From molecular to supramolecular electronics

Nature Reviews Materials 6, 804-828

DOI: 10.1038/s41578-021-00302-2

Citation Report

#	Article	IF	CITATIONS
1	Experimental Validation of Quantum Circuit Rules in Molecular Junctions*. Australian Journal of Chemistry, 2021, , .	0.5	6
2	Stimuli-responsive luminescent supramolecular assemblies and co-assemblies through orthogonal dipole–dipole interactions and halogen bonding. Journal of Materials Chemistry C, 2021, 9, 11893-11904.	2.7	17
3	Vacancy tuned thermoelectric properties and high spin filtering performance in graphene/silicene heterostructures. Scientific Reports, 2021, 11, 15320.	1.6	12
4	Non-covalent interaction-based molecular electronics with graphene electrodes. Nano Research, 2023, 16, 5436-5446.	5.8	8
5	Single Dynamic Covalent Bond Tailored Responsive Molecular Junctions. Angewandte Chemie, 2021, 133, 21040-21046.	1.6	0
6	Sub-nanometer supramolecular rectifier based on the symmetric building block with destructive $\ddot{l}f$ -interference. Science China Chemistry, 2021, 64, 1426-1433.	4.2	8
7	Single Dynamic Covalent Bond Tailored Responsive Molecular Junctions. Angewandte Chemie - International Edition, 2021, 60, 20872-20878.	7.2	27
8	Promotion and suppression of single-molecule conductance by quantum interference in macrocyclic circuits. Matter, 2021, , .	5.0	12
9	Black Phosphorus Nanosheet/Melamine Cyanurate Assemblies as Functional Active Layers for Artificial Synapse Memristors. ACS Applied Nano Materials, 2021, 4, 9584-9594.	2.4	3
10	Modulation of supramolecular self-assembly of BODIPY tectons <i>via</i> halogen bonding. CrystEngComm, 2021, 23, 6365-6375.	1.3	6
11	2-Nitro- and 4-fluorocinnamaldehyde based receptors as naked-eye chemosensors to potential molecular keypad lock. Scientific Reports, 2021, 11, 20847.	1.6	6
12	On-Site Supramolecular Adhesion to Wet and Soft Surfaces via Solvent Exchange. ACS Applied Materials & Solvent Exchange.	4.0	27
13	Atomâ€economic Approach to the Synthesis of αâ€(Hetero)arylâ€substituted Furan Derivatives from Biomass. Chemistry - an Asian Journal, 2022, 17, .	1.7	3
14	Optical Imaging and Tracking of Single Molecules in Ultrahigh Vacuum. ACS Photonics, 2021, 8, 3448-3454.	3.2	1
15	Real-time observation of the dynamics of an individual rotaxane molecular shuttle using a single-molecule junction. CheM, 2022, 8, 243-252.	5. 8	29
16	Nanoscale self-assembly: concepts, applications and challenges. Nanotechnology, 2022, 33, 132001.	1.3	32
17	Charge Transport Characteristics of Molecular Electronic Junctions Studied by Transition Voltage Spectroscopy. Materials, 2022, 15, 774.	1.3	5
18	Self-Assembly of Double-Helical Metallopolymers. Accounts of Chemical Research, 2022, 55, 391-401.	7.6	23

#	ARTICLE Nature of hydride and halide encapsulation in Ag ₈ cages: insights from the structure and	IF	CITATIONS
19	interaction energy of $ [Ag < sub > 8 < / sub > (X) \{ S < sub > 2 < / sub > P(O < sup > i < / sup > Pr) < sub > 2 < / sub > 3 < sub > 6 < / sub > 3 < sub > 6 < / sub > 1 < sup > F(O < sup > i < sub > 2 < sub > 6 < sub > 3 < sub > 6 < s$	Γ Q β(Ο Ο Ο	rgBT /Overlo
	calculations. Physical Chemistry Chemical Physics, 2021, 24, 452-458.		
20	Accurate Single-Molecule Kinetic Isotope Effects. Journal of the American Chemical Society, 2022, , .	6.6	8
21	Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes. Journal of the American Chemical Society, 2022, 144, 3162-3173.	6.6	24
22	Single-Molecule Junction: A Reliable Platform for Monitoring Molecular Physical and Chemical Processes. ACS Nano, 2022, 16, 3476-3505.	7.3	52
23	Syntheses of three-dimensional catenanes under kinetic control. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118573119.	3.3	12
24	The fabrication, characterization and functionalization in molecular electronics. International Journal of Extreme Manufacturing, 2022, 4, 022003.	6.3	23
25	Site-Specific Displacement-Driven Activation of Supramolecular Photosensitizing Nanoassemblies for Antitumoral Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14903-14915.	4.0	7
26	Thermoelectric properties of organic thin films enhanced by π–π stacking. JPhys Energy, 2022, 4, 024002.	2.3	6
27	Metal–organic cycle-based multistage assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122398119.	3.3	8
28	Stochastic Binding Dynamics of a Photoswitchable Single Supramolecular Complex. Advanced Science, 2022, 9, e2200022.	5.6	13
29	Anion Complexation Strongly Influences the Reactivity of Octafluorocyclooctatetraene. ChemistrySelect, 2021, 6, 13897-13905.	0.7	0
30	Transport Modulation Through Electronegativity Gating in Multiple Nitrogenous Circuits. Small, 2022, 18, e2200361.	5.2	1
31	Strain of Supramolecular Interactions in Singleâ€Stacking Junctions. Angewandte Chemie, 2022, 134, .	1.6	4
32	Dual Modulation of Single Molecule Conductance via Tuning Side Chains and Electric Field with Conjugated Molecules Entailing Intramolecular O•••S Interactions. Advanced Science, 2022, 9, e2105667	, 5.6	6
33	Strain of Supramolecular Interactions in Singleâ€Stacking Junctions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
34	Hard–soft chemistry guides the adaptable charge transport in lysine-doped heptapeptide junctions. Chemical Communications, 2022, 58, 6405-6408.	2.2	2
35	Dipole-improved gating of azulene-based single-molecule transistors. Journal of Materials Chemistry C, 2022, 10, 7803-7809.	2.7	8
36	Infrared fingerprints of water collective dynamics indicate proton transport in biological systems. Physical Review E, 2022, 105, 044409.	0.8	O

#	Article	IF	Citations
37	Phosphorescent Host–Guest Complexes on the Basis of Polyhedral Oligomeric Silsesquioxane-Functionalized Metallotweezers. Inorganic Chemistry, 2022, 61, 7111-7119.	1.9	2
38	Investigation of intrinsic charge transport via alkyl thiol molecular electronic junctions with conductive probe atomic force microscopy. Journal of Materials Science: Materials in Electronics, 2022, 33, 13568-13573.	1.1	1
39	Single-Molecule Fullerenes: Current Stage and Perspective. , 2022, 4, 1037-1052.		9
40	Structurally directed thienylenevinylene self-assembly for improved charge carrier mobility: 2D sheets <i>vs.</i> 1D fibers. Chemical Communications, 2022, 58, 6837-6840.	2.2	7
41	Bias-Voltage Dependence of Tunneling Decay Coefficient and Barrier Height in Arylalkane Molecular Junctions with Graphene Contacts as a Protecting Interlayer. Crystals, 2022, 12, 767.	1.0	2
42	Analysis of the host–guest complex formation involving bridged hexameric pyridinium–phenyl rings in the HexaCage6+ host in suit[3]ane: insights from dispersion-corrected DFT calculations for a nanometric mechanically interlocked device. Journal of Nanostructure in Chemistry, 0, , .	5. 3	2
43	A brief review on device operations and working mechanisms of organic transistor photomemories. Journal of Materials Chemistry C, 2022, 10, 13462-13482.	2.7	11
44	Single-molecule optoelectronic devices: physical mechanism and beyond. Opto-Electronic Advances, 2022, 5, 210094-210094.	6.4	12
45	Single-molecule nano-optoelectronics: insights from physics. Reports on Progress in Physics, 2022, 85, 086401.	8.1	9
46	Fluorescent cyclophanes and their applications. Chemical Society Reviews, 2022, 51, 5557-5605.	18.7	43
47	A photoinduced mixed valence photoswitch. Physical Chemistry Chemical Physics, 2022, 24, 15121-15128.	1.3	8
48	Beyond electrical conductance: progress and prospects in single-molecule junctions. Journal of Materials Chemistry C, 2022, 10, 13717-13733.	2.7	3
49	Robust formation of discrete non-covalent pyrene dimers in an amorphous film by strong π–π interaction. Chemical Communications, 2022, 58, 8250-8253.	2.2	5
50	Rotaxane nanomachines in future molecular electronics. Nanoscale Advances, 2022, 4, 3418-3461.	2.2	9
51	Switching charge states in quasi-2D molecular conductors. , 0, , .		0
52	Key advances in electrochemically-addressable single-molecule electronics. Current Opinion in Electrochemistry, 2022, 35, 101083.	2.5	1
53	Hydrogen-Bonded Organic Semiconductors with Long Charge Carrier Lifetimes. Journal of Physical Chemistry C, 2022, 126, 10932-10939.	1.5	5
54	Tetraruthenium Macrocycles with Laterally Extended Bis(alkenyl)quinoxaline Ligands and Their F4TCNQ•â^' Salts. Inorganics, 2022, 10, 82.	1.2	2

#	ARTICLE	IF	CITATIONS
55	Fluorescence Resonance Energy Transfer Measurements in Polymer Science: A Review. Macromolecular Rapid Communications, 2022, 43, .	2.0	10
56	Structure Property Investigations in Urea Tethered Iodinated Triphenylamines. Physical Chemistry Chemical Physics, 0, , .	1.3	0
57	Exploring the Ligand Functionality, Electronic Band Gaps, and Switching Characteristics of Single Wells–Dawsonâ€Type Polyoxometalates on Gold. Advanced Materials Interfaces, 2022, 9, .	1.9	7
58	A Roadmap for Mechanically Interlocked Molecular Junctions at Nanoscale. ACS Applied Nano Materials, 2022, 5, 13874-13886.	2.4	9
59	Ïf–Ïf Stacked supramolecular junctions. Nature Chemistry, 2022, 14, 1158-1164.	6.6	37
60	Single-Molecule Tunneling Sensors for Nitrobenzene Explosives. Analytical Chemistry, 2022, 94, 12042-12050.	3.2	13
61	Modulated Structure and Rectification Properties of a Molecular Junction by a Mixed Self-Assembled Monolayer. Langmuir, 2022, 38, 10893-10901.	1.6	6
62	Molecular Engineering of Noncovalent Dimerization. Journal of the American Chemical Society, 2022, 144, 14962-14975.	6.6	27
63	Fano Resonance in Singleâ€Molecule Junctions. Angewandte Chemie, 2022, 134, .	1.6	1
64	Quantum Interference-Controlled Conductance Enhancement in Stacked Graphene-like Dimers. Journal of the American Chemical Society, 2022, 144, 15689-15697.	6.6	19
65	Fano Resonance in Singleâ€Molecule Junctions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
66	Molecular Diodes With Tunable Threshold Voltage Based on Ï€â€Extended Tetrathiafulvalene. Advanced Materials Interfaces, 2022, 9, .	1.9	13
67	Fullerene-containing Pillar[n]arene Hybrid Composites. Organic and Biomolecular Chemistry, 0, , .	1.5	1
68	The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
69	Selfâ€Assembly of Peapodâ€ike Micrometer Tubes from a Planetâ€Satelliteâ€type Supramolecular Megamer. Angewandte Chemie - International Edition, 2022, 61, .	7.2	0
70	On-Surface Single-Molecule Identification of Mass-Selected Cyclodextrin-Supported Polyoxovanadates for Multistate Resistive-Switching Memory Applications. ACS Applied Nano Materials, 2022, 5, 14216-14220.	2.4	11
71	Selfâ€Assembly of Peapodâ€ike Micron Tubes from a Planetâ€Satelliteâ€type Supramolecular Megamer. Angewandte Chemie, 0, , .	1.6	0
72	The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angewandte Chemie, 2023, 135, .	1.6	O

#	Article	IF	Citations
73	Tuning the Kinetic Trapping in Chemically Fueled Selfâ€Assembly**. ChemSystemsChem, 2023, 5, .	1.1	7
74	Electron / hole catalysis: A versatile strategy for promoting chemical transformations. Tetrahedron, 2022, 126, 133065.	1.0	8
75	Vibrationâ€Assisted Charge Transport through Positively Charged Dimer Junctions. Angewandte Chemie - International Edition, 0, , .	7.2	6
76	Vibrationâ€Assisted Charge Transport through Positively Charged Dimer Junctions. Angewandte Chemie, 0, , .	1.6	3
77	Shifting the Triangle–Square Equilibrium of Self-Assembled Metallocycles by Guest Binding with Enhanced Photosensitization. Inorganic Chemistry, 2022, 61, 17289-17298.	1.9	6
78	Tunneling or Hopping? A Direct Electrochemical Observation of Electron Transfer in DNA. Analytical Chemistry, 2022, 94, 15324-15331.	3.2	5
79	On-Surface Translational Activity of Porphyrin Chromophore Molecules. Advances in Atom and Single Molecule Machines, 2023, , 83-103.	0.0	0
80	Catalysis enabled synthesis, structures, and reactivities of fluorinated S ₈ -corona[⟨i⟩n⟨/i⟩]arenes (⟨i⟩n⟨/i⟩ = 8–12). Chemical Science, 2022, 14, 70-77.	3.7	1
81	Single-Molecule Chemical Reactions Unveiled in Molecular Junctions. Processes, 2022, 10, 2574.	1.3	3
82	Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. Advanced Materials, 2023, 35, .	11.1	13
83	Reactions in single-molecule junctions. Nature Reviews Materials, 2023, 8, 165-185.	23.3	20
84	Organic Phaseâ€Change Memory Transistor Based on an Organic Semiconductor with Reversible Molecular Conformation Transition. Advanced Science, 2023, 10, .	5.6	5
85	Multistate Structural Switching of [3] Catenanes with Cyclic Porphyrin Dimers by Complexation with Amine Ligands. Angewandte Chemie, 0 , , .	1.6	0
86	Multistate Structural Switching of [3]Catenanes with Cyclic Porphyrin Dimers by Complexation with Amine Ligands. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
87	An artificial synapse based on molecular junctions. Nature Communications, 2023, 14, .	5.8	14
88	Mapping DNA Conformations Using Single-Molecule Conductance Measurements. Biomolecules, 2023, 13, 129.	1.8	1
89	Characterization and Application of Supramolecular Junctions. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
90	Characterization and Application of Supramolecular Junctions. Angewandte Chemie, 2023, 135, .	1.6	2

#	ARTICLE	IF	CITATIONS
91	Supramolecular Enhancement of Charge Transport through Pillar[5]areneâ€Based Selfâ€Assembled Monolayers. Angewandte Chemie, 2023, 135, .	1.6	0
92	Atomic-scale characterization of contact interfaces between thermally self-assembled Au islands and few-layer MoS2 surfaces on SiO2. Applied Surface Science, 2023, 616, 156483.	3.1	1
93	Probing Interfacial Charge Transfer between Amyloid- \hat{l}^2 and Graphene during Amyloid Fibrillization Using Raman Spectroscopy. ACS Nano, 2023, 17, 4834-4842.	7.3	4
94	Supramolecular Enhancement of Charge Transport through Pillar[5]areneâ€Based Selfâ€Assembled Monolayers. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
95	In Situ Adjustable Nanogaps and Inâ€Plane Break Junctions. Small Methods, 2023, 7, .	4.6	10
96	Selfâ€assembly of chiral diketopyrrolopyrrole chromophores giving supramolecular chains in monolayers and twisted microtapes. Chirality, 2023, 35, 281-297.	1.3	3
97	Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy. IScience, 2023, 26, 106279.	1.9	4
98	Metal Atoms (Li, Na, and K) Tuning the Configuration of Pyrrole for the Selective Recognition of C ₆₀ . Inorganic Chemistry, 2023, 62, 4618-4624.	1.9	2
99	Self-Assembly and Electrical Conductivity of a New [1]benzothieno[3,2-b][1]-benzothiophene (BTBT)-Peptide Hydrogel. Molecules, 2023, 28, 2917.	1.7	2
100	Not So Innocent After All: Interfacial Chemistry Determines Chargeâ€Transport Efficiency in Singleâ€Molecule Junctions. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
101	Not So Innocent After All: Interfacial Chemistry Determines Chargeâ€Transport Efficiency in Singleâ€Molecule Junctions. Angewandte Chemie, 2023, 135, .	1.6	2
102	Interface engineering for single-molecule devices. Trends in Chemistry, 2023, 5, 367-379.	4.4	3
103	Sheathed Molecular Junctions for Unambiguous Determination of Chargeâ€Transport Properties. Advanced Materials Interfaces, 2023, 10, .	1.9	2
105	Advances in single-molecule junctions as tools for chemical and biochemical analysis. Nature Chemistry, 2023, 15, 600-614.	6.6	8
114	Reversible Regulation of Long-Distance Charge Transport in DNA Nanowires by Dynamically Controlling Steric Conformation. Nano Letters, 2023, 23, 4201-4208.	4.5	1
122	Theoretical Approaches for Electron Transport Through Magnetic Molecules. Challenges and Advances in Computational Chemistry and Physics, 2023, , 445-494.	0.6	0
129	Highly stretchable and self-healing photoswitchable supramolecular fluorescent polymers for underwater anti-counterfeiting. Materials Horizons, 0, , .	6.4	0
139	Deciphering <i>l–V</i> characteristics in molecular electronics with the benefit of an analytical model. Physical Chemistry Chemical Physics, 2023, 25, 32305-32316.	1.3	1

#	Article	IF	CITATION
141	The regulation effect of coordination number on the conductance of single-molecule junctions. Journal of Materials Chemistry C, 0, , .	2.7	0
151	What can molecular assembly learn from catalysed assembly in living organisms?. Chemical Society Reviews, 2024, 53, 1892-1914.	18.7	O
153	A chiral metal cluster triggers enantiospecific electronic transport. Physical Chemistry Chemical Physics, 0, , .	1.3	0