Vision-based autonomous bolt-looseness detection met lab-scale evaluation, and field application

Automation in Construction 124, 103591 DOI: 10.1016/j.autcon.2021.103591

Citation Report

#	Article	IF	CITATIONS
1	Health assessment of a multi-bolted connection due to removing selected bolts. FME Transactions, 2021, 49, 634-642.	0.7	7
2	Structural dynamic response reconstruction and virtual sensing using a sequence to sequence modeling with attention mechanism. Automation in Construction, 2021, 131, 103895.	4.8	17
3	Investigation of steel frame damage based on computer vision and deep learning. Automation in Construction, 2021, 132, 103941.	4.8	28
4	Quantitative loosening detection of threaded fasteners using vision-based deep learning and geometric imaging theory. Automation in Construction, 2022, 133, 104009.	4.8	23
5	Proof-of-concept study of high-order sideband for bolt loosening detection using vibroacoustic modulation method. Mechanical Systems and Signal Processing, 2022, 169, 108638.	4.4	9
6	A three-stage criterion to reveal the bolt self-loosening mechanism under random vibration by strain detection. Engineering Failure Analysis, 2022, 133, 105954.	1.8	5
7	Design and Experimental Evaluation of an Aerial Solution for Visual Inspection of Tunnel-like Infrastructures. Remote Sensing, 2022, 14, 195.	1.8	7
8	ANN and LEFM-Based Fatigue Reliability Analysis and Truck Weight Limits of Steel Bridges after Crack Detection. Sensors, 2022, 22, 1580.	2.1	3
9	Deep learningâ€based bolt loosening detection for wind turbine towers. Structural Control and Health Monitoring, 2022, 29, .	1.9	30
10	A Novel Approach for Detection of Pavement Crack and Sealed Crack Using Image Processing and Salp Swarm Algorithm Optimized Machine Learning. Advances in Civil Engineering, 2022, 2022, 1-21.	0.4	11
11	Deep learning-based autonomous damage-sensitive feature extraction for impedance-based prestress monitoring. Engineering Structures, 2022, 259, 114172.	2.6	28
12	Online detection of powder spatters in the additive manufacturing process. Measurement: Journal of the International Measurement Confederation, 2022, 194, 111040.	2.5	7
13	A Two-Stage GAN for High-Resolution Retinal Image Generation and Segmentation. Electronics (Switzerland), 2022, 11, 60.	1.8	17
14	Concrete Spalling Severity Classification Using Image Texture Analysis and a Novel Jellyfish Search Optimized Machine Learning Approach. Advances in Civil Engineering, 2021, 2021, 1-20.	0.4	6
15	Lightweight edge-attention network for surface-defect detection of rubber seal rings. Measurement Science and Technology, 0, , .	1.4	5
16	Corroded Bolt Identification Using Mask Region-Based Deep Learning Trained on Synthesized Data. Sensors, 2022, 22, 3340.	2.1	8
17	A novel vision-based method for loosening detection of marked T-junction pipe fittings integrating GAN-based segmentation and SVM-based classification algorithms. Journal of Intelligent Manufacturing, 0, , 1.	4.4	2
18	Piezoelectric Impedance-Based Structural Health Monitoring of Wind Turbine Structures: Current Status and Future Perspectives. Energies, 2022, 15, 5459.	1.6	11

CITATION REPORT

#	Article	IF	CITATIONS
19	Detection of loosening angle for mark bolted joints with computer vision and geometric imaging. Automation in Construction, 2022, 142, 104517.	4.8	8
20	Multi-stage Synthetic Image Generation forÂtheÂSemantic Segmentation ofÂMedical Images. Intelligent Systems Reference Library, 2023, , 79-104.	1.0	0
21	Deep transfer residual variational autoencoder with multi-sensors fusion for tool condition monitoring in impeller machining. Measurement: Journal of the International Measurement Confederation, 2022, 204, 112028.	2.5	8
22	Early-age concrete strength monitoring using smart aggregate based on electromechanical impedance and machine learning. Mechanical Systems and Signal Processing, 2023, 186, 109865.	4.4	22
23	Bolt loosening angle detection based on binocular vision. Measurement Science and Technology, 2023, 34, 035401.	1.4	2
24	The application of deep learning in bridge health monitoring: a literature review. Advances in Bridge Engineering, 2022, 3, .	0.8	10
25	Object Detection Using ESP32 Cameras for Quality Control of Steel Components in Manufacturing Structures. Arabian Journal for Science and Engineering, 2023, 48, 12741-12758.	1.7	2
26	ResNet-integrated very early bolt looseness monitoring based on intrinsic feature extraction of percussion sounds. Smart Materials and Structures, 2023, 32, 034002.	1.8	6
27	State-of-the-art and annual progress of bridge engineering in 2021. Advances in Bridge Engineering, 2022, 3, .	0.8	8
28	Bolt looseness detection based on Canny edge detection algorithm. Concurrency Computation Practice and Experience, 0, , .	1.4	Ο
29	A method for automated bolt-loosening monitoring and assessment using impedance technique and deep learning. Developments in the Built Environment, 2023, 14, 100122.	2.0	7
30	CDMTNet: a novel transfer learning model for the loosening detection of mechanical structures with threaded fasteners. Structural Health Monitoring, 0, , 147592172311570.	4.3	1
31	Nut Geometry Inspection Using Improved Hough Line and Circle Methods. Sensors, 2023, 23, 3961.	2.1	3