomic signaturesÂand therapeutic targets. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	14
251	Single-cell RNA sequencing uncovers the nuclear decoy lincRNA PIRAT as a regulator of systemic monocyte immunity during COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
252	Understanding the function of regulatory DNA interactions in the interpretation of non-coding GWAS variants. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	6
253	Whole blood DNA methylation analysis reveals respiratory environmental traits involved in COVID-19 severity following SARS-CoV-2 infection. Nature Communications, 2022, 13, .	5.8	14
254	Network analysis between neuron dysfunction and neuroimmune response based on neural single-cell transcriptome of COVID-19 patients. Computers in Biology and Medicine, 2022, 150, 106055.	3.9	1
255	Flexible Distance-Based TCR Analysis in Python with tcrdist3. Methods in Molecular Biology, 2022, , 309-366.	0.4	2
256	Tuberculosis Immune Landscapes Revealed by a Single-Cell Transcriptome Atlas: An Omics Study. SSRN Electronic Journal, 0, , .	0.4	0
257	Dynamic Single-Cell RNA Sequencing Reveals that Intravenous BCG Vaccination Curtails SARS-CoV-2 Induced Disease Severity and Lung Inflammation. SSRN Electronic Journal, 0, , .	0.4	0
258	Analyzing network diversity of cell–cell interactions in COVID-19 using single-cell transcriptomics. Frontiers in Genetics, 0, 13, .	1.1	0
259	Blood Transcriptomes of SARS-CoV-2–Infected Kidney Transplant Recipients Associated with Immune Insufficiency Proportionate to Severity. Journal of the American Society of Nephrology: JASN, 2022, 33, 2108-2122.	3.0	6
261	Role of lymphoid lineage cells aberrantly expressing alarmins S100A8/A9 in determining the severity of COVID-19. Genes and Genomics, 0, , .	0.5	2
262	Potential mouse models of coronavirus-related immune injury. Frontiers in Immunology, 0, 13, .	2.2	1
263	Nascent RHOH acts as a molecular brake on actomyosin-mediated effector functions of inflammatory neutrophils. PLoS Biology, 2022, 20, e3001794.	2.6	3
264	Protein arginine methyltransferase 1 in the generation of immune megakaryocytes: A perspective review. Journal of Biological Chemistry, 2022, 298, 102517.	1.6	3
265	Transcriptomics and RNA-Based Therapeutics as Potential Approaches to Manage SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2022, 23, 11058.	1.8	2
266	Case report: Understanding the impact of persistent tissue-localization of SARS-CoV-2 on immune response activity via spatial transcriptomic analysis of two cancer patients with COVID-19 co-morbidity. Frontiers in Immunology, 0, 13, .	2.2	3

#	Article	IF	CITATIONS
267	Single-cell analysis of the adaptive immune response to SARS-CoV-2 infection and vaccination. Frontiers in Immunology, 0, 13, .	2.2	4
268	Single-Cell Gene Expression Analysis Revealed Immune Cell Signatures of Delta COVID-19. Cells, 2022, 11, 2950.	1.8	1
269	S100A8/A9, an Upregulated Host Factor in BK Virus Infection after Kidney Transplantation, Is Associated with Allograft Function Impairment. Journal of Proteome Research, 2022, 21, 2356-2366.	1.8	2
270	Real-world effectiveness and protection of SARS-CoV-2 vaccine among patients hospitalized for COVID-19 in Xi'an, China, December 8, 2021, to January 20, 2022: A retrospective study. Frontiers in Immunology, 0, 13, .	2.2	2
271	COVID-19 and cellular senescence. Nature Reviews Immunology, 2023, 23, 251-263.	10.6	54
272	Influenza vaccination features revealed by a singleâ€cell transcriptome atlas. Journal of Medical Virology, 2023, 95, .	2.5	5
273	Revisiting potential value of antitumor drugs in the treatment of COVID-19. Cell and Bioscience, 2022, 12, .	2.1	1
274	Human ZBP1 induces cell deathâ€independent inflammatory signaling via RIPK3 and RIPK1. EMBO Reports, 2022, 23, .	2.0	21
275	COVID-GWAB: A Web-Based Prediction of COVID-19 Host Genes via Network Boosting of Genome-Wide Association Data. Biomolecules, 2022, 12, 1446.	1.8	0
276	A comprehensive SARS-CoV-2–human protein–protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nature Biotechnology, 2023, 41, 128-139.	9.4	61
277	Genome-wide Mendelian randomization and single-cell RNA sequencing analyses identify the causal effects of COVID-19 on 41 cytokines. Briefings in Functional Genomics, 2022, 21, 423-432.	1.3	3
278	The pathogenesis of coronavirus-19 disease. Journal of Biomedical Science, 2022, 29, .	2.6	34
279	Revealing key regulators of neutrophil function during inflammation by re-analysing single-cell RNA-seq. PLoS ONE, 2022, 17, e0276460.	1.1	5
280	Single-cell transcriptome analyses reveal distinct gene expression signatures of severe COVID-19 in the presence of clonal hematopoiesis. Experimental and Molecular Medicine, 2022, 54, 1756-1765.	3.2	5
282	COVID-19 disease and immune dysregulation. Best Practice and Research in Clinical Haematology, 2022, 35, 101401.	0.7	26
283	Ensemble learning-based feature selection for phosphorylation site detection. Frontiers in Genetics, 0, 13, .	1.1	3
284	Unpacking COVID-19 Systems Biology in Lung and Whole Blood with Transcriptomics and miRNA Regulators. OMICS A Journal of Integrative Biology, 2022, 26, 608-621.	1.0	1
286	Single-cell profiling reveals distinct adaptive immune hallmarks in MDA5+ dermatomyositis with therapeutic implications. Nature Communications, 2022, 13, .	5.8	23

#	Article	IF	CITATIONS
287	Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space. Nature Communications, 2022, 13, .	5.8	29
288	Inosine: A broad-spectrum anti-inflammatory against SARS-CoV-2 infection-induced acute lung injury via suppressing TBK1 phosphorylation. Journal of Pharmaceutical Analysis, 2023, 13, 11-23.	2.4	3
289	Integrated time-series transcriptomic and metabolomic analyses reveal different inflammatory and adaptive immune responses contributing to host resistance to PRRSV. Frontiers in Immunology, 0, 13, .	2.2	5
290	Pre-infection antiviral innate immunity contributes to sex differences in SARS-CoV-2 infection. Cell Systems, 2022, 13, 924-931.e4.	2.9	6
291	Integrating bulk and single-cell sequencing reveals the phenotype-associated cell subpopulations in sepsis-induced acute lung injury. Frontiers in Immunology, 0, 13, .	2.2	5
292	Metabolic modeling of single bronchoalveolar macrophages reveals regulators of hyperinflammation in COVID-19. IScience, 2022, 25, 105319.	1.9	6
293	Single-nucleus transcriptomic profiling of multiple organs in a rhesus macaque model of SARS-CoV-2 infection. Zoological Research, 2022, 43, 1041-1062.	0.9	8
294	Innate immune imprints in SARS-CoV-2 Omicron variant infection convalescents. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	6
296	Dual activation profile of monocytes is associated with protection in Mexican patients during SARS-CoV-2 disease. Applied Microbiology and Biotechnology, 2022, 106, 7905-7916.	1.7	1
297	COMBATdb: a database for the COVID-19 Multi-Omics Blood ATlas. Nucleic Acids Research, 2023, 51, D896-D905.	6.5	4
298	Heterogeneity of neutrophils and inflammatory responses in patients with COVID-19 and healthy controls. Frontiers in Immunology, 0, 13, .	2.2	9
299	Association between SARS-CoV-2 RNAemia and dysregulated immune response in acutely ill hospitalized COVID-19 patients. Scientific Reports, 2022, 12, .	1.6	9
300	NaÃ ⁻ ve B cells with low differentiation improve the immune reconstitution of HIV-infected patients. IScience, 2022, 25, 105559.	1.9	3
302	Transcriptional reprogramming of infiltrating neutrophils drives lung pathology in severe COVID-19 despite low viral load. Blood Advances, 2023, 7, 778-799.	2.5	11
304	Microfluidic singleâ€cell multiomics analysis. View, 2023, 4, .	2.7	6
305	Aberrant metabolic processes promote the immunosuppressive microenvironment in multiple myeloma. Frontiers in Immunology, 0, 13, .	2.2	11
306	Epigenetic and transcriptomic reprogramming in monocytes of severe COVID-19 patients reflects alterations in myeloid differentiation and the influence of inflammatory cytokines. Genome Medicine, 2022, 14, .	3.6	10
308	Multi-omics identify falling LRRC15 as a COVID-19 severity marker and persistent pro-thrombotic signals in convalescence. Nature Communications, 2022, 13, .	5.8	13

#	Article	IF	CITATIONS
309	Characterizing Macrophages Diversity in COVID-19 Patients Using Deep Learning. Genes, 2022, 13, 2264.	1.0	0
310	Identification of GINS1 as a therapeutic target in the cancer patients infected with COVID-19: a bioinformatics and system biology approach. Hereditas, 2022, 159, .	0.5	1
311	Dissecting CD8+ T cell pathology of severe SARS-CoV-2 infection by single-cell immunoprofiling. Frontiers in Immunology, 0, 13, .	2.2	6
312	Emerging toolset of three-dimensional pulmonary cell culture models for simulating lung pathophysiology towards mechanistic elucidation and therapeutic treatment of SARS-COV-2 infection. Frontiers in Pharmacology, 0, 13, .	1.6	1
313	Analysis of research hotspots in COVID-19 genomics based on citespace software: Bibliometric analysis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	4
314	Secuer: Ultrafast, scalable and accurate clustering of single-cell RNA-seq data. PLoS Computational Biology, 2022, 18, e1010753.	1.5	4
315	Impact of the Human Cell Atlas on medicine. Nature Medicine, 2022, 28, 2486-2496.	15.2	59
316	Hyperactive immature state and differential CXCR2 expression of neutrophils in severe COVID-19. Life Science Alliance, 2023, 6, e202201658.	1.3	9
317	Privacy-preserving integration of multiple institutional data for single-cell type identification with scPrivacy. Science China Life Sciences, 2023, 66, 1183-1195.	2.3	6
318	A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes. Nature Communications, 2022, 13, .	5.8	11
319	Altered and allele-specific open chromatin landscape reveals epigenetic and genetic regulators of innate immunity in COVID-19. Cell Genomics, 2023, 3, 100232.	3.0	9
320	The challenges and opportunities of scRNA-seq in COVID-19 research and clinical translation. Virology Journal, 2022, 19, .	1.4	0
321	Loss of Y in leukocytes as a risk factor for critical COVID-19 in men. Genome Medicine, 2022, 14, .	3.6	6
322	Molecular mechanisms implicated in SARS-CoV-2 liver tropism. World Journal of Gastroenterology, 0, 28, 6875-6887.	1.4	3
323	Ex vivo manufacturing of platelets: beyond the first-in-human clinical trial using autologous iPSC-platelets. International Journal of Hematology, 2023, 117, 349-355.	0.7	2
324	COVID-19-associated monocytic encephalitis (CAME): histological and proteomic evidence from autopsy. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	13
325	Transformer for one stop interpretable cell type annotation. Nature Communications, 2023, 14, .	5.8	26
326	How does SARS oVâ€2 infection impact on immunity, processionÂand treatment of pan cancers. Journal of Medical Virology, 2023, 95, .	2.5	2

#	Article	IF	CITATIONS
327	Global Properties of a Diffusive SARS-CoV-2 Infection Model with Antibody and Cytotoxic T-Lymphocyte Immune Responses. Mathematics, 2023, 11, 190.	1.1	2
328	Links between COVID-19 and Parkinson's disease/Alzheimer's disease: reciprocal impacts, medical care strategies and underlying mechanisms. Translational Neurodegeneration, 2023, 12, .	3.6	15
329	Hierarchical cell-type identifier accurately distinguishes immune-cell subtypes enabling precise profiling of tissue microenvironment with single-cell RNA-sequencing. Briefings in Bioinformatics, 0, ,	3.2	2
330	Transcriptomic approaches in COVID-19: From infection to vaccines. , 2023, , 125-144.		0
332	Epigenetic features, methods, and implementations associated with COVID-19. , 2023, , 161-175.		0
334	Quantitative analysis of highâ€ŧhroughput biological data. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	2
335	Single-cell sequencing of ascites fluid illustrates heterogeneity and therapy-induced evolution during gastric cancer peritoneal metastasis. Nature Communications, 2023, 14, .	5.8	14
337	ASGARD is A Single-cell Guided Pipeline to Aid Repurposing of Drugs. Nature Communications, 2023, 14,	5.8	10
338	A SARS-CoV-2-specific CAR-T-cell model identifies felodipine, fasudil, imatinib, and caspofungin as potential treatments for lethal COVID-19. , 2023, 20, 351-364.		5
339	FIPRESCI: droplet microfluidics based combinatorial indexing for massive-scale 5′-end single-cell RNA sequencing. Genome Biology, 2023, 24, .	3.8	4
342	Global Dynamics of an HTLV-I and SARS-CoV-2 Co-Infection Model with Diffusion. Mathematics, 2023, 11, 688.	1.1	0
343	Comprehensive analysis to identify the influences of SARS-CoV-2 infections to inflammatory bowel disease. Frontiers in Immunology, 0, 14, .	2.2	1
344	Comprehensive analysis of Tâ€cell receptor repertoires reveals antigenâ€driven Tâ€cell clusters in patients with Behçet's syndrome. European Journal of Immunology, 2023, 53, .	1.6	2
345	The role of peroxisome proliferator-activated receptors in the modulation of hyperinflammation induced by SARS-CoV-2 infection: A perspective for COVID-19 therapy. Frontiers in Immunology, 0, 14, .	2.2	7
346	Regulating the microenvironment with nanomaterials: Potential strategies to ameliorate COVID-19. Acta Pharmaceutica Sinica B, 2023, 13, 3638-3658.	5.7	2
347	Lymphocyte integrins mediate entry and dysregulation of T cells by SARS-CoV-2. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	5
348	Single-Cell Genomics for Investigating Pathogenesis of Inflammatory Diseases. Molecules and Cells, 2023, 46, 120-129.	1.0	1
349	Gut microbiome is linked to functions of peripheral immune cells in transition cows during excessive lipolysis. Microbiome, 2023, 11	4.9	10

#	Article	IF	CITATIONS
350	Parallel Dysregulated Immune Response in Severe Forms of COVID-19 and Bacterial Sepsis via Single-Cell Transcriptome Sequencing. Biomedicines, 2023, 11, 778.	1.4	3
351	Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. Journal of Experimental Medicine, 2023, 220, .	4.2	10
352	Immune damage mechanisms of COVID-19 and novel strategies in prevention and control of epidemic. Frontiers in Immunology, 0, 14, .	2.2	1
354	Exploring Dysregulated Ferroptosis-Related Genes in Septic Myocardial Injury Based on Human Heart Transcriptomes: Evidence and New Insights. Journal of Inflammation Research, 0, Volume 16, 995-1015.	1.6	2
356	Circulating SARS-CoV-2+ megakaryocytes are associated with severe viral infection in COVID-19. Blood Advances, 2023, 7, 4200-4214.	2.5	7
359	Regulatory T Cells (Tregs) and COVID-19: Unveiling the Mechanisms, and Therapeutic Potentialities with a Special Focus on Long COVID. Vaccines, 2023, 11, 699.	2.1	15
360	Benchmarking integration of single-cell differential expression. Nature Communications, 2023, 14, .	5.8	5
361	Towards systems immunology of critical illness at scale: from single cell â€~omics to digital twins. Trends in Immunology, 2023, 44, 345-355.	2.9	7
362	Corticosteroids reduce pathologic interferon responses by downregulating STAT1 in patients with high-risk COVID-19. Experimental and Molecular Medicine, 2023, 55, 653-664.	3.2	2
363	Cellular and molecular features of COVID-19 associated ARDS: therapeutic relevance. Journal of Inflammation, 2023, 20, .	1.5	2
364	Characterizing the cellular and molecular variabilities of peripheral immune cells in healthy recipients of BBIBP-CorV inactivated SARS-CoV-2 vaccine by single-cell RNA sequencing. Emerging Microbes and Infections, 2023, 12, .	3.0	3
365	Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas. Journal of Infection, 2023, 86, 421-438.	1.7	9
366	Sex chromosome complement and sex steroid signaling underlie sex differences in immunity to respiratory virus infection. Frontiers in Pharmacology, 0, 14, .	1.6	2
368	TREM2+ and interstitial-like macrophages orchestrate airway inflammation in SARS-CoV-2 infection in rhesus macaques. Nature Communications, 2023, 14, .	5.8	10
369	Single-cell transcriptomics reveals immune infiltrate in sepsis. Frontiers in Pharmacology, 0, 14, .	1.6	0
370	Host Expression Profiling from Diagnostic COVID-19 Swabs Associate Upper Respiratory Tract Immune Responses with Radiologic Lung Pathology and Clinical Severity. Open Forum Infectious Diseases, 0, , .	0.4	0
371	Novel insight into the underlying dysregulation mechanisms of immune cell-to-cell communication by analyzing multitissue single-cell atlas of two COVID-19 patients. Cell Death and Disease, 2023, 14, .	2.7	3
398	Applications of single-cell RNA sequencing in drug discovery and development. Nature Reviews Drug Discovery, 2023, 22, 496-520.	21.5	31

#	Article	IF	CITATIONS
422	Brain Pathology in COVID-19: Clinical Manifestations and Potential Mechanisms. Neuroscience Bulletin, 2024, 40, 383-400.	1.5	0
423	Diagnosis, treatment and prevention of severe acute respiratory syndrome coronavirus 2 infection in children: experts' consensus statement updated for the Omicron variant. World Journal of Pediatrics, 2024, 20, 272-286.	0.8	0
458	γδT cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	7
478	Coronavirus and the Cytoskeleton of Virus-Infected Cells. Sub-Cellular Biochemistry, 2023, , 333-364.	1.0	0
479	Microfluidic-assisted single-cell RNA sequencing facilitates the development of neutralizing monoclonal antibodies against SARS-CoV-2. Lab on A Chip, 2024, 24, 642-657.	3.1	0
484	Multimodal-AIR-BERT: A Multimodal Pre-trained Model for Antigen Specificity Prediction in Adaptive Immune Receptors. , 2023, , .		0
485	Identification of Single-Cell RNA Sequencing Molecular Signatures for COVID-19 Infection Severity Classification. , 2023, , .		0
506	Cytometry in High-Containment Laboratories. Methods in Molecular Biology, 2024, , 425-456.	0.4	Ο