Point-of-care diagnostics for infectious diseases: From

Nano Today 37, 101092

DOI: 10.1016/j.nantod.2021.101092

Citation Report

#	Article	IF	CITATIONS
1	Advances in Point-of-Care Testing Platforms for Diagnosis of Infectious Diseases. , 2021, , .		0
2	Biosensing Amplification by Hybridization Chain Reaction on Phase-Sensitive Surface Plasmon Resonance. Biosensors, 2021, 11, 75.	4.7	8
3	The role of 3D printing in the fight against COVID-19 outbreak. Journal of 3D Printing in Medicine, 2021, 5, 51-60.	2.0	20
4	A HiPAD Integrated with rGO/MWCNTs Nanoâ€Circuit Heater for Visual Pointâ€ofâ€Care Testing of SARSâ€CoVâ€2. Advanced Functional Materials, 2021, 31, 2100801.	14.9	20
5	3D Printed Bioelectronic Microwells. Advanced Functional Materials, 2021, 31, 2102459.	14.9	15
6	Public-Health-Driven Microfluidic Technologies: From Separation to Detection. Micromachines, 2021, 12, 391.	2.9	12
7	Ultrasensitive On-Field Luminescence Detection Using a Low-Cost Silicon Photomultiplier Device. Analytical Chemistry, 2021, 93, 7388-7393.	6.5	22
8	Impact of the COVID-19 pandemic on Molecular Diagnostics. Expert Review of Molecular Diagnostics, 2021, 21, 519-521.	3.1	3
9	Veteriner Mikrobiyolojide Hasta/Sürü Yanında Teşhis Yöntemleri. Harran Üniversitesi Veteriner Fakültesi Dergisi, 0, , .	0.3	0
10	Innovative method for the preparation of catalytic surfaces: The application of microorganisms for the deposition of nanoparticles on supports. Applied Surface Science, 2021, 553, 149573.	6.1	2
11	Development of a Sandwich Chemiluminescence Immunoassay for the Detection of Intact Procollagen Type I N Propeptide with Magnetic Nanosphere Carrier Technology. Journal of Biomedical Nanotechnology, 2021, 17, 1690-1698.	1.1	0
12	Aptamer-based diagnostic and therapeutic approaches in animals: Current potential and challenges. Saudi Journal of Biological Sciences, 2021, 28, 5081-5093.	3.8	9
13	Understanding complexities in the uptake of indigenously developed rapid point-of-care diagnostics for containment of antimicrobial resistance in India. BMJ Global Health, 2021, 6, e006628.	4.7	5
14	Applications of Aptamer-Bound Nanomaterials in Cancer Therapy. Biosensors, 2021, 11, 344.	4.7	19
15	Recent advances in point-of-care biosensors for the diagnosis of neglected tropical diseases. Sensors and Actuators B: Chemical, 2021, 349, 130821.	7.8	12
16	Integrated Microfluidic-Based Platforms for On-Site Detection and Quantification of Infectious Pathogens: Towards On-Site Medical Translation of SARS-CoV-2 Diagnostic Platforms. Micromachines, 2021, 12, 1079.	2.9	11
17	Multiplexed CRISPR/Cas9 quantifications based on bioinspired photonic barcodes. Nano Today, 2021, 40, 101268.	11.9	21
18	A high-specificity flap probe-based isothermal nucleic acid amplification method based on recombinant FEN1-Bst DNA polymerase. Biosensors and Bioelectronics, 2021, 192, 113503.	10.1	6

#	Article	IF	CITATIONS
19	Single-emission dual-enzyme magnetosensor for multiplex immunofluorometric assay of adulterated colorants in chili seasoning. Food Chemistry, 2022, 366, 130594.	8.2	8
20	Immunoassay of SARS-CoV-2 nucleocapsid proteins using novel red emission-enhanced carbon dot-based silica spheres. Analyst, The, 2021, 146, 5055-5060.	3.5	22
21	Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics, 2021, 11, 9133-9161.	10.0	30
22	Quality Management for Point-Of-Care Testing of Pathogen Nucleic Acids: Chinese Expert Consensus. Frontiers in Cellular and Infection Microbiology, 2021, 11, 755508.	3.9	8
23	A Portable RT-LAMP/CRISPR Machine for Rapid COVID-19 Screening. Biosensors, 2021, 11, 369.	4.7	17
24	Dendritic Silica Nanospheres Loaded with Redâ€Emissive Enhanced Carbon Dots for Zika Virus Immunoassay. ChemistrySelect, 2021, 6, 9787-9793.	1.5	4
25	Ultrasensitive Detection of SARS-CoV-2 Spike Proteins Using the Thio-NAD Cycling Reaction: A Preliminary Study before Clinical Trials. Microorganisms, 2021, 9, 2214.	3.6	8
26	Engineering Consideration for Emerging Essential Nucleic Acid Tests for Point-of-Care Diagnostics. Advances in Molecular Pathology, 2021, 4, 81-91.	0.4	0
27	Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science and Technology, 2021, 118, 658-678.	15.1	41
28	Nucleic Acids Analytical Methods for Viral Infection Diagnosis: State-of-the-Art and Future Perspectives. Biomolecules, 2021, 11, 1585.	4.0	11
29	Paper-Based Point-of-Care Testing of SARS-CoV-2. Frontiers in Bioengineering and Biotechnology, 2021, 9, 773304.	4.1	19
30	Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. Analytical Chemistry, 2022, 94, 26-40.	6.5	25
31	Diagnostic Modalities in Critical Care: Point-of-Care Approach. Diagnostics, 2021, 11, 2202.	2.6	23
32	A Smartphone Optical Device for Point-of-Care Testing of Glucose and Cholesterol Using Ag NPs/UiO-66-NH ₂ -Based Ratiometric Fluorescent Probe. Analytical Chemistry, 2021, 93, 16240-16247.	6.5	56
33	Current and Emerging Microfluidic-Based Integrated Solutions for Free Hemoglobin and Hemolysis Detection and Measurement. Analytical Chemistry, 2022, 94, 75-85.	6.5	3
34	Development of gold nanoparticle-based visual assay for rapid detection of Escherichia coli specific DNA in milk of cows affected with mastitis. LWT - Food Science and Technology, 2022, 155, 112901.	5.2	7
35	Combating Infectious Diseases with Synthetic Biology. ACS Synthetic Biology, 2022, , .	3.8	1
36	Challenges and opportunities in micro/nanofluidic and lab-on-a-chip. Progress in Molecular Biology and Translational Science, 2022, 186, 289-302.	1.7	4

3

#	ARTICLE	lF	CITATIONS
37	Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules, 2022, 27, 508.	3.8	12
38	Microfluidics based point-of-care for disease diagnostics. Progress in Molecular Biology and Translational Science, 2022, 187, 241-248.	1.7	2
39	A Standalone and Portable Microfluidic Imaging Detection System With Embedded Computing for Point-of-Care Diagnostics. IEEE Sensors Journal, 2022, 22, 6116-6123.	4.7	6
40	An all-in-one approach for self-powered sensing: A methanol fuel cell modified with a molecularly imprinted polymer for cancer biomarker detection. Journal of Electroanalytical Chemistry, 2022, 906, 116009.	3.8	9
41	Highly Sensitive Lanthanide-Doped Nanoparticles-Based Point-of-Care Diagnosis of Human Cardiac Troponin I. International Journal of Nanomedicine, 2022, Volume 17, 635-646.	6.7	9
42	Micro/nano biomedical devices for point-of-care diagnosis of infectious respiratory diseases. Medicine in Novel Technology and Devices, 2022, 14, 100116.	1.6	11
43	Detection of Pathogens Using Graphene Quantum Dots and Gold Nanoclusters on Paper-Based Analytical Devices. SSRN Electronic Journal, 0, , .	0.4	0
44	Increasing demand for point-of-care testing and the potential to incorporate the Internet of medical things in an integrated health management system. BioScience Trends, 2022, 16, 4-6.	3.4	8
45	The era of Cas12 and Cas13 CRISPR-based disease diagnosis. Critical Reviews in Microbiology, 2022, 48, 714-729.	6.1	17
46	Hydrophilic–Hydrophobic Nanohybrids of AuNP-Immobilized Two-Dimensional Nanomica Platelets as Flexible Substrates for High-Efficiency and High-Selectivity Surface-Enhanced Raman Scattering Microbe Detection. ACS Applied Bio Materials, 2022, 5, 1073-1083.	4.6	17
47	An improved nucleic acid sequence-based amplification method mediated by T4 gene 32 protein. PLoS ONE, 2022, 17, e0265391.	2.5	6
48	Microfluidic Platforms for the Production of Nanoparticles at Flow Rates Larger Than One Liter Per Hour. Advanced Materials Technologies, 2022, 7, .	5.8	6
49	Crossâ€Wavelength Hierarchical Metamaterials Enabled for Transâ€Scale Molecules Detection Simultaneously. Advanced Science, 2022, , 2105447.	11.2	5
50	Microfluidics-based strategies for molecular diagnostics of infectious diseases. Military Medical Research, 2022, 9, 11.	3.4	20
51	Effect of Graphene vs. Reduced Graphene Oxide in Gold Nanoparticles for Optical Biosensors—A Comparative Study. Biosensors, 2022, 12, 163.	4.7	10
52	Machine Learning Approaches to Identify Discriminative Signatures of Volatile Organic Compounds (VOCs) from Bacteria and Fungi Using SPME-DART-MS. Metabolites, 2022, 12, 232.	2.9	11
53	Biomarkers and biosensors for the diagnosis of noncompliant pH, dark cutting beef predisposition, and welfare in cattle. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2391-2432.	11.7	12
54	Voltammetric biosensor for coronavirus spike protein using magnetic bead and screen-printed electrode for point-of-care diagnostics. Mikrochimica Acta, 2022, 189, 168.	5.0	15

#	ARTICLE	IF	CITATIONS
55	Magnetic nanoparticles and magnetic particle spectroscopy-based bioassays: a 15 year recap. Nano Futures, 2022, 6, 022001.	2.2	16
56	Virus Detection: From Stateâ€ofâ€theâ€Art Laboratories to Smartphoneâ€Based Pointâ€ofâ€Care Testing. Advances. 2022, 9, e2105904.	ced 11.2	66
57	Ultrasensitive PCR-Free detection of whole virus genome by electrochemiluminescence. Biosensors and Bioelectronics, 2022, 209, 114165.	10.1	12
58	Pathogen detection on microfluidic platforms: Recent advances, challenges, and prospects. Biosensors and Bioelectronics: X, 2022, 10, 100134.	1.7	7
59	Quantitative detection of C-reactive protein in human saliva using an electrochemical lateral flow device. Biosensors and Bioelectronics: X, 2022, 10, 100136.	1.7	5
60	Detection of pathogens using graphene quantum dots and gold nanoclusters on paper-based analytical devices. Sensors and Actuators B: Chemical, 2022, 363, 131824.	7.8	7
61	Next generation point-of-care test for therapeutic drug monitoring of adalimumab in patients diagnosed with autoimmune diseases. Biosensors and Bioelectronics, 2022, 208, 114189.	10.1	17
62	Retroreflection-based optical biosensing: From concept to applications. Biosensors and Bioelectronics, 2022, 207, 114202.	10.1	9
63	Ultrahigh-Q Tunable Terahertz Absorber Based on Bulk Dirac Semimetal with Surface Lattice Resonance. Photonics, 2022, 9, 22.	2.0	9
64	A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. Nanomaterials, 2021, 11, 3432.	4.1	34
65	Photoâ€Adjustable TiO ₂ â€Paper as a Smart Substrate for Paperâ€Based Analytical Devices. Advanced Materials Interfaces, 2022, 9, .	3.7	4
67	Detection Limits of Immunoanalytical Systems: Limiting Factors and Methods of Reduction. Journal of Analytical Chemistry, 2022, 77, 391-401.	0.9	5
68	Nanoformulated Remdesivir with Extremely Low Content of Poly(2â€oxazoline)â€Based Stabilizer for Aerosol Treatment of COVIDâ€19. Macromolecular Bioscience, 2022, 22, e2200056.	4.1	6
69	High-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor. Sensors and Actuators B: Chemical, 2022, 365, 131974.	7.8	26
70	Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends in Food Science and Technology, 2022, 125, 200-235.	15.1	29
71	A new RT-LAMP-on-a-Chip Instrument for SARS-CoV-2 diagnostics. Microchemical Journal, 2022, 180, 107600.	4.5	8
72	Engineering light-initiated afterglow lateral flow immunoassay for infectious disease diagnostics. Biosensors and Bioelectronics, 2022, 212, 114411.	10.1	21
73	Dynamic Magneto-Agglutination BacteriaÂBiosensing. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
74	Current Advancements and Future Road Map to Develop ASSURED Microfluidic Biosensors for Infectious and Non-Infectious Diseases. Biosensors, 2022, 12, 357.	4.7	12
75	Overview on microfluidics devices for monitoring brain disorder biomarkers. TrAC - Trends in Analytical Chemistry, 2022, 155, 116693.	11.4	12
76	Transducer Technologies for Biosensors and Their Wearable Applications. Biosensors, 2022, 12, 385.	4.7	38
77	Magnetofluid-Integrated Multicolor Immunochip for Visual Analysis of Neutralizing Antibodies to SARS-CoV-2 Variants. Analytical Chemistry, 2022, 94, 8458-8465.	6.5	8
78	Emergence of debubblers in microfluidics: A critical review. Biomicrofluidics, 2022, 16, .	2.4	9
79	Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS Nano, 2022, 16, 9994-10041.	14.6	62
80	Catalytic radiosensitization: Insights from materials physicochemistry. Materials Today, 2022, 57, 262-278.	14.2	16
81	Advances in diagnostic tools for respiratory tract infections: from tuberculosis to COVID-19 – changing paradigms?. ERJ Open Research, 2022, 8, 00113-2022.	2.6	5
82	Emerging concerns of infectious diseases and drug delivery challenges., 2022,, 1-23.		4
83	Malaria quantitative POC testing using magnetic particles, a paper microfluidic device and a hand-held fluorescence reader. Biosensors and Bioelectronics, 2022, 215, 114513.	10.1	9
84	Comparative analysis of loopâ€mediated isothermal amplification combined with microfluidic chip technology and <scp>qâ€PCR</scp> in the detection of clinical infectious pathogens. Journal of Clinical Laboratory Analysis, 2022, 36, .	2.1	3
85	Microfluidic systems for the analysis of bloodâ€derived molecular biomarkers. Electrophoresis, 2022, 43, 1667-1700.	2.4	16
86	Research Progress and Future Trends of Microfluidic Paper-Based Analytical Devices in In-Vitro Diagnosis. Biosensors, 2022, 12, 485.	4.7	15
87	Biointerface Engineering with Nucleic Acid Materials for Biosensing Applications. Advanced Functional Materials, 2022, 32, .	14.9	15
88	Microfluidic Sliding Paper-Based Device for Point-of-Care Determination of Albumin-to-Creatine Ratio in Human Urine. Biosensors, 2022, 12, 496.	4.7	6
89	A Review on Potential Electrochemical Point-of-Care Tests Targeting Pandemic Infectious Disease Detection: COVID-19 as a Reference. Chemosensors, 2022, 10, 269.	3.6	26
90	Asymmetric Mach–Zehnder Interferometric Biosensing for Quantitative and Sensitive Multiplex Detection of Anti-SARS-CoV-2 Antibodies in Human Plasma. Biosensors, 2022, 12, 553.	4.7	3
91	Biochips under COVID-19: a new stage of well-grounded development and accelerated translation. Science Bulletin, 2022, 67, 1823-1826.	9.0	1

#	Article	IF	CITATIONS
92	Development of gold nanoparticles-lateral flow test as a novel field diagnostic assay for detecting foot-and-mouth disease and lumpy skin disease viruses. Iranian Journal of Microbiology, 0, , .	0.8	2
93	Paper-based devices for rapid diagnosis and wastewater surveillance. TrAC - Trends in Analytical Chemistry, 2022, 157, 116760.	11.4	7
94	Isothermal amplification based on specific signal extraction and output for fluorescence and colorimetric detection of nucleic acids. Talanta, 2023, 252, 123823.	5.5	7
95	Toxoplasmosis diagnostic techniques: Current developed methods and biosensors. Talanta, 2023, 252, 123828.	5 . 5	3
96	CRISPR/Cas Systemsâ€Inspired Nano/Biosensors for Detecting Infectious Viruses and Pathogenic Bacteria. Small Methods, 2022, 6, .	8.6	24
97	Metal-organic frameworks for pharmaceutical and biomedical applications. Journal of Pharmaceutical and Biomedical Analysis, 2022, 221, 115026.	2.8	13
98	Miniaturized Real-Time PCR systems for SARS-CoV-2 detection at the Point-of-Care. Clinica Chimica Acta, 2022, 536, 104-111.	1.1	12
99	Nanozyme hydrogel for enhanced alkyl radical generation and potent antitumor therapy. Nanoscale Advances, 2022, 4, 3950-3956.	4.6	1
100	Ultrasensitive chemiluminescent neuraminidase probe for rapid screening and identification of small-molecules with antiviral activity against influenza A virus in mammalian cells. Chemical Science, 2022, 13, 12348-12357.	7.4	10
101	One-pot synthesis and enzyme-responsiveness of amphiphilic doxorubicin prodrug nanomicelles for cancer therapeutics. RSC Advances, 2022, 12, 27963-27969.	3.6	0
102	Nucleic acid amplification with specific signal filtration and magnification for ultrasensitive colorimetric detection. Talanta, 2023, 253, 123978.	5.5	5
103	Detection of breast cancer-related point-mutations using screen-printed and gold-plated electrochemical sensor arrays suitable for point-of-care applications. Talanta Open, 2022, 6, 100150.	3.7	7
104	Current trends and challenges in point-of-care urinalysis of biomarkers in trace amounts. TrAC - Trends in Analytical Chemistry, 2022, 157, 116786.	11.4	14
105	A miniaturized and integrated dual-channel fluorescence module for multiplex real-time PCR in the portable nucleic acid detection system. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	4.1	1
106	Modelling a dynamic magneto-agglutination bioassay. Biosensors and Bioelectronics, 2022, , 114745.	10.1	0
107	Random Weights Neural Network forÂLow-Cost Readout ofÂColorimetric Reactions: Accurate Detection ofÂAntioxidant Levels. Lecture Notes in Networks and Systems, 2023, , 95-104.	0.7	2
108	Monte Carlo Simulationâ€Guided Design of a Thoriumâ€Based Metal–Organic Framework for Efficient Radiotherapyâ€Radiodynamic Therapy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
110	Recent Advances of Representative Optical Biosensors for Rapid and Sensitive Diagnostics of SARS-CoV-2. Biosensors, 2022, 12, 862.	4.7	15

#	Article	IF	CITATIONS
111	Recent Progress in Spectroscopic Methods for the Detection of Foodborne Pathogenic Bacteria. Biosensors, 2022, 12, 869.	4.7	5
112	Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnology and Genetic Engineering Reviews, 0 , 1 -89.	6.2	15
113	Clustered Regularly Interspaced short palindromic repeatsâ€Based Microfluidic System in Infectious Diseases Diagnosis: Current Status, Challenges, and Perspectives. Advanced Science, 2022, 9, .	11.2	12
114	An automated microfluidic system with one-dimensional beads array for multiplexed torch detection at point-of-care testing. Biomedical Microdevices, 2022, 24, .	2.8	1
115	Structural Attacks and Defenses for Flow-Based Microfluidic Biochips. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 1261-1275.	4.0	4
116	Design of a Quantitative Readout in a Point-of-Care Device for Cisplatin Detection. , 2022, 6, 1-4.		2
117	Dual ligand-induced photoelectrochemical sensing by integrating Pt/MoS2 heterostructure and Au polyhedra for sensitive detection of SARS-CoV-2. Sensors and Actuators B: Chemical, 2023, 376, 132970.	7.8	9
118	Metrology in health: challenges and solutions in infusion therapy and diagnostics. Biomedizinische Technik, 2023, 68, 3-12.	0.8	3
119	Thin-Film-Based Multifunctional System for Optical Detection and Thermal Treatment of Biological Samples. Biosensors, 2022, 12, 969.	4.7	3
120	Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19. TrAC - Trends in Analytical Chemistry, 2022, 157, 116814.	11.4	13
121	Modulating the Electrochemical Response of Ecoâ€Friendly Laserâ€Pyrolyzed Paper Sensors Applied to Nitrite Determination. ChemElectroChem, 2023, 10, .	3.4	8
122	Application of nanomaterials against SARS-CoV-2: An emphasis on their usefulness against emerging variants of concern. Frontiers in Nanotechnology, 0, 4, .	4.8	2
123	The SHERLOCK Platform: An Insight into Advances in Viral Disease Diagnosis. Molecular Biotechnology, 0, , .	2.4	1
125	Emerging nanophotonic biosensor technologies for virus detection. Nanophotonics, 2022, 11, 5041-5059.	6.0	7
126	Assessment of Urinary Biomarkers for Infectious Diseases Using Lateral Flow Assays: A Comprehensive Overview. ACS Infectious Diseases, 2023, 9, 9-22.	3.8	3
127	Microfluidic Actuated and Controlled Systems and Application for Lab-on-Chip in Space Life Science. Space: Science & Technology, 2023, 3, .	2.5	4
128	Internetâ€ofâ€medicalâ€things integrated pointâ€ofâ€care biosensing devices for infectious diseases: Toward better preparedness for futuristic pandemics. Bioengineering and Translational Medicine, 2023, 8, .	7.1	13
129	An Overview of Flexible Sensors: Development, Application, and Challenges. Sensors, 2023, 23, 817.	3.8	13

#	Article	IF	CITATIONS
130	Noncancerous disease-targeting AlEgens. Chemical Society Reviews, 2023, 52, 1024-1067.	38.1	30
131	Automated sample-to-answer system for rapid and accurate diagnosis of emerging infectious diseases. Sensors and Actuators B: Chemical, 2023, 380, 133382.	7.8	2
132	Recent Advances in Colorimetric Sensors Based on Gold Nanoparticles for Pathogen Detection. Biosensors, 2023, 13, 29.	4.7	16
133	Microfluidics for COVID-19: From Current Work to Future Perspective. Biosensors, 2023, 13, 163.	4.7	6
134	Aptamer-based rapid diagnosis for point-of-care application. Microfluidics and Nanofluidics, 2023, 27, .	2.2	15
135	Magnetically localized and wash-free fluorescence immunoassay (MLFIA): proof of concept and clinical applications. Lab on A Chip, 2023, 23, 645-658.	6.0	3
136	Fast and Sensitive Detection of SARS-CoV-2 Nucleic Acid Using a Rapid Detection System Free of RNA Extraction. International Journal of Analytical Chemistry, 2023, 2023, 1-10.	1.0	3
138	Detection of Harmful Microbes. , 2023, , 453-491.		0
139	Magnetic nanoparticles for food hazard factors sensing: synthesis, modification and application. Chemical Engineering Journal, 2023, 465, 142816.	12.7	10
140	Joule heating and Soret effects on an electro-osmotic viscoelastic fluid flow considering the generalized Phan-Thien–Tanner model. Physics of Fluids, 2023, 35, 042010.	4.0	2
141	Artificial receptors for electrochemical sensing ofÂbacteria. Current Opinion in Electrochemistry, 2023, 39, 101291.	4.8	1
142	One-step and wash-free multiplexed immunoassay platform based on bioinspired photonic barcodes. Engineered Regeneration, 2023, 4, 238-244.	6.0	0
143	Atomic layer deposition assisted non-destructive strategy for cleaning Ag dendrites based SERS substrates. Talanta, 2023, 259, 124502.	5.5	2
144	Neuraminidase-Activatable NIR Fluorescent Probe for Influenza Virus Ratiometric Imaging in Living Cells and Colorimetric Detection on Cotton Swabs. , 2023, 5, 722-729.		3
145	Electrochemical Biosensors as a Novel Platform in the Identification of Listeriosis Infection. Biosensors, 2023, 13, 216.	4.7	5
146	Lithography-free fabrication of scalable 3D nanopillars as ultrasensitive SERS substrates. Applied Materials Today, 2023, 31, 101763.	4.3	6
147	An enzyme-free Ti3C2/Ni/Sm-LDH-based screen-printed-electrode for real-time sweat detection of glucose. Analytica Chimica Acta, 2023, 1250, 340981.	5.4	17
148	Diagnostic Efficacy of RealStar SARS-CoV-2 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) in Comparison to GeneXpert System for the Detection of COVID-19. Cureus, 2023, , .	0.5	0

#	Article	IF	CITATIONS
149	Fluorescent detection of emerging virus based on nanoparticles: From synthesis to application. TrAC - Trends in Analytical Chemistry, 2023, 161, 116999.	11.4	15
150	Application of microfluidic technologies on COVID-19 diagnosis and drug discovery. Acta Pharmaceutica Sinica B, 2023, 13, 2877-2896.	12.0	5
151	Recent Advances in CMOS Electrochemical Biosensor Design for Microbial Monitoring: Review and Design Methodology. IEEE Transactions on Biomedical Circuits and Systems, 2023, 17, 202-228.	4.0	10
152	Two-dimensional microlens array for low-cost high-resolution bio-imaging. , 2023, , .		1
153	On-Demand, Reversible, Ultrasensitive Polymer Membrane Based on Molecular Imprinting Polymer. ACS Nano, 2023, 17, 5632-5643.	14.6	12
154	RT-LAMP is a potential future molecular diagnostic tool forÂinfluenza A virus. Future Virology, 2023, 18, 165-175.	1.8	4
155	Glow-in-the-Dark Infectious Disease Diagnostics Using CRISPR-Cas9-Based Split Luciferase Complementation. ACS Central Science, 2023, 9, 657-667.	11.3	16
156	Click Triazole as a Linker for Pretargeting Strategies: Synthesis, Docking Investigations, Fluorescence Diagnosis, and Antibacterial Action Studies. Molecules, 2023, 28, 2758.	3.8	O
157	Optical biosensing systems for a biological living body. View, 2023, 4, .	5.3	2
158	Multiplex Detection of Infectious Diseases on Microfluidic Platforms. Biosensors, 2023, 13, 410.	4.7	6
159	Machine learning at the edge for Al-enabled multiplexed pathogen detection. Scientific Reports, 2023, 13, .	3.3	5
160	Optical Detection of Cancer Cells Using Lab-on-a-Chip. Biosensors, 2023, 13, 439.	4.7	12
161	Magnetic biosensors for identification of SARS-CoV-2, Influenza, HIV, and Ebola viruses: a review. Nanotechnology, 2023, 34, 272001.	2.6	1
162	Nanotechnology-Based Diagnostics for Diseases Prevalent in Developing Countries: Current Advances in Point-of-Care Tests. Nanomaterials, 2023, 13, 1247.	4.1	11
163	Phase wavefront perturbation calculation model for spectroscopic refractive index matching of hybrid materials. Applied Optics, 2023, 62, 3330.	1.8	0
164	Spectroscopic Methods for the Detection of Microbial Pathogens and Diagnostics of Infectious Diseases—An Updated Overview. Processes, 2023, 11, 1191.	2.8	2
165	Low-Cost Microfluidic Systems for Detection of Neglected Tropical Diseases. Annual Review of Analytical Chemistry, 2023, 16, 117-138.	5.4	1
166	On-site food safety detection: Opportunities, advancements, and prospects. Biosensors and Bioelectronics: X, 2023, , 100350.	1.7	1

#	ARTICLE	IF	CITATIONS
167	Finger-Actuated Micropump of Constant Flow Rate without Backflow. Micromachines, 2023, 14, 881.	2.9	1
168	Bioinformatics approaches and big data analytics opportunities in improving fisheries and aquaculture. International Journal of Biological Macromolecules, 2023, 233, 123549.	7. 5	6
169	SERS/photothermal-based dual-modal lateral flow immunoassays for sensitive and simultaneous antigen detection of respiratory viral infections. Sensors and Actuators B: Chemical, 2023, 389, 133875.	7.8	6
170	Advances in point-of-care genetic testing for personalized medicine applications. Biomicrofluidics, 2023, 17, .	2.4	0
171	Carbon Nanomaterials in Biosensor Applications for Infectious Disease Diagnostics. Advances in Material Research and Technology, 2023, , 257-283.	0.6	1
172	Trends in Molecular Diagnosis of Nosocomial Pneumonia Classic PCR vs. Point-of-Care PCR: A Narrative Review. Healthcare (Switzerland), 2023, 11, 1345.	2.0	2
173	Ultra-fast, sensitive and low-cost real-time PCR system for nucleic acid detection. Lab on A Chip, 2023, 23, 2611-2622.	6.0	4
174	Ultrasensitive detection of gastric cancer biomarkers <i>via</i> a frequency shift-based SERS microfluidic chip. Analyst, The, 2023, 148, 3295-3305.	3.5	2
175	A SERS Composite Hydrogel Device for Point-of-Care Analysis of Neurotransmitter in Whole Blood. Biosensors, 2023, 13, 611.	4.7	1
176	REASSURED diagnostics at point-of-care in sub-Saharan Africa: A scoping review. PLOS Global Public Health, 2023, 3, e0001443.	1.6	1
177	Nanoplasmonic acceleration of nucleic acid amplification for pathogen detection. Nature Nanotechnology, 0 , , .	31.5	0
178	Aptamers Versus Vascular Endothelial Growth Factor (VEGF): A New Battle against Ovarian Cancer. Pharmaceuticals, 2023, 16, 849.	3.8	0
179	Sample–to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technology, 2023, 28, 302-323.	1.9	0
180	MXene@Au based electrochemical biosensor with pretreatment by magnetic nanoparticles for determination of MRSA from clinical samples. Journal of Hazardous Materials, 2023, 457, 131823.	12.4	8
181	Development of an Effective Neutralizing Antibody Assay for SARS-CoV-2 Diagnosis. International Journal of Nanomedicine, 0, Volume 18, 3125-3139.	6.7	3
183	Latest Advances in Arbovirus Diagnostics. Microorganisms, 2023, 11, 1159.	3.6	2
184	Development of disposable electrode for the detection of mosquitoâ€borne viruses. Biotechnology Journal, 2023, 18, .	3. 5	2
185	Multimodal CMOS Biosensor for Microbial Growth Monitoring. IEEE Sensors Journal, 2023, 23, 14670-14684.	4.7	1

#	Article	IF	CITATIONS
186	Nanomaterial-Doped Xerogels for Biosensing Measurements of Xanthine in Clinical and Industrial Applications. Gels, 2023, 9, 437.	4.5	3
187	Nanoplasmonic amplification in microfluidics enables accelerated colorimetric quantification of nucleic acid biomarkers from pathogens. Nature Nanotechnology, 2023, 18, 922-932.	31.5	16
188	Printable biosensors towards next-generation point-of-care testing: paper substrate as an example. Lab on A Chip, 2023, 23, 3328-3352.	6.0	1
189	Emerging Point-of-Care Optical Biosensing Technologies for Diagnostics of Microbial Infections. , 2023, 1, 1245-1262.		5
190	Low-tech vs. high-tech approaches in \hat{l}^4 PADs as a result of contrasting needs and capabilities of developed and developing countries focusing on diagnostics and point-of-care testing. Talanta, 2024, 266, 124911.	5.5	1
191	Microfluidic paper-based device coupled with 3D printed imaging box for colorimetric detection in resource-limited settings. HardwareX, 2023, 15, e00456.	2.2	1
192	Composites of ZIF-67 MOF Nanostructures and CoFe ₂ O ₄ Magnetic Nanospheres Both Decorated with Ag Nanoparticles as SERS Carboxylesterase 1 Sandwich Assay Immunosensors. ACS Applied Nano Materials, 0, , .	5.0	0
193	Visual and Super-Sensitive Detection of Maize Chlorotic Mottle Virus by Dot-ELISA and Au Nanoparticle-Based Immunochromatographic Test Strip. Viruses, 2023, 15, 1607.	3.3	2
194	Robust surface functionalization of PDMS through atmospheric pressure atomic layer deposition. , 0, 1, 1-13.		0
195	Mechanistic Elucidation of Nanomaterial-Enhanced First-Generation Biosensors Using Probe Voltammetry of an Enzymatic Reaction. Biosensors, 2023, 13, 798.	4.7	0
196	A Mechanical Assay for the Quantification of Anti-RBD IgG Levels in Finger-Prick Whole Blood. ACS Sensors, 2023, 8, 2986-2995.	7.8	1
197	Diagnosis of influenza A virus: current molecular tools. Future Virology, 0, , .	1.8	0
198	Sequential Flow Controllable Microfluidic Device for G-Quadruplex DNAzyme-Based Electrochemical Detection of SARS-CoV-2 Using a Pyrrolidinyl Peptide Nucleic Acid. Analytical Chemistry, 2023, 95, 12794-12801.	6.5	1
199	Rapid and sensitive LAMP/CRISPR-powered diagnostics to detect different hepatitis C virus genotypes using an ITO-based EG-FET biosensing platform. Sensors and Actuators B: Chemical, 2023, 394, 134278.	7.8	0
200	A dual signal amplification system with specific signal identification for rapid and sensitive detection of miRNA. Talanta, 2024, 266, 125097.	5.5	0
201	Material-level countermeasures for securing microfluidic biochips. Lab on A Chip, 2023, 23, 4213-4231.	6.0	0
202	Nucleic Acid Based Testing (NABing): A Game Changer Technology for Public Health. Molecular Biotechnology, 0, , .	2.4	1
203	Monolithic affinity columns in 3D printed microfluidics for chikungunya RNA detection. Analytical and Bioanalytical Chemistry, 2023, 415, 7057-7065.	3.7	1

#	ARTICLE	IF	CITATIONS
204	Micro-polymerase chain reaction for point-of-care detection and beyond: a review microfluidics and nanofluidics. Microfluidics and Nanofluidics, 2023, 27, .	2.2	2
205	Biomedical applications of smartphone-based lateral flow detection systems as a diagnosis tool. Microchemical Journal, 2023, 193, 109159.	4.5	2
206	Recent Point of Care (PoC) Electrochemical Testing Trends of New Diagnostics Platforms for Vitamin D. ChemistrySelect, 2023, 8, .	1.5	1
207	Chip-based nanotechnology in the molecular pathology laboratory and beyond. , 2024, , 747-765.		0
208	Advancing Syphilis Research: Exploring New Frontiers in Immunology and Pharmacological Interventions. Venereology, 2023, 2, 147-163.	1.6	0
209	Magnetic point-of-care systems for medical diagnosis. , 2023, , 159-184.		0
210	Emerging trends in nanomaterial design for the development of point-of-care platforms and practical applications. Journal of Pharmaceutical and Biomedical Analysis, 2023, 235, 115623.	2.8	4
211	A smartphone-integrated multi-model thermal immunochromatographic assay for sensitive detection of histamine in real samples. Sensors and Actuators B: Chemical, 2023, 394, 134474.	7.8	2
212	Development of a nucleic acid-based lateral flow device as a reliable diagnostic tool for respiratory viral infections. MethodsX, 2023, 11, 102372.	1.6	2
213	Modular Dropletâ€Based Fluidics for Large Volume Libraries of Individual Multiparametric Codes in Labâ€Onâ€Chip Systems. , 2023, 2, .		0
214	Nano-Bio-Analytical Systems for the Detection of Emerging Infectious Diseases. , 2023, , 147-171.		0
215	Rapid Point-of-Care Identification of <i>Aspergillus</i> Species in Microbial Keratitis. JAMA Ophthalmology, 2023, 141, 966.	2.5	2
216	Point-of-Care Devices inÂHealthcare: A Public Health Perspective. Studies in Computational Intelligence, 2023, , 75-92.	0.9	0
217	Natural Indigenous Paper Substrates for Colorimetric Bioassays in Portable Analytical Systems: Sustainable Solutions from the Rain Forests to the Great Plains. ACS Applied Materials & Samp; Interfaces, 2023, 15, 46747-46755.	8.0	0
218	Rapid Detection of Malaria Based on Hairpin-Mediated Amplification and Lateral Flow Detection. Micromachines, 2023, 14, 1917.	2.9	0
220	Highlyâ€Specific Singleâ€Stranded Oligonucleotides and Functional Nanoprobes for Clinical Determination of Chlamydia Trachomatis and Neisseria Gonorrhoeae Infections. Advanced Science, 2023, 10, .	11.2	1
221	Facilitators and barriers to COVID-19 testing in community and clinical settings: Lessons learned from Lesotho and Zambia. PLOS Global Public Health, 2023, 3, e0002430.	1.6	0
222	Semiquantitative Determination of Thiocyanate in Saliva Through Colorimetric Assays: Design of CNN Architecture via Input-Aware NAS. IEEE Sensors Journal, 2023, 23, 29869-29876.	4.7	0

#	ARTICLE	IF	CITATIONS
223	Using Kern model to design, implement, and evaluate an infection control program for improving knowledge and performance among undergraduate nursing students: a mixed methods study. BMC Medical Education, 2023, 23, .	2.4	1
224	Principles, Methods, and Real-Time Applications of Bacteriophage-Based Pathogen Detection. Molecular Biotechnology, 0, , .	2.4	1
225	Biogenic synthesis of ZnO and Al2O3 nanoparticles using Camellia sinensis and Origanum vulgare L. leaves extract for spectroscopic estimation of ofloxacin and ciprofloxacin in commercial formulations. PLoS ONE, 2023, 18, e0286341.	2.5	1
226	DNA aptamer functionalized monodisperse Eu/Mn-WH nanoparticle for in vivo magnetic resonance and fluorescence imaging. Ceramics International, 2024, 50, 2995-3004.	4.8	0
227	Electrochemical-Based Biosensor Platforms in Lab-Chip Models for Point-of-Need Toxicant Analysis. Electrochem, 2023, 4, 537-552.	3.3	0
228	Recent advances in point-of-care testing of COVID-19. Chemical Society Reviews, 2023, 52, 8500-8530.	38.1	4
229	Loop-Mediated Isothermal Amplification-Integrated CRISPR Methods for Infectious Disease Diagnosis at Point of Care. ACS Omega, 2023, 8, 43357-43373.	3.5	2
230	Photothermal hydrogel-integrated paper-based point-of-care platform for visible distance-readout of glucose. Analytica Chimica Acta, 2024, 1285, 342035.	5.4	0
231	Cas14a1-advanced LAMP for ultrasensitive and visual Pathogen diagnostic. Talanta, 2024, 269, 125458.	5.5	0
232	An insight to the recent advancements in detection of Mycobacterium tuberculosis using biosensors: A systematic review. Progress in Biophysics and Molecular Biology, 2024, 186, 14-27.	2.9	0
233	A hand-powered SERS-microfluidic chip for circulating tumor DNA detection from whole blood. Sensors and Actuators B: Chemical, 2024, 401, 135081.	7.8	0
235	Highly sensitive miRNA detection of early-stage laryngeal carcinoma using a solid-state Au nanocone arrays fabricated LoC-SERS analysis system coupled with target-triggered dual cycle amplification strategy. Chemical Engineering Journal, 2023, 478, 147448.	12.7	0
237	Faradaic Impedimetric Immunosensor for Label-Free Point-of-Care Detection of COVID-19 Antibodies Using Gold-Interdigitated Electrode Array. Biosensors, 2024, 14, 6.	4.7	0
238	Cross-Sensitivity of a Dual-Port Potentiometric Sensor based on Auto-Tuning RFID ICs., 2023,,.		0
239	Ceria-Based Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing. ACS Sensors, 2023, 8, 4442-4467.	7.8	1
240	A Point-of-Care Testing Device Utilizing Graphene-Enhanced Fiber Optic SPR Sensor for Real-Time Detection of Infectious Pathogens. Biosensors, 2023, 13, 1029.	4.7	0
241	Diagnosis of Neglected Tropical Zoonotic Disease, Leptospirosis in a Clinical Sample Using a Photothermal Immunosensor. Analytical Chemistry, 0, , .	6.5	0
242	Advancements in the research of finger-actuated POCT chips. Mikrochimica Acta, 2024, 191, .	5.0	0

#	Article	IF	CITATIONS
243	Ordered Anodic Aluminum Oxide-Based Nanostructures for Surface-Enhanced Raman Scattering: A Review. ACS Applied Nano Materials, 2024, 7, 11-31.	5.0	0
244	Polymerase incorporation of 4-nitrophenyl modified 2′-deoxyuridine-5′-triphosphates into double-stranded DNA for direct electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis, 2024, 241, 115977.	2.8	1
245	Smart sensors for infectious disease diagnosis. , 2024, , 149-187.		O
246	Recent progress of non-invasive in vitro diagnosis using electrochemical analysis strategy and wearable microfluidic devices applied to exocrine secretion sampling. TrAC - Trends in Analytical Chemistry, 2024, 172, 117561.	11.4	0
247	Rapid multiplex assay of SARS-CoV-2 antigens based on magnetic Janus photonic barcodes. Materials and Design, 2024, 238, 112625.	7.0	0
248	A rapid colorimetric sensing methodology for urinary tract bacterial pathogens as a point-of-care approach using natural anthocyanin loaded nanosilver. Microchemical Journal, 2024, 199, 109943.	4.5	0
249	Diagnosis of infectious diseases: complexity to convenience. Sensors & Diagnostics, 2024, 3, 354-380.	3.8	0
250	Biomarker-specific biosensors revolutionise breast cancer diagnosis. Clinica Chimica Acta, 2024, 555, 117792.	1.1	1
251	Nanostructured Electrodes as Electrochemical Biosensors for Biomedical Applications. , 2024, , 241-261.		0
252	Droplet-Based Preparation of ZnO-nanostructure Array for Microfluidic Fluorescence Biodetection. ACS Applied Materials & Droplet-Based Preparation of ZnO-nanostructure Array for Microfluidic Fluorescence Biodetection.	8.0	0
253	Vibrational manipulation of dry granular materials in lab-on-a-chip devices. Lab on A Chip, 2024, 24, 966-974.	6.0	0
254	Nanoscale porphyrinic metal-organic frameworks as a photodynamic probe for highly sensitive detection of SARS-CoV-2 related RNA. Sensors and Actuators B: Chemical, 2024, 406, 135413.	7.8	0
255	Electrochemically Synthesized MIP Sensors: Applications in Healthcare Diagnostics. Biosensors, 2024, 14, 71.	4.7	0
256	Synthesis and processing methods of magnetic nanosystems for diagnostic tools and devices: Design strategies and physicochemical aspects. , 2024, , 43-78.		0
257	DNA aptamer-linked sandwich structure enhanced SPRi sensor for rapid, sensitive, and quantitative detection of SARS-CoV-2 spike protein. Analytical and Bioanalytical Chemistry, 2024, 416, 1667-1677.	3.7	0
258	An ultra-sensitive SARS-CoV-2 antigen optical biosensor based on angiotensin converting enzyme 2 (ACE-2) functionalized magnetic-fluorescent silica nanoparticles. Nanotechnology, 2024, 35, 205702.	2.6	0
259	Applications of metal organic frameworks in point of care testing. TrAC - Trends in Analytical Chemistry, 2024, 172, 117596.	11.4	1
260	Microfluidic systems for infectious disease diagnostics. Lab on A Chip, 2024, 24, 1441-1493.	6.0	O

#	Article	IF	CITATIONS
261	Open Thermal Control System for Stable Polymerase Chain Reaction on a Digital Microfluidic Chip. ACS Omega, 2024, 9, 10937-10944.	3.5	0
262	Systematic review and meta-analysis: assessing the accuracy of rapid immunochromatographic tests in dengue diagnosis. Diagnostic Microbiology and Infectious Disease, 2024, 109, 116227.	1.8	0
263	Structural defect-induced white light emission from synthetic Zn-rich trioctahedral smectite. Applied Clay Science, 2024, 251, 107317.	5.2	0
264	Combining recombinase polymerase amplification with tyrosine modified 2′-deoxyuridine-5′-triphosphate for direct voltammetric detection of double-stranded DNA: Application to potato pathogen Dickeya solani. Talanta, 2024, 273, 125841.	5. 5	0
265	An integrated sample-to-answer graphene microchip for ultrafast detection of multiple microorganisms. Sensors and Actuators B: Chemical, 2024, 409, 135584.	7.8	0
266	Plasmonic Fluorescence Sensors in Diagnosis of Infectious Diseases. Biosensors, 2024, 14, 130.	4.7	0
267	Molecularly imprinted metal-organic frameworks assisted cloth and paper hybrid microfluidic devices for visual detection of gonyautoxin. Journal of Hazardous Materials, 2024, 469, 133969.	12.4	0
268	A Bioinspired and Costâ€Effective Device for Minimally Invasive Blood Sampling. Advanced Science, 0, , .	11.2	0
269	Advances and challenges in portable optical biosensors for onsite detection and point-of-care diagnostics. TrAC - Trends in Analytical Chemistry, 2024, 173, 117640.	11.4	0
270	Progress in the development of smart and high-performing analytical tools to detect infectious diseases using nanomaterial-based sensors: sensitivity, rapidity of reaction, selectivity, and robustness., 2024,, 1-29.		0
273	Current diagnostics and biomarkers for arboviral infections (a review on Dengue, Zika, West Nile and) Tj ETQq0 0) 0 ₀ gBT /C	iverlock 10 Tf
274	A universal nucleic acid detection platform combing CRISPR/Cas12a and strand displacement amplification with multiple signal readout. Talanta, 2024, 273, 125922.	5.5	0
275	Force-dependent rapid immunoassay of high specificity and sensitivity., 2024, 2, 100061.		0
276	Peptide-Based Flavivirus Biosensors: From Cell Structure to Virological and Serological Detection Methods. ACS Biomaterials Science and Engineering, 2024, 10, 2041-2061.	5.2	O