Machine Learning Enabled Preamble Collision Resolution

IEEE Transactions on Communications 69, 2317-2330 DOI: 10.1109/tcomm.2021.3051202

Citation Report

#	Article	IF	CITATIONS
1	Power Allocation for Energy Efficiency Maximization in Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2021, 70, 10570-10579.	6.3	4
2	Channel Estimation Aware Performance Analysis for Massive MIMO With Rician Fading. IEEE Transactions on Communications, 2021, 69, 4373-4386.	7.8	8
3	Enabling Grant-Free URLLC: An Overview of Principle and Enhancements by Massive MIMO. IEEE Internet of Things Journal, 2022, 9, 384-400.	8.7	27
4	Multi-Satellite Cooperative Beamforming ALOHA for LEO Satellite IoT Networks. Frontiers in Space Technologies, 2021, 2, .	1.4	3
5	Cluster-Aided Collision Resolution Random Access in Distributed Massive MIMO Systems. IEEE Internet of Things Journal, 2022, 9, 11453-11463.	8.7	3
6	Outage capacity analysis of the massive MIMO diversity channel. Physical Communication, 2022, 53, 101683.	2.1	0
7	SIC Aided \$K\$-Repetition for Mission-Critical MTC in Cell-Free Massive MIMO. , 2021, , .		3
8	IIFNet: A Fusion-Based Intelligent Service for Noisy Preamble Detection in 6G. IEEE Network, 2022, 36, 48-54.	6.9	2
9	Spectral Efficiency of Unicast and Multigroup Multicast Transmission in Cell-Free Distributed Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2022, 71, 12826-12839.	6.3	2
10	Deep Neural Network-Aided Cross-Slot User Equipment Scheduling for Grant-Free Random Access. IEEE Internet of Things Journal, 2022, , 1-1.	8.7	0
11	Code-Domain Collision Resolution Grant-Free Random Access for Massive Access in IoT. IEEE Transactions on Wireless Communications, 2023, 22, 4611-4624.	9.2	1
12	A Survey on Machine Learning Techniques for Massive MIMO Configurations: Application Areas, Performance Limitations and Future Challenges. IEEE Access, 2023, 11, 67-88.	4.2	8
13	5G and 6G Wireless Communication. Advances in Wireless Technologies and Telecommunication Book Series, 2023, , 284-310.	0.4	0
14	An Asynchronous Collision-Tolerant ACRDA Scheme Based on Satellite-Selection Collaboration-Beamforming for LEO Satellite IoT Networks. Sensors, 2023, 23, 3549.	3.8	0
15	Low-Correlation Superimposed Pilot Grant-Free Massive Access for Satellite Internet of Things. IEEE Transactions on Communications, 2023, 71, 7087-7101.	7.8	0
16	Learning Based Preamble Collision Detection of Cellular Random Access by Physical Layer Features. , 2023, , .		0
17	Modeling and Throughput Optimization of Multi-Gateway LoRaWAN. IEEE Access, 2023, 11, 142940-142950.	4.2	0