Soft Materials by Design: Unconventional Polymer Network

Chemical Reviews 121, 4309-4372

DOI: 10.1021/acs.chemrev.0c01088

Citation Report

#	Article	IF	CITATIONS
1	Soft Wearable Healthcare Materials and Devices. Advanced Healthcare Materials, 2021, 10, e2100577.	3.9	71
2	Binary Biocompatible CNC–Gelatine Hydrogel as 3D Scaffolds Suitable for Cell Culture Adhesion and Growth. Applied Nano, 2021, 2, 118-127.	0.9	3
3	Microneedle-Based Potentiometric Sensing System for Continuous Monitoring of Multiple Electrolytes in Skin Interstitial Fluids. ACS Sensors, 2021, 6, 2181-2190.	4.0	45
4	Soft-fiber-reinforced tough and fatigue resistant hydrogels. Matter, 2021, 4, 1755-1757.	5.0	13
5	Plastic-Like Supramolecular Hydrogels with Polyelectrolyte/Surfactant Complexes as Physical Cross-links. Macromolecules, 2021, 54, 8052-8066.	2.2	25
6	Fabrication of Anisotropic Silk Fibroin-Cellulose Nanocrystals Cryogels with Tunable Mechanical Properties, Rapid Swelling, and Structural Recoverability via a Directional-Freezing Strategy. ACS Sustainable Chemistry and Engineering, 2021, 9, 12274-12285.	3.2	16
7	Wearable Biofuel Cells: Advances from Fabrication to Application. Advanced Functional Materials, 2021, 31, 2103976.	7.8	38
8	Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. IScience, 2021, 24, 103174.	1.9	103
9	Engineering Tough Metallosupramolecular Hydrogel Films with Kirigami Structures for Compliant Soft Electronics. Small, 2021, 17, e2103836.	5.2	75
10	Mechanically Robust Elastomers Enabled by a Facile Interfacial Interactionsâ€Driven Sacrificial Network. Macromolecular Rapid Communications, 2021, 42, e2100509.	2.0	9
11	Freezing of meat and aquatic food: Underlying mechanisms and implications on protein oxidation. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5548-5569.	5.9	55
12	Integration of sensing and shape-deforming capabilities for a bioinspired soft robot. Composites Part B: Engineering, 2021, 223, 109116.	5.9	31
13	Preparation and property evaluation of biodegradable elastomeric PTMC/PLCL networks used as ureteral stents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127550.	2.3	7
14	Flexible, self-healable, adhesive and wearable hydrogel patch for colorimetric sweat detection. Journal of Materials Chemistry C, 2021, 9, 14938-14945.	2.7	65
15	Magnetocaloric actuation of soft polymer robots. Journal of Materials Chemistry C, O, , .	2.7	7
16	Mussel-inspired dual-crosslinked polyamidoxime photothermal hydrogel with enhanced mechanical strength for highly efficient and selective uranium extraction from seawater. Chemical Engineering Journal, 2022, 430, 133182.	6.6	30
17	Molecularly Engineered Zwitterionic Hydrogels with High Toughness and Self-Healing Capacity for Soft Electronics Applications. Chemistry of Materials, 2021, 33, 8418-8429.	3.2	85
18	A Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Energy-Harvesting Soft Actuator with Self-Powered Humidity Sensing and Real-Time Motion Tracking Capability. ACS Nano, 2021, 15, 16811-16818.	7.3	74

ATION REDO

#	Article	IF	CITATIONS
19	Construction and Properties of Doubleâ€Crosslinked Hydrogels Based on Host–Guest Interactions/UV Polymerization. Macromolecular Materials and Engineering, 2021, 306, 2100588.	1.7	5
20	The shape – morphing performance of magnetoactive soft materials. Materials and Design, 2021, 211, 110172.	3.3	94
21	Revisiting the Origins of the Fracture Energy of Tough Double-Network Hydrogels with Quantitative Mechanochemical Characterization of the Damage Zone. Macromolecules, 2021, 54, 10331-10339.	2.2	22
22	Bio-inspired 3D printing of self-growing multinetwork elastomer composites. Composite Structures, 2022, 279, 114777.	3.1	2
23	Solid–Liquid–Vapor Triphase Gel. Langmuir, 2021, 37, 13501-13511.	1.6	4
24	High-tough hydrogels formed via Schiff base reaction between PAMAM dendrimer and Tetra-PEG and their potential as dual-function delivery systems. Materials Today Communications, 2022, 30, 103019.	0.9	7
25	Review of Flexible Actuators Based on Intelligent Materials. Advances in Astronautics Science and Technology, 2021, 4, 157-171.	0.5	2
26	Shaping the future of robotics through materials innovation. Nature Materials, 2021, 20, 1582-1587.	13.3	65
27	Injectable, Poreâ€Forming, Perfusable Doubleâ€Network Hydrogels Resilient to Extreme Biomechanical Stimulations. Advanced Science, 2022, 9, e2102627.	5.6	28
28	A highly resilient and <scp>ultraâ€sensitive</scp> hydrogel for wearable sensors. Journal of Applied Polymer Science, 2022, 139, 51925.	1.3	11
29	Adhesive anastomosis for organ transplantation. Bioactive Materials, 2022, 13, 260-268.	8.6	16
30	Skin-Inspired Healable Conductive Elastomers with Exceptional Strain-Adaptive Stiffening and Damage Tolerance. Macromolecules, 2021, 54, 10767-10775.	2.2	42
31	A Review on Tough Soft Composites at Different Length Scales. Textiles, 2021, 1, 513-533.	1.8	2
32	Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. Advanced Materials, 2022, 34, e2106787.	11.1	44
33	Rate-Dependent Damage Mechanics of Polymer Networks with Reversible Bonds. Macromolecules, 2021, 54, 10801-10813.	2.2	20
34	Strong and tough cellulose–graphene oxide composite hydrogels by multi-modulus components strategy as photothermal antibacterial platform. Chemical Engineering Journal, 2022, 431, 133964.	6.6	24
35	Preparation of Tris-Tetrazole-Based Metallogels and Stabilization of Silver Nanoparticles: Studies on Reduction Catalysis and Self-Healing Property. ACS Applied Materials & Interfaces, 2021, 13, 59567-59579.	4.0	15
36	Tough, Transparent, 3Dâ€Printable, and Selfâ€Healing Poly(ethylene glycol)â€Gel (PEGgel). Advanced Materials, 2022, 34, e2107791.	11.1	55

#	Article	IF	CITATIONS
37	Injectable Doubleâ€Crosslinked Adhesive Hydrogels with High Mechanical Resilience and Effective Energy Dissipation for Joint Wound Treatment. Advanced Functional Materials, 2022, 32, 2109687.	7.8	81
38	Design principles for creating synthetic underwater adhesives. Chemical Society Reviews, 2021, 50, 13321-13345.	18.7	57
39	Application of Nanomaterial in Hydrogels Related to Wound Healing. Journal of Nanomaterials, 2022, 2022, 1-11.	1.5	15
40	Highly Durable and Tough Liquid Crystal Elastomers. ACS Applied Materials & Interfaces, 2022, 14, 2006-2014.	4.0	13
41	Recent Advances in Zwitterionic Hydrogels: Preparation, Property, and Biomedical Application. Gels, 2022, 8, 46.	2.1	45
42	Synergic influences of network topologies and associative interactions on the microstructures and bulk performances of hydrogels. Journal of Materials Chemistry B, 2021, 9, 9863-9873.	2.9	10
43	3D printing of transparent pH-mediated high-water-content hydrogels for electromagnetic interference (EMI) shielding. , 2021, , .		0
44	Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chemical Reviews, 2022, 122, 5604-5640.	23.0	238
45	Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioactive Materials, 2022, 17, 81-108.	8.6	30
46	Fracture and fatigue of entangled and unentangled polymer networks. Extreme Mechanics Letters, 2022, 51, 101608.	2.0	29
47	Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-evasive contact with brain tissue. Matter, 2022, 5, 1204-1223.	5.0	72
48	Iron(<scp>iii</scp>)-cross-linked alginate hydrogels: a critical review. Materials Advances, 2022, 3, 1849-1873.	2.6	48
49	Magnetic soft continuum robots with contact forces. Extreme Mechanics Letters, 2022, 51, 101604.	2.0	22
50	3D Printing Tannic Acidâ€Based Gels via Digital Light Processing. Macromolecular Bioscience, 2022, 22, e2100455.	2.1	10
52	An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties, to Functional Applications. Macromolecular Rapid Communications, 2022, 43, e2100785.	2.0	36
53	Interpenetrating polymer network hydrogels using natural based dyes initiating systems: Antibacterial activity and 3D/4D performance. European Polymer Journal, 2022, 166, 111042.	2.6	29
54	Ratiometric Flapping Force Probe That Works in Polymer Gels. Journal of the American Chemical Society, 2022, 144, 2804-2815.	6.6	48
55	Magnetic Soft Materials and Robots. Chemical Reviews, 2022, 122, 5317-5364.	23.0	249

#	Article	IF	CITATIONS
56	Human motion-driven self-powered stretchable sensing platform based on laser-induced graphene foams. Applied Physics Reviews, 2022, 9, .	5.5	77
57	3D-printed high-toughness double network hydrogels via digital light processing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128329.	2.3	6
58	Graphene-based hydrogel with embedded gold nanoparticles as a recyclable catalyst for the degradation of 4-nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128410.	2.3	5
59	Bioinspired Design of a Cartilage-like Lubricated Composite with Mechanical Robustness. ACS Applied Materials & Interfaces, 2022, 14, 9899-9908.	4.0	28
60	From micelle-like aggregates to extremely-stretchable, fatigue-resistant, highly-resilient and self-healable hydrogels. European Polymer Journal, 2022, 167, 111047.	2.6	10
61	Protein Oxidation in Muscle Foods: A Comprehensive Review. Antioxidants, 2022, 11, 60.	2.2	97
62	Mechanical reinforcement of granular hydrogels. Chemical Science, 2022, 13, 3082-3093.	3.7	27
63	Deformable, sensible, and reconfigurable microgels with structural color: potential as camouflage soft microrobots. Journal of Materials Chemistry C, 2022, 10, 5070-5078.	2.7	2
64	Facile preparation of a thermosensitive and antibiofouling physically crosslinked hydrogel/powder for wound healing. Journal of Materials Chemistry B, 2022, 10, 2215-2229.	2.9	24
65	Coordination Geometry in Metallo-Supramolecular Polymer Networks. SSRN Electronic Journal, 0, , .	0.4	1
66	Fabrication and mechanical properties of knitted dissimilar polymeric materials with movable cross-links. Molecular Systems Design and Engineering, 2022, 7, 733-745.	1.7	8
67	Tough, Instant, and Repeatable Adhesion of Selfâ€Healable Elastomers to Diverse Soft and Hard Surfaces. Advanced Science, 2022, 9, e2105742.	5.6	24
68	Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Materials, 2022, 14, .	3.8	33
69	Flexible and wearable strain sensors based on conductive hydrogels. Journal of Polymer Science, 2022, 60, 2663-2678.	2.0	45
70	Toughness and elasticity from phase separation. Nature Materials, 2022, 21, 266-268.	13.3	2
71	A versatile hydrogel network–repairing strategy achieved by the covalent-like hydrogen bond interaction. Science Advances, 2022, 8, eabl5066.	4.7	96
72	Ultrastretchable Luminescent Nanocomposite Hydrogel with Self-Healing Behavior. ACS Applied Polymer Materials, 2022, 4, 2329-2336.	2.0	9
73	Multifunctional Hydrogel Hybridâ€Gated Organic Photoelectrochemical Transistor for Biosensing. Advanced Functional Materials, 2022, 32, .	7.8	40

#	Article	IF	CITATIONS
74	Analyzing the Water Confined in Hydrogel Using Near-Infrared Spectroscopy. Applied Spectroscopy, 2022, 76, 773-782.	1.2	5
75	Polymer Structure Predictor (PSP): A Python Toolkit for Predicting Atomic-Level Structural Models for a Range of Polymer Geometries. Journal of Chemical Theory and Computation, 2022, 18, 2737-2748.	2.3	7
77	3D-Printed Hydrogels in Orthopedics: Developments, Limitations, and Perspectives. Frontiers in Bioengineering and Biotechnology, 2022, 10, 845342.	2.0	9
78	ECM-inspired peptide dendrimer microgels with human MSCs encapsulation for systemic lupus erythematosus treatment. Nano Today, 2022, 43, 101454.	6.2	4
79	Strong and Elastic Chitosan/Silk Fibroin Hydrogels Incorporated with Growth-Factor-Loaded Microspheres for Cartilage Tissue Engineering. Biomimetics, 2022, 7, 41.	1.5	12
80	A Facile Approach for Anisotropic Hydrogel with Lightâ€Regulated Stiffness and Its Application to Achieve Mechanical Toughening. Macromolecular Rapid Communications, 2022, 43, e2200077.	2.0	3
81	Natural extracts-meditated efficient and electrically responsive bioglues. Extreme Mechanics Letters, 2022, 53, 101687.	2.0	1
82	Biodegradable carboxymethyl chitin-based hemostatic sponges with high strength and shape memory for non-compressible hemorrhage. Carbohydrate Polymers, 2022, 288, 119369.	5.1	22
83	Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment. Bioactive Materials, 2022, 15, 194-202.	8.6	24
84	Hierarchical Multiscale Hydrogels with Identical Compositions Yet Disparate Properties via Tunable Phase Separation. Advanced Functional Materials, 2022, 32, .	7.8	17
85	Multifunctional Singleâ€Component Polypeptide Hydrogels: The Gelation Mechanism, Superior Biocompatibility, High Performance Hemostasis, and Scarless Wound Healing. Advanced Healthcare Materials, 2022, 11, e2101809.	3.9	19
86	High-Performance Gel Polymer Electrolyte with Self-Healing Capability for Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 5267-5276.	2.5	14
87	Plant-inspired conductive adhesive organohydrogel with extreme environmental tolerance as a wearable dressing for multifunctional sensors. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112509.	2.5	22
88	Macroscale double networks: highly dissipative soft composites. Polymer Journal, 2022, 54, 943-955.	1.3	4
89	Recent Advances in Design Strategies of Tough Hydrogels. Macromolecular Rapid Communications, 2022, 43, e2200075.	2.0	24
90	How a Gel Can Protect an Egg: A Flexible Hydrogel with Embedded Starch Particles Shields Fragile Objects Against Impact. ACS Applied Materials & Interfaces, 2022, 14, 20014-20022.	4.0	6
91	Recent advances in 3D printing of tough hydrogels: A review. Composites Part B: Engineering, 2022, 238, 109895.	5.9	69
92	Methacrylated Bovine Serum Albumin and Tannic Acid Composite Materials for Three-Dimensional Printing Tough and Mechanically Functional Parts. ACS Applied Materials & Interfaces, 2022, 14, 21418-21425	4.0	9

#	Article	IF	CITATIONS
93	Bioactive hydrogels based on polysaccharides and peptides for soft tissue wound management. Journal of Materials Chemistry B, 2022, 10, 7148-7160.	2.9	13
94	Adhesive and Hydrophobic Bilayer Hydrogel Enabled Onâ€Skin Biosensors for Highâ€Fidelity Classification of Human Emotion. Advanced Functional Materials, 2022, 32, .	7.8	58
95	Superstretchable, yet stiff, fatigue-resistant ligament-like elastomers. Nature Communications, 2022, 13, 2279.	5.8	35
96	Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties. Chemical Research in Chinese Universities, 2022, 38, 653-670.	1.3	5
97	On the gelation of Premna microphylla turcz extracts: The effects of supernatant and precipitate of plant ash suspension. Food Research International, 2022, 156, 111316.	2.9	4
98	Advances in Regenerative Sports Medicine Research. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	3
99	Strong and Tough Conductive Organoâ€Hydrogels via Freeze asting Assisted Solution Substitution. Advanced Functional Materials, 2022, 32, .	7.8	57
100	DNA Hydrogels in the Perspective of Mechanical Properties. Macromolecular Rapid Communications, 2022, 43, e2200281.	2.0	7
101	Ti ₂ C ₃ T _{<i>x</i>} /Polyurethane Constructed by Gas–Liquid Interface Self-Assembly for Underwater Sensing. ACS Applied Materials & Interfaces, 2022, 14, 24659-24667.	4.0	8
102	Engineered Tough Silk Hydrogels through Assembling β-Sheet Rich Nanofibers Based on a Solvent Replacement Strategy. ACS Nano, 2022, 16, 10209-10218.	7.3	23
103	Structure–property correlation of crosslinked domain hydrogels exhibiting thermoresponsive mechanical toughening and hybridization with photoluminescent carbon dots. Polymer Chemistry, 2022, 13, 3479-3488.	1.9	6
104	Adhesion mechanism and application progress of hydrogels. European Polymer Journal, 2022, 173, 111277.	2.6	28
105	A multiscale biomimetic strategy to design strong, tough hydrogels by tuning the self-assembly behavior of cellulose. Journal of Materials Chemistry A, 2022, 10, 13685-13696.	5.2	46
106	Hydrogels for Exosome Delivery in Biomedical Applications. Gels, 2022, 8, 328.	2.1	28
107	<scp>Energyâ€Ðissipative</scp> and Soften Resistant Hydrogels Based on Chitosan Physical Network: From Construction to Application. Chinese Journal of Chemistry, 2022, 40, 2118-2134.	2.6	11
108	Conductive Hydrogels with Ultrastretchability and Adhesiveness for Flame- and Cold-Tolerant Strain Sensors. ACS Applied Materials & amp; Interfaces, 2022, 14, 26088-26098.	4.0	24
109	Phase separation of chemically crosslinked poly(n-butyl methacrylate-co-methacrylic acid) in mixtures of N,N-dimethyl formamide and water. Polymer, 2022, , 125009.	1.8	0
110	Bio-inspired, super-stretchable and self-adhesive hybrid hydrogel with SC-PDA/GO-Ca2+/PAM framework for high precision wearable sensors. Chemical Engineering Journal, 2022, 447, 137259.	6.6	35

#	Article	IF	CITATIONS
111	Thermally induced self-rupture of a constrained liquid crystal elastomer. Engineering Fracture Mechanics, 2022, 269, 108584.	2.0	5
112	Shrinking rates of polymer gels composed of star-shaped polymers of <i>N</i> -isopropylacrylamide and dimethylacrylamide copolymers: the effect of dimethylacrylamide on the crosslinking network. Soft Matter, 2022, 18, 5204-5217.	1.2	3
113	Tough ion gels composed of coordinatively crosslinked polymer networks using ZIF-8 nanoparticles as multifunctional crosslinkers. Soft Matter, 2022, 18, 4725-4736.	1.2	6
114	Magnetoâ€Orientation of Magnetic Double Stacks for Patterned Anisotropic Hydrogels with Multiple Responses and Modulable Motions. Angewandte Chemie, 0, , .	1.6	2
115	Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers, 2022, 14, 2365.	2.0	28
116	Polymer-Network Toughening and Highly Sensitive Mechanochromism via a Dynamic Covalent Mechanophore and a Multinetwork Strategy. Macromolecules, 2022, 55, 5795-5802.	2.2	22
117	Magnetoâ€Orientation of Magnetic Double Stacks for Patterned Anisotropic Hydrogels with Multiple Responses and Modulable Motions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
118	Xyloglucan-cellulose nanocrystal-chitosan double network hydrogels for soft actuators. Carbohydrate Polymers, 2022, 293, 119753.	5.1	13
119	A skin-inspired biomimetic strategy to fabricate cellulose enhanced antibacterial hydrogels as strain sensors. Carbohydrate Polymers, 2022, 294, 119760.	5.1	23
120	A double-network strategy for the tough tissue adhesion of hydrogels with long-term stability under physiological environment. Soft Matter, 2022, 18, 6192-6199.	1.2	10
121	Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers. Nature Communications, 2022, 13, .	5.8	29
122	Coacervation-Based Method for Constructing a Multifunctional Strain-Stiffening Crystalline Polyvinylamine Hydrogel. ACS Applied Materials & Interfaces, 2022, 14, 31354-31362.	4.0	10
123	In Situ Variation of Interpenetrating Polymer Network Topology using a Photolabile Connector. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1317-1322.	2.0	2
124	Significant Interfacial Dielectric Relaxation of Covalently Bonded Ice-Hydrogels. Gels, 2022, 8, 409.	2.1	1
125	Progress in the mechanical enhancement of hydrogels: Fabrication strategies and underlying mechanisms. Journal of Polymer Science, 2022, 60, 2525-2542.	2.0	45
126	Anti-Fouling Performance of Hydrophobic Hydrogels with Unique Surface Hydrophobicity and Nanoarchitectonics. Gels, 2022, 8, 407.	2.1	8
127	Digital Light Processing 3D Printing of Tough Supramolecular Hydrogels with Sophisticated Architectures as Impactâ€Absorption Elements. Advanced Materials, 2022, 34, .	11.1	46
128	Robust Hydrogel Adhesion by Harnessing Bioinspired Interfacial Mineralization. Small, 2022, 18, .	5.2	19

ARTICLE IF CITATIONS # Design of lightweight and ultrastrong nanoarchitected carbon by a coarse-grained model. 129 3.8 1 Composites Part A: Applied Science and Manufacturing, 2022, 161, 107066. Brush-Modified Hydrogels: Preparations, Properties, and Applications. Chemistry of Materials, 2022, 3.2 34, 6210-6231. Polymerization-Induced Self-Assembly Toward Micelle-Crosslinked Tough and Ultrastretchable 131 3.2 19 Hydrogels. Chemistry of Materials, 2022, 34, 6408-6419. $\hat{a} \in \infty$ Integrated Interlocking $\hat{a} \in \mathbf{a}$ rchitecture improving cycle stability of supercapacitors based on Self-Supporting electrodes. Chemical Engineering Journal, 2022, 450, 137918. Exploiting CMC@Fe₃O₄ nanoparticles as a multi-functional component for 133 1.3 2 hydrogel fabrication. Journal Physics D: Applied Physics, 2022, 55, 404002. User Guide to Ring-Opening Metathesis Polymerization of <i>endo</i>-Norbornene Monomers with Chelated Initiators. Macromolecules, 2022, 55, 6671-6679. 2.2 A facile strategy to construct biocompatible poly(vinyl alcohol)-based self-healing hydrogels. Soft 135 1.2 3 Matter, 0, , . Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric 5.8 39 nanofibers. Nature Communications, 2022, 13, . Interfacial Coordination Interaction Enables Soft Elastomer Composites High Thermal Conductivity 137 4.0 15 and High Toughness. ACS Applied Materials & amp; Interfaces, 2022, 14, 33912-33921. Supramolecular Polymer Networks of Ion-Coordinated Polybenzimidazole with Simultaneously Improved H₂ Permeability and H₂/CO₂ Selectivity. 2.2 Macromolecules, 2022, 55, 6901-6910. Highly Resilient Dual-Crosslinked Hydrogel Adhesives Based on a Dopamine-Modified Crosslinker. ACS 139 22 4.0Applied Materials & amp; Interfaces, 2022, 14, 36304-36314. Successive Redoxâ€Reactionâ€Triggered Interface Radical Polymerization for Growing Hydrogel Coatings on Diverse Substrates. Angewandte Chemie - International Edition, 2022, 61, . Highly Stretchable, Soft, and Clear Viscoelastic Film with Good Recoverability for Flexible Display. 141 4.0 11 ACS Applied Materials & amp; Interfaces, 2022, 14, 38398-38408. Successive Redoxâ€Reactionâ€Triggered Interface Radical Polymerization for Growing Hydrogel Coatings 142 1.6 on Diverse Substrates. Angewandte Chemie, 2022, 134, . Unbreakable Hydrogels with Selfâ€Recoverable 10†200% Stretchability. Advanced Materials, 2022, 34, . 143 11.1 22 Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to 144 interfaces. Advances in Colloid and Interface Science, 2022, 308, 102749. Coordination geometry in metallo-supramolecular polymer networks. Coordination Chemistry 145 9.5 19 Reviews, 2022, 471, 214733. H2O2-activated in situ polymerization of aniline derivative in hydrogel for real-time monitoring and 146 inhibition of wound bacterial infection. Biomaterials, 2022, 289, 121798.

#	Article	IF	CITATIONS
147	Thermodynamics incompatibility-driven covalent crosslinking network in situ phase separation from biomimetic design. Polymer, 2022, 258, 125335.	1.8	0
148	Biodegradable alginate-based sponge with antibacterial and shape memory properties for penetrating wound hemostasis. Composites Part B: Engineering, 2022, 247, 110263.	5.9	23
149	Multi-scale instrumented indentation of hydrogels. , 2022, , 91-118.		1
150	A bio-inspired, ultra-tough, high-sensitivity, and anti-swelling conductive hydrogel strain sensor for motion detection and information transmission. Materials Horizons, 2022, 9, 3057-3069.	6.4	40
151	3D Printing of PEDOT:PSS-PU-PAA Hydrogels with Excellent Mechanical and Electrical Performance for EMG Electrodes. Lecture Notes in Computer Science, 2022, , 295-304.	1.0	1
152	Multi-energy dissipation mechanisms in supramolecular hydrogels with fast and slow relaxation modes. Soft Matter, 2022, 18, 7369-7379.	1.2	1
153	Highly Sensitive Piezoresistive Pressure Sensor Based on Micropyramid Patterned Tough Hydrogel. SSRN Electronic Journal, 0, , .	0.4	0
154	Biomaterials to promote vascularization in tissue engineering organs and ischemic fibrotic diseases. , 2022, 1, .		2
155	Fast roomâ€ŧemperature selfâ€healing vitrimers enabled by accelerated associative exchange kinetics. Chemical Engineering Journal, 2023, 452, 139452.	6.6	7
156	Mechanism of temperature-induced asymmetric swelling and shrinking kinetics in self-healing hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119,	3.3	17
158	Strong Silk Fibroin/PVA/Chitosan Hydrogels with High Water Content Inspired by Straw Rammed Earth Brick Structures. ACS Sustainable Chemistry and Engineering, 2022, 10, 13070-13080.	3.2	8
159	Recent Trends in Senseâ€andâ€Release Platforms Employing Electrochemicallyâ€Triggered Payload (Drugs) Release – a Review. ChemElectroChem, 0, , .	1.7	0
160	Influence of the <i>\hat{l}+</i> -Methyl Group on Elastic-To-Glassy Transition of Supramolecular Hydrogels with Hydrogen-Bond Associations. Macromolecules, 2022, 55, 7512-7525.	2.2	29
161	Synergy of Host–Guest and Cationâ^'ï€ Interactions for an Ultrastretchable, pH-Tunable, Surface-Adaptive, and Salt-Resistant Hydrogel Adhesive. Chemistry of Materials, 2022, 34, 8740-8748.	3.2	12
162	Regulation of the Inevitable Water-Responsivity of Silk Fibroin Biopolymer by Polar Amino Acid Activation. ACS Nano, 2022, 16, 17274-17288.	7.3	1
163	Mucosa-interfacing electronics. Nature Reviews Materials, 2022, 7, 908-925.	23.3	35
164	Bioinspired Injectable Self-Healing Hydrogel Sealant with Fault-Tolerant and Repeated Thermo-Responsive Adhesion for Sutureless Post-Wound-Closure and Wound Healing. Nano-Micro Letters, 2022, 14, .	14.4	101
165	Biomaterials for <i>Helicobacter pylori</i> therapy: therapeutic potential and future perspectives. Gut Microbes, 2022, 14, .	4.3	14

#	Article	IF	CITATIONS
166	Preparation, Characterization, and Properties of Chitosanâ€Based Semiâ€Interpenetrating Polymer Networks and Poly(2â€hydroxyethyl methacrylate) Structure. Macromolecular Chemistry and Physics, 0, , 2200282.	1.1	1
167	A Shapable Alginate Hydrogel Resolving the Conflicts between Multifunctionality and Fabrication Simplicity. ACS Applied Materials & amp; Interfaces, 2022, 14, 47014-47024.	4.0	0
168	Fracture tolerance induced by dynamic bonds in hydrogels. Journal of the Mechanics and Physics of Solids, 2022, 169, 105083.	2.3	6
169	Crystalline micro-nanoparticles enhance cross-linked hydrogels via a confined assembly of chitosan and γ-cyclodextrin. Carbohydrate Polymers, 2022, 298, 120145.	5.1	7
170	Characterization of fracture toughness and damage zone of double network hydrogels. Journal of the Mechanics and Physics of Solids, 2022, 169, 105090.	2.3	25
171	Cooperation of Zr(<scp>iv</scp>)–N and Zr(<scp>iv</scp>)–O coordinate bonds of Zr(<scp>iv</scp>)–amide ensures the transparent and tough polyacrylamide hydrogels. Journal of Materials Chemistry B, 2022, 10, 9258-9265.	2.9	3
172	Polymeric multimaterials by photochemical patterning of crystallinity. Science, 2022, 378, 211-215.	6.0	21
173	Double-Action Disinfection with Silk Fibroin Gauze: Reliable Therapeutics to Prevent Infectious Complications. , 2022, 4, 2219-2232.		2
174	Mechanically Ultraâ€Robust, Elastic, Conductive, and Multifunctional Hybrid Hydrogel for a Triboelectric Nanogenerator and Flexible/Wearable Sensor. Small, 2022, 18, .	5.2	33
175	Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh–molecular weight polymers. Science Advances, 2022, 8, .	4.7	26
176	Hydrogel interfaces for merging humans and machines. Nature Reviews Materials, 2022, 7, 935-952.	23.3	153
177	Poly(N-vinylpyrrolidone)–Laponite XLG Nanocomposite Hydrogels: Characterization, Properties and Comparison with Divinyl Monomer-Crosslinked Hydrogels. Polymers, 2022, 14, 4216.	2.0	7
178	Enhance Fracture Toughness and Fatigue Resistance of Hydrogels by Reversible Alignment of Nanofibers. ACS Applied Materials & Interfaces, 2022, 14, 49389-49397.	4.0	10
179	Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels. Science Advances, 2022, 8, .	4.7	50
180	Ultrathin Hydrogel Films toward Breathable Skinâ€Integrated Electronics. Advanced Materials, 2023, 35,	11.1	66
181	Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS Nano, 2022, 16, 17613-17640.	7.3	15
182	A Phase Field Model for the Damage and Fracture of Multiple Network Elastomers. Journal of Applied Mechanics, Transactions ASME, 2023, 90, .	1.1	1
183	Equilibration dynamics of a dynamic covalent network diluted in a metallosupramolecular polymer matrix. Journal of Rheology, 2022, 66, 1349-1364.	1.3	2

#	Article	IF	CITATIONS
184	Soft Composite Gels with High Toughness and Low Thermal Resistance through Lengthening Polymer Strands and Controlling Filler. Advanced Functional Materials, 2023, 33, .	7.8	11
185	Significant Roles of Ions in Enhancing and Functionalizing Anisotropic Hydrogels. ACS Applied Materials & Interfaces, 2022, 14, 51318-51328.	4.0	4
186	How double dynamics affects the large deformation and fracture behaviors of soft materials. Journal of Rheology, 2022, 66, 1093-1111.	1.3	5
187	One-step Method to Fabricate Poly(ethylene terephthalate)/Gd(OH)3 Magnetic Nanofibers Towards MRI-active Materials with High T1 Relaxivity and Long-term Visibility. Giant, 2022, 12, 100121.	2.5	3
188	Biomimetic supramolecular polyurethane with sliding polyrotaxane and disulfide bonds for strain sensors with wide sensing range and self-healing capability. Journal of Colloid and Interface Science, 2023, 630, 909-920.	5.0	15
189	One-step preparation of highly viscoelastic, stretchable, antibacterial, biocompatible, wearable, conductive composite hydrogel with extensive adhesion. Composites Science and Technology, 2023, 231, 109793.	3.8	14
190	Photothermal regulated multi-perceptive poly(ionic liquids) hydrogel sensor for bioelectronics. Chemical Engineering Journal, 2023, 453, 139785.	6.6	25
191	Large amplitude oscillatory shear behavior of thermoresponsive hydrogels: Single versus double network. Journal of Rheology, 2023, 67, 15-33.	1.3	4
192	Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions. Nature Communications, 2022, 13, .	5.8	49
193	Adaptable thermal conductive, high toughness and compliant Poly(dimethylsiloxane) elastomer composites based on interfacial coordination bonds. Composites Science and Technology, 2023, 231, 109840.	3.8	7
194	Self-growing nano-liquid-crystal film from dynamic swollen hydrogel substrates. Physical Review E, 2022, 106, .	0.8	1
195	Recent advances in regenerative biomaterials. Regenerative Biomaterials, 2022, 9, .	2.4	54
196	Photocurable 3D printing gels with dual networks for high-sensitivity wearable sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 659, 130828.	2.3	5
197	Synthesis of cellulose nanofiber/polysiloxane-polyurea composite materials with self-healing and reprocessing properties. International Journal of Biological Macromolecules, 2023, 227, 203-213.	3.6	2
198	Fabricated technology of biomedical micro-nano hydrogel. , 2023, 2, 31-48.		17
199	A Polyvinyl Alcohol–Tannic Acid Gel with Exceptional Mechanical Properties and Ultraviolet Resistance. Gels, 2022, 8, 751.	2.1	4
200	Elastic electronics based on micromesh-structured rubbery semiconductor films. Nature Electronics, 2022, 5, 881-892.	13.1	18
201	Machine-Learning Assisted Handwriting Recognition Using Graphene Oxide-Based Hydrogel. ACS Applied Materials & Interfaces, 2022, 14, 54276-54286.	4.0	3

#	Article	IF	CITATIONS
202	Alternating Growth for InSitu Postâ€Programing Hydrogels' Sizes and Performance. Advanced Functional Materials, 2023, 33, .	7.8	8
203	Functional Tough Hydrogels: Design, Processing, and Biomedical Applications. Accounts of Materials Research, 2023, 4, 101-114.	5.9	23
204	A Universal and Simple Method to Obtain Hydrogels with Combined Extreme Mechanical Properties and Their Application as Tendon Substitutes. ACS Applied Materials & Interfaces, 2022, 14, 54215-54224.	4.0	3
205	Roadmap to Design Mechanically Robust Copolymer Hydrogels Naturally Cross-Linked by Hydrogen Bonds. Macromolecules, 2022, 55, 10576-10589.	2.2	1
206	Programming material properties by tuning intermolecular bonding. Journal of Applied Physics, 2022, 132, .	1.1	5
207	Ultrastretchable Composite Organohydrogels with Dual Cross-Links Enabling Multimodal Sensing. ACS Applied Materials & Interfaces, 2022, 14, 55143-55154.	4.0	13
208	A Self-Forming Hydrogel from a Bactericidal Copolymer: Synthesis, Characterization, Biological Evaluations and Perspective Applications. International Journal of Molecular Sciences, 2022, 23, 15092.	1.8	2
209	Thermoresponsive Self-Healing Zwitterionic Hydrogel as an In Situ Gelling Wound Dressing for Rapid Wound Healing. ACS Applied Materials & Interfaces, 2022, 14, 55342-55353.	4.0	19
210	Swellingâ€induced Mechanochromism in Multinetwork Polymers. Angewandte Chemie, 0, , .	1.6	1
211	Swellingâ€induced Mechanochromism in Multinetwork Polymers. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
212	Manipulating Deposition Behavior by Polymer Hydrogel Electrolyte Enables Dendriteâ€Free Zinc Anode for Zincâ€Ion Hybrid Capacitors. Small Methods, 2023, 7, .	4.6	6
213	Effect of Salt on Dynamic Mechanical Behaviors of Polyampholyte Hydrogels. Macromolecules, 2023, 56, 535-544.	2.2	16
214	High-Performance Hydrogels via Alternate Compression–Decompression. Journal of Physical Chemistry C, 2022, 126, 21825-21832.	1.5	1
215	Strong and tough fibrous hydrogels reinforced by multiscale hierarchical structures with multimechanisms. Science Advances, 2023, 9, .	4.7	29
216	High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. Nano Research, 2023, 16, 3475-3515.	5.8	54
217	Engineering cohesion and adhesion through dynamic bonds for advanced adhesive materials. Canadian Journal of Chemical Engineering, 2023, 101, 4941-4954.	0.9	5
218	An all-cellulose sponge with a nanofiller-assisted hierarchical cellular structure for fruit maintaining freshness. International Journal of Biological Macromolecules, 2023, 225, 1361-1373.	3.6	1
219	A multistimuli-responsive fluorescent hydrogel based on a fluorescence response to macromolecular segmental motion. Nano Research, 2023, 16, 12098-12105.	5.8	2

#	Article	IF	CITATIONS
220	Tough hydrogel with high water content and ordered fibrous structures as an artificial human ligament. Materials Horizons, 2023, 10, 1012-1019.	6.4	17
221	Highly conductive and tough doubleâ€network hydrogels for smart electronics. SmartMat, 0, , .	6.4	6
222	Tough, anti-drying and thermoplastic hydrogels consisting of biofriendly resources for a wide linear range and fast response strain sensor. Journal of Materials Chemistry A, 2023, 11, 2002-2013.	5.2	18
223	Coordinatively Stiffen and Toughen Hydrogels with Adaptable Crystalâ€Đomain Cross‣inking. Advanced Materials, 2023, 35, .	11.1	23
224	Reinforced hydrogel network building by a rapid dual-photo-coupling reaction for 3D printing. Chemical Communications, 2023, 59, 1963-1966.	2.2	1
225	3D printing of graphene oxide/carbon nanotubes hydrogel circuits for multifunctional fire alarm and protection. Polymer Testing, 2023, 119, 107905.	2.3	9
226	Double-network hydrogels for biomaterials: Structure-property relationships and drug delivery. European Polymer Journal, 2023, 185, 111807.	2.6	4
227	Sensitive piezoresistive pressure sensor based on micropyramid patterned tough hydrogel. Applied Surface Science, 2023, 615, 156328.	3.1	14
228	ECMâ€Inspired Hydrogels with ADSCs Encapsulation for Rheumatoid Arthritis Treatment. Advanced Science, 2023, 10, .	5.6	8
229	Chargeâ€Transfer Polymeric Hydrogels with Selfâ€Healing, Injectable, Thermosensitive, Adhesive, and Antibacterial Properties for Diabetic Wound Healing. Advanced Materials Technologies, 2023, 8, .	3.0	5
230	Hydrogel-Encapsulated Engineered Microbial Consortium as a Photoautotrophic "Living Material―for Promoting Skin Wound Healing. ACS Applied Materials & Interfaces, 2023, 15, 6536-6547.	4.0	17
231	Binary Double Network-like Structure: An Effective Energy-Dissipation System for Strong Tough Hydrogel Design. Polymers, 2023, 15, 724.	2.0	2
232	Polymer Complex Fiber: Property, Functionality, and Applications. ACS Applied Materials & Interfaces, 2023, 15, 7639-7662.	4.0	10
233	Arrested Phase Separation Enables Highâ€Performance Keratoprostheses. Advanced Materials, 2023, 35, .	11.1	2
234	Multiway Softness Polyurethane Elastomeric Composite with Enhanced Thermal Conductivity and Application as Thermal Interface Materials. Advanced Materials Technologies, 2023, 8, .	3.0	2
235	High-temperature solvent-free synthesis of low-molecular-weight organogelators consisting of starch-derived 1,5-anhydro- <scp>d</scp> -glucitol coupled with fatty acids. RSC Advances, 2023, 13, 9316-9321.	1.7	1
236	A chitosan-based self-healing hydrogel for accelerating infected wound healing. Biomaterials Science, 2023, 11, 4226-4237.	2.6	10
237	Metal-Coordinated Dynamics and Viscoelastic Properties of Double-Network Hydrogels. Gels, 2023, 9, 145.	2.1	2

#	Article	IF	CITATIONS
238	Polyacrylamide-Chitosan based magnetic hydrogels with high stiffness and ultra-toughness. Composites Part A: Applied Science and Manufacturing, 2023, 168, 107478.	3.8	5
239	A statistical mechanics framework for polymer chain scission, based on the concepts of distorted bond potential and asymptotic matching. Journal of the Mechanics and Physics of Solids, 2023, 174, 105244.	2.3	4
240	Silicone-enhanced polyvinyl alcohol hydrogels for high performance wearable strain sensors. Materials and Design, 2023, 229, 111911.	3.3	12
241	Facile fabrication of self-healing, injectable and antimicrobial cationic guar gum hydrogel dressings driven by hydrogen bonds. Carbohydrate Polymers, 2023, 310, 120723.	5.1	22
242	Fatigue-resistant, single-phase stretchable materials via crack bridging. Composites Part B: Engineering, 2023, 259, 110728.	5.9	0
243	Polymer-based responsive structural color materials. Progress in Materials Science, 2023, 135, 101091.	16.0	32
244	Influence of the Degree of Swelling on the Stiffness and Toughness of Microgelâ€Reinforced Hydrogels. Macromolecular Rapid Communications, 2023, 44, .	2.0	4
245	Designing Hierarchical Soft Network Materials with Developable Lattice Nodes for High Stretchability. Advanced Science, 2023, 10, .	5.6	4
246	Engineering Hydrogels for Modulation of Dendritic Cell Function. Gels, 2023, 9, 116.	2.1	3
247	Peptideâ€Crosslinked, Highly Entangled Hydrogels with Excellent Mechanical Properties but Ultra‣ow Solid Content. Advanced Materials, 2023, 35, .	11.1	17
248	Recent Progress in Hydrogel-Based Synthetic Cartilage: Focus on Lubrication and Load-Bearing Capacities. Gels, 2023, 9, 144.	2.1	2
249	Network structure and viscoelastic behavior of high-strength crystal microphase crosslinking hydrogels analyzed from combined model. Journal of Molecular Liquids, 2023, 376, 121411.	2.3	1
250	Covalently Grafted Biomimetic Matrix Reconstructs the Regenerative Microenvironment of the Porous Gradient Polycaprolactone Scaffold to Accelerate Bone Remodeling. Small, 2023, 19, .	5.2	7
251	Soft, strong, tough, and durable protein-based fiber hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
252	Press-N-Go On-Skin Sensor with High Interfacial Toughness for Continuous Healthcare Monitoring. ACS Applied Materials & Interfaces, 2023, 15, 11379-11387.	4.0	5
253	Bergenia stracheyi extract-based hybrid hydrogels of biocompatible polymers with good adhesive, stretching, swelling, self-healing, antibacterial, and antioxidant properties. International Journal of Biological Macromolecules, 2023, 234, 123718.	3.6	7
254	Enhanced Rupture Force in a Cut-Dispersed Double-Network Hydrogel. Gels, 2023, 9, 158.	2.1	1
255	Using Wool Keratin as a Structural Biomaterial and Natural Mediator to Fabricate Biocompatible and Robust Bioelectronic Platforms. Advanced Science, 2023, 10, .	5.6	13

#	Article	IF	CITATIONS
256	Intrinsic Antiâ€Freezing and Unique Phosphorescence of Glassy Hydrogels with Ultrahigh Stiffness and Toughness at Low Temperatures. Advanced Materials, 2023, 35, .	11.1	24
257	Robust and healable poly(disulfides) supramolecular adhesives enabled by dynamic covalent adaptable networks and noncovalent hydrogen-bonding interactions. Chemical Engineering Journal, 2023, 461, 142066.	6.6	11
258	Thiol-ene-mediated degradable POSS-PEG/PEG hybrid hydrogels as potential cell scaffolds in tissue engineering. Polymer Degradation and Stability, 2023, 211, 110316.	2.7	0
259	Photochemically driven one-step triple dynamic network formation in printable tough hydrogel for self-healing tubular sensors. Polymer Chemistry, 2023, 14, 1536-1542.	1.9	0
260	Modulation of the Viscoelastic Response of Hydrogels with Supramolecular Bonds. Advanced Structured Materials, 2023, , 39-56.	0.3	0
261	Ultra-stretchable, high-adhesive, self-healable and remoldable hydrogel sensor with dynamic multi-interactions for multiscale motion detection, Braille transmission and temperature monitoring. Chemical Engineering Journal, 2023, 462, 142305.	6.6	13
262	Polymerizable rotaxane hydrogels for three-dimensional printing fabrication of wearable sensors. Nature Communications, 2023, 14, .	5.8	26
263	Modular Synthesis and Patterning of High-Stiffness Networks by Postpolymerization Functionalization with Iron–Catechol Complexes. Macromolecules, 2023, 56, 2268-2276.	2.2	4
264	Entanglement in Smart Hydrogels: Fast Response Time, Antiâ€Freezing and Antiâ€Drying. Advanced Functional Materials, 2023, 33, .	7.8	18
265	Soft Electronics for Health Monitoring Assisted by Machine Learning. Nano-Micro Letters, 2023, 15, .	14.4	23
266	<scp>3D</scp> printing flexible supercapacitors based on crosslinked poly (acrylic) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 3	42 Td (acidâ
267	Thermo-Responsive Injectable Hydrogels Formed by Self-Assembly of Alginate-Based Heterograft Copolymers. Gels, 2023, 9, 236.	2.1	5
268	Thermoplastic charge-transfer hydrogels for highly sensitive strain and temperature sensors. Journal of Materials Chemistry A, 2023, 11, 8320-8329.	5.2	4
269	Biomimetic Mineralization: From Microscopic to Macroscopic Materials and Their Biomedical Applications. ACS Applied Bio Materials, 2023, 6, 3516-3531.	2.3	13
270	Granular Ionogel Particle Inks for 3D Printed Tough and Stretchable Ionotronics. Research, 2023, 6, .	2.8	3
271	Strong and Tough Nanostructured Hydrogels and Organogels Prepared by Polymerizationâ€Induced Selfâ€Assembly. Small Methods, 2023, 7, .	4.6	4
272	Strong and Tough Cellulose Hydrogels via Solution Annealing and Dual Crossâ€Linking. Small, 2023, 19, .	5.2	5
273	Development of Polyurethane/Peptide-Based Carriers with Self-Healing Properties. Polymers, 2023, 15,	2.0	4

IF ARTICLE CITATIONS # Supramolecular Soft Material Enabled by Metal Coordination and Hydrogen Bonding: Stretchability, 274 5.2 7 Selfâ€Healing, Impact Resistance, 3D Printing, and Motion Monitoring. Small, 2023, 19, . An information encrypted heterogeneous hydrogel with programmable mechanical properties enabled 276 6.4 by 3D patterning. Materials Horizons, 2023, 10, 2667-2676. Soft, Strong, Tough, and Durable Bioâ€Hydrogels Via Maximizing Elastic Entropy. Advanced Functional 277 7.8 0 Materials, O,, . Better electronics from immiscibility. Nature Materials, 2023, 22, 801-802. 314 Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chemical 318 23.0 30 Reviews, 2023, 123, 9204-9264. Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chemical Society Reviews, 2023, 52, 6191-6220. 334 18.7 336 3D-printed PEDOT:PSS for soft robotics. Nature Reviews Materials, 2023, 8, 604-622. 23.3 22 Advanced biocompatible polymers for cartilage tissue engineering., 2024, , 525-550. 424 Versatile Hydrogels in Regenerative Medicine., 2023, , 61-166. 0 Fatigue-resistant Hydrogels. Chemical Research in Chinese Universities, 0, , . 1.3 426 Hydrogels for active photonics. Microsystems and Nanoengineering, 2024, 10, . 0 3.4 Thermo-growing ion clusters enabled healing strengthening and tough adhesion for highly reliable 6.4 skin electronics. Materials Horizons, 0, , .