Per- and Polyfluoroalkyl Substance (PFAS) Transport fr PFAS Manufacturing Facility in North Carolina, USA

Environmental Science & amp; Technology

55, 5848-5856

DOI: 10.1021/acs.est.0c07978

Citation Report

#	Article	IF	CITATIONS
1	Occurrence of Novel Perfluoroalkyl Ether Carboxylic Acids in River Water and Human Urine Quantified by a Simple Liquid–Liquid Microextraction Approach Coupled with LC–MS/MS. Environmental Science and Technology Letters, 2021, 8, 773-778.	8.7	10
2	Comparison of bioconcentration and kinetics of GenX in tilapia Oreochromis mossambicus in fresh and brackish water. Chemosphere, 2022, 287, 132289.	8.2	9
3	Degradation and mechanism of hexafluoropropylene oxide dimer acid by thermally activated persulfate in aqueous solutions. Chemosphere, 2022, 286, 131720.	8.2	13
4	Reversible adsorption and desorption of PFAS on inexpensive graphite adsorbents <i>via</i> alternating electric field. RSC Advances, 2021, 11, 34652-34659.	3.6	10
5	Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry, 2022, 94, 382-416.	6.5	92
6	Aerosol Electroanalysis by PILSNER: Particle-into-Liquid Sampling for Nanoliter Electrochemical Reactions. ACS Measurement Science Au, 2022, 2, 106-112.	4.4	9
7	Surface-water/groundwater boundaries affect seasonal PFAS concentrations and PFAA precursor transformations. Environmental Sciences: Processes and Impacts, 2021, 23, 1893-1905.	3.5	15
8	Extraction and Matrix Cleanup Method for Analyzing Novel Per- and Polyfluoroalkyl Ether Acids and Other Per- and Polyfluoroalkyl Substances in Fruits and Vegetables. Journal of Agricultural and Food Chemistry, 2022, 70, 4792-4804.	5.2	21
9	Assessment of per- and polyfluoroalkyl substances (PFAS) in the Indian River Lagoon and Atlantic coast of Brevard County, FL, reveals distinct spatial clusters. Chemosphere, 2022, 301, 134478.	8.2	6
10	Exploring the source, migration and environmental risk of perfluoroalkyl acids and novel alternatives in groundwater beneath fluorochemical industries along the Yangtze River, China. Science of the Total Environment, 2022, 827, 154413.	8.0	11
11	Per- and polyfluoroalkyl substances (PFAS) in river discharge: Modeling loads upstream and downstream of a PFAS manufacturing plant in the Cape Fear watershed, North Carolina. Science of the Total Environment, 2022, 831, 154763.	8.0	23
12	Effective Breaking of the Fluorocarbon Chain by the Interface Bi ₂ O ₂ X··PFOA Complex Strategy via Coordinated Se on Construction of the Internal Photogenerated Carrier Pathway. ACS Applied Materials & Interfaces, 2022, 14, 654-667.	8.0	13
13	Occurrence, source apportionment, and pollution assessment of per- and polyfluoroalkyl substances in a river across rural and urban areas. Science of the Total Environment, 2022, 835, 155505.	8.0	12
14	Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater: current understandings and challenges to overcome. Environmental Science and Pollution Research, 2022, 29, 49513-49533.	5.3	11
15	Global distributions, source-type dependencies, and concentration ranges of per- and polyfluoroalkyl substances in groundwater. Science of the Total Environment, 2022, 841, 156602.	8.0	35
16	Pfos Destruction in a Continuous Supercritical Water Oxidation Reactor. SSRN Electronic Journal, 0,	0.4	0
17	A Review on Removal and Destruction of Per- and Polyfluoroalkyl Substances (PFAS) by Novel Membranes. Membranes, 2022, 12, 662.	3.0	21
18	Per―and Polyfluoroalkyl Substances (PFAS) in Subsurface Environments: Occurrence, Fate, Transport, and Research Prospect. Reviews of Geophysics, 2022, 60, .	23.0	29

#	Article	IF	CITATIONS
19	Occurrence and distribution of per-and polyfluoroalkyl substances (PFAS) in surface and groundwaters in an urbanized and agricultural area, Southern Brazil. Environmental Science and Pollution Research, 2023, 30, 6159-6169.	5.3	3
20	Review: Hydrothermal treatment of per- and polyfluoroalkyl substances (PFAS). Chemosphere, 2022, 307, 135888.	8.2	15
21	Surface-catalyzed hydrolysis by pyrogenic carbonaceous matter and model polymers: An experimental and computational study on functional group and pore characteristics. Applied Catalysis B: Environmental, 2022, 319, 121877.	20.2	1
22	A rapid assessment bioaccumulation screening (RABS) study design for emerging per-and polyfluoroalkyl substances in mice exposed to industrially impacted surface water. Chemosphere, 2022, 308, 136159.	8.2	11
23	PFOS destruction in a continuous supercritical water oxidation reactor. Chemical Engineering Journal, 2023, 451, 139063.	12.7	19
24	Distribution of legacy and emerging per- and polyfluoroalkyl substances in riverine and coastal sediments of Southeastern North Carolina, USA. Environmental Sciences: Processes and Impacts, 2022, 24, 2119-2128.	3.5	4
25	Carbon nanomaterial-based membranes for water and wastewater treatment under electrochemical assistance. Environmental Science: Nano, 2023, 10, 11-40.	4.3	2
26	Pilotâ€scale comparison of granular activated carbons, ion exchange, and alternative adsorbents for per―and polyfluoroalkyl substances removal. AWWA Water Science, 2022, 4, .	2.1	8
27	Blood concentrations of per- and polyfluoroalkyl substances are associated with autoimmune-like effects in American alligators from Wilmington, North Carolina. Frontiers in Toxicology, 0, 4, .	3.1	9
28	Predicting the occurrence of short-chain PFAS in groundwater using machine-learned Bayesian networks. Frontiers in Environmental Science, 0, 10, .	3.3	2
29	Distribution of legacy and novel per- and polyfluoroalkyl substances in surface and groundwater affected by irrigation in an arid region. Science of the Total Environment, 2023, 858, 159693.	8.0	3
30	Legacy and emerging airborne per- and polyfluoroalkyl substances (PFAS) collected on PM _{2.5} filters in close proximity to a fluoropolymer manufacturing facility. Environmental Sciences: Processes and Impacts, 2022, 24, 2272-2283.	3.5	3
31	Vital Environmental Sources for Multitudinous Fluorinated Chemicals: New Evidence from Industrial Byproducts in Multienvironmental Matrices in a Fluorochemical Manufactory. Environmental Science & Technology, 2022, 56, 16789-16800.	10.0	16
32	Occurrence of perfluoroalkyl substances in the environment compartments near a mega fluorochemical industry: Implication of specific behaviors and emission estimation. Journal of Hazardous Materials, 2023, 445, 130473.	12.4	10
33	Sorptive removal of per- and polyfluoroalkyl substances from aqueous solution: Enhanced sorption, challenges and perspectives. Science of the Total Environment, 2023, 861, 160647.	8.0	12
34	Per- and Polyfluoroalkyl Substances (PFASs) in the Fountain Creek Watershed, Colorado Springs, CO, USA: A Yearlong Investigation of PFAS Levels in Water, Soils, and Sediments. ACS ES&T Water, 2023, 3, 96-105.	4.6	4
35	Improved Darcian streambed measurements to quantify flux and mass discharge of volatile organic compounds from a contaminated aquifer to an urban stream. Journal of Contaminant Hydrology, 2023, 253, 104124.	3.3	2
36	PFASs in Soil: How They Threaten Human Health through Multiple Pathways and Whether They Are Receiving Adequate Concern. Journal of Agricultural and Food Chemistry, 2023, 71, 1259-1275.	5.2	4

#	Article	IF	CITATIONS
37	Differential exposure to drinking water contaminants in North Carolina: Evidence from structural topic modeling and water quality data. Journal of Environmental Management, 2023, 336, 117600.	7.8	1
38	Trophic behaviors of PFOA and its alternatives perfluoroalkyl ether carboxylic acids (PFECAs) in a coastal food web. Journal of Hazardous Materials, 2023, 452, 131353.	12.4	13
39	Environmental and health impacts of PFAS: Sources, distribution and sustainable management in North Carolina (USA). Science of the Total Environment, 2023, 878, 163123.	8.0	21
40	Polyfluoroalkyl substances requiring a renewed focus on groundwaterâ€surface water interactions. Ground Water Monitoring and Remediation, 2023, 43, 14-31.	0.8	1
41	Variations of the Level, Profile, and Distribution of PFAS around POSF Manufacturing Facilities in China: An Overlooked Source of PFCA. Environmental Science & Technology, 2023, 57, 5264-5274.	10.0	6
42	Predicting Concentration- and Ionic-Strength-Dependent Air–Water Interfacial Partitioning Parameters of PFASs Using Quantitative Structure–Property Relationships (QSPRs). Environmental Science & Technology, 2023, 57, 5203-5215.	10.0	7
43	Occurrence of per- and polyfluoroalkyl substances in aquatic environments and their removal by advanced oxidation processes. Chemosphere, 2023, 330, 138666.	8.2	6
44	Enhanced photochemical degradation and transformation of ciprofloxacin in a UV/calcium peroxide system: pH effects, defluorination kinetics, and different components numerical analysis. Journal of Cleaner Production, 2023, 414, 137706.	9.3	5
45	Identifying and sharing per-and polyfluoroalkyl substances hot-spot areas and exposures in drinking water. Scientific Data, 2023, 10, .	5.3	0
47	Domestic Dogs and Horses as Sentinels of Per- and Polyfluoroalkyl Substance Exposure and Associated Health Biomarkers in Gray's Creek North Carolina. Environmental Science & Technology, 2023, 57, 9567-9579.	10.0	4
48	Cumulative effects and metabolic characteristics of aromatic compounds in microbial cells during the biochemical treatment process of coal chemical wastewater. Chemical Engineering Journal, 2023, 471, 144307.	12.7	1
49	Comparative Thermodynamic and Structural Analysis of Polyfluorinated Dodecylphosphonic Acid Adsorption to Distilled and River Water Interfaces. Journal of Physical Chemistry A, 2023, 127, 6091-6099.	2.5	1
50	New insights into the degradation mechanism and risk assessment of HFPO-DA by advanced oxidation processes based on activated persulfate in aqueous solutions. Ecotoxicology and Environmental Safety, 2023, 263, 115298.	6.0	2
51	Machine Learning Models for PFAS Tracking, Detection and Remediation: A Review. , 2023, , .		1
52	Revealing the factors resulting in incomplete recovery of perfluoroalkyl acids (PFAAs) when implementing the adsorbable and extractable organic fluorine methods. Water Research, 2023, 244, 120497.	11.3	1
53	Multicomponent PFAS sorption and desorption in common commercial adsorbents: Kinetics, isotherm, adsorbent dose, pH, and index ion and ionic strength effects. Science of the Total Environment, 2023, 904, 166568.	8.0	5
54	Fluorinated quaternary ammonium covalent organic frameworks for selective and efficient removal of typical per- and polyfluoroalkyl substances. Chemical Engineering Journal, 2023, 474, 145629.	12.7	0
56	Identifying priority PBT-like compounds from emerging PFAS by nontargeted analysis and machine learning models. Environmental Pollution, 2023, 338, 122663.	7.5	0

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
57	Per- and polyfluoroalkyl substances and organofluorine in lakes and waterways of the northwestern Great Basin and Sierra Nevada. Science of the Total Environment, 2023, 905, 166971.	8.0	0
58	"Nonlinear―pursuit of understanding pollutant accumulation and chemistry at environmental and biological interfaces. Biointerphases, 2023, 18, .	1.6	0
59	Theory of an Automatic Seepage Meter and Ramifications for Applications. Water Resources Research, 2023, 59, .	4.2	0
60	Investigation of Sources of Fluorinated Compounds in Private Water Supplies in an Oil and Gas-Producing Region of Northern West Virginia. Environmental Science & Technology, 2023, 57, 17452-17464.	10.0	1
61	Comprehensive Assessment of Exposure Pathways for Perfluoroalkyl Ether Carboxylic Acids (PFECAs) in Residents Near a Fluorochemical Industrial Park: The Unanticipated Role of Cereal Consumption. Environmental Science & Technology, 2023, 57, 19442-19452.	10.0	1
62	Interlaboratory Comparison of Extractable Organofluorine Measurements in Groundwater and Eel (<i>Anguilla rostrata</i>): Recommendations for Methods Standardization. Environmental Science & Technology, 2023, 57, 20159-20168.	10.0	0
63	Bioaccumulative chemicals are either too hard or too soft: Conceptual density functional theory as a screening tool for emerging pollutants. Environment International, 2024, 183, 108388.	10.0	0
64	Removal of Per- and Polyfluoroalkyl substances by anion exchange resins: Scale-up of rapid small-scale column test data. Water Research, 2024, 249, 120956.	11.3	1
65	Per- and polyfluoroalkyl ether acids in well water and blood serum from private well users residing by a fluorochemical facility near Fayetteville, North Carolina. Journal of Exposure Science and Environmental Epidemiology, 2024, 34, 97-107.	3.9	1
66	Evaluation of per- and polyfluoroalkyl substances (PFAS) released from two Florida landfills based on mass balance analyses. Waste Management, 2024, 175, 348-359.	7.4	1
67	Exploring the Potential Link between PFAS Exposure and Endometrial Cancer: A Review of Environmental and Sociodemographic Factors. Cancers, 2024, 16, 983.	3.7	0
68	Environmental occurrence, bioaccumulation and human risks of emerging fluoroalkylether substances: Insight into security of alternatives. Science of the Total Environment, 2024, 922, 171151.	8.0	0
69	Overview of Per- and Polyfluoroalkyl Substances (PFAS), Their Applications, Sources, and Potential Impacts on Human Health. Pollutants, 2024, 4, 136-152.	2.1	0
70	Selective perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) adsorption by nanoscale zero-valent iron (nZVI): performance and mechanisms. Environmental Science: Nano, 0, , .	4.3	0