Timeâ€Dependent Phosphorescence Colors from Carbo Information Encryption

Advanced Materials 33, e2006781 DOI: 10.1002/adma.202006781

Citation Report

#	Article	IF	CITATIONS
1	Dual information encryption of carbon dots endowed with recoverable functions after interception. New Journal of Chemistry, 2021, 45, 8203-8209.	1.4	5
2	Twoâ€Photon Ionization Induced Stable White Organic Long Persistent Luminescence. Angewandte Chemie - International Edition, 2021, 60, 16984-16988.	7.2	48
3	Twoâ€Photon Ionization Induced Stable White Organic Long Persistent Luminescence. Angewandte Chemie, 2021, 133, 17121-17125.	1.6	30
4	Pressure-induced photoluminescence enhancement and ambient retention in confined carbon dots. Nano Research, 2022, 15, 2545-2551.	5.8	26
5	Theoretical Understanding of Structure–Property Relationships in Luminescence of Carbon Dots. Journal of Physical Chemistry Letters, 2021, 12, 7671-7687.	2.1	111
6	Supramolecular Purely Organic Room-Temperature Phosphorescence. Accounts of Chemical Research, 2021, 54, 3403-3414.	7.6	179
7	Optical Properties of Carbon Dots in the Deepâ€Red to Nearâ€Infrared Region Are Attractive for Biomedical Applications. Small, 2021, 17, e2102325.	5.2	93
8	Sustainable afterglow materials from lignin inspired by wood phosphorescence. Cell Reports Physical Science, 2021, 2, 100542.	2.8	21
9	Sustainable Silkâ€Đerived Multimode Carbon Dots. Small, 2021, 17, e2103623.	5.2	21
10	Nearâ€Infraredâ€Excited Multicolor Afterglow in Carbon Dotsâ€Based Roomâ€Temperature Afterglow Materials. Angewandte Chemie, 2021, 133, 22427-22433.	1.6	8
11	Codes in Code: AIE Supramolecular Adhesive Hydrogels Store Huge Amounts of Information. Advanced Materials, 2021, 33, e2105418.	11.1	74
12	Heterogeneous Fluorescent Organohydrogel Enables Dynamic Anti ounterfeiting. Advanced Functional Materials, 2021, 31, 2108365.	7.8	114
13	Nearâ€Infraredâ€Excited Multicolor Afterglow in Carbon Dotsâ€Based Roomâ€Temperature Afterglow Materials. Angewandte Chemie - International Edition, 2021, 60, 22253-22259.	7.2	73
14	Ultra-stable anti-counterfeiting materials inspired by water stains. Cell Reports Physical Science, 2021, 2, 100571.	2.8	8
15	Excitation-dependent organic phosphors exhibiting different luminescence colors for information anti-counterfeiting. Chemical Engineering Journal, 2022, 429, 132288.	6.6	37
16	Achieving 46% efficient white-light emissive carbon dot-based materials by enhancing phosphorescence for single-component white-light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 6796-6801.	2.7	46
17	Fabrication of carbon dots for sequential on–off-on determination of Fe3+ and S2â^' in solid-phase sensing and anti-counterfeit printing. Analytical and Bioanalytical Chemistry, 2021, 413, 7473-7483.	1.9	5
18	Tunable KLa(MoO4)2:Eu3+@CDs composite materials for white LED and multi-mode information encryption technology. Journal of Alloys and Compounds, 2022, 894, 162298.	2.8	5

#	Article	IF	CITATIONS
19	Quintuple-mode dynamic anti-counterfeiting using multi-mode persistent phosphors. Journal of Materials Chemistry C, 2021, 9, 16634-16644.	2.7	55
20	Colorful, time-dependent carbon dot-based afterglow with ultralong lifetime. Chemical Engineering Journal, 2022, 431, 133373.	6.6	42
21	Ultraâ€strong phosphorescence with 48% quantum yield from grinding treated thermal annealed carbon dots and boric acid composite. SmartMat, 2022, 3, 260-268.	6.4	42
22	Coâ€Assembly of Biosynthetic Chiral Nematic Adhesive Materials with Dynamic Polarized Luminescence. Small, 2022, 18, e2104340.	5.2	17
23	Tailored Fabrication of Carbon Dot Composites with Fullâ€Color Ultralong Roomâ€Temperature Phosphorescence for Multidimensional Encryption. Advanced Science, 2022, 9, e2103833.	5.6	100
24	Employing metformin-directed carbon dots with room-temperature phosphorescent towards the dual-channel detection of L-tryptophan. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112236.	2.5	10
25	Red-light emissive phosphorescent polymers based on X-shaped single benzene. Dyes and Pigments, 2022, 198, 110005.	2.0	9
26	Biaxially extended side-chain conjugation of benzodithiophene-based polymer dots for superior photocatalytic stability under visible-light irradiation. Journal of Environmental Chemical Engineering, 2022, 10, 106927.	3.3	11
27	Timeâ€Resolved Encryption via a Kineticsâ€Tunable Supramolecular Photochromic System. Advanced Science, 2022, 9, e2104790.	5.6	29
28	Highly emissive zero-dimensional antimony halide for anti-counterfeiting and confidential information encryption-decryption. Chemical Engineering Journal, 2022, 431, 134336.	6.6	59
29	Bioinspired Perovskite Nanocrystalsâ€Integrated Photonic Crystal Microsphere Arrays for Information Security. Advanced Science, 2022, 9, e2105278.	5.6	36
30	Tuning multicolour emission of Zn ₂ GeO ₄ :Mn phosphors by Li ⁺ doping for information encryption and anti-counterfeiting applications. Dalton Transactions, 2022, 51, 553-561.	1.6	20
31	The light of carbon dots: From mechanism to applications. Matter, 2022, 5, 110-149.	5.0	374
32	Long-Lived Color-Tunable Room-Temperature Phosphorescence of Boron-Doped Carbon Dots. Langmuir, 2022, 38, 2287-2293.	1.6	29
33	Wide-Range Time-Dependent Color-Tunable Light-Response Afterglow Materials <i>via</i> Absorption Compensation for Advanced Information Encryption. ACS Applied Materials & Interfaces, 2022, 14, 11681-11689.	4.0	13
34	Information Storage Based on Stimuliâ€Responsive Fluorescent 3D Code Materials. Advanced Functional Materials, 2022, 32, .	7.8	45
35	One-step Synthesis of Biomass-Based Carbon Dots for Detection of Metal Ions and Cell Imaging. Frontiers in Energy Research, 2022, 10, .	1.2	3
36	Cascade Resonance Energy Transfer for the Construction of Nanoparticles with Multicolor Long Afterglow in Aqueous Solutions for Information Encryption and Bioimaging. Advanced Optical Materials, 2022, 10, .	3.6	43

#	Article	IF	CITATIONS
37	Enabling robust and hour-level organic long persistent luminescence from carbon dots by covalent fixation. Light: Science and Applications, 2022, 11, 80.	7.7	71
38	Rational Synthesis of Solid‧tate Ultraviolet B Emitting Carbon Dots via Acetic Acidâ€Promoted Fractions of sp ³ Bonding Strategy. Advanced Materials, 2022, 34, e2200011.	11.1	46
39	Surface ionization-induced tunable dynamic phosphorescence colors from carbon dots on paper for dynamic multimode encryption. Carbon, 2022, 195, 191-198.	5.4	46
40	Simultaneous monitoring of mitochondrial viscosity and membrane potential based on fluorescence changing and location switching of carbon dots in living cells. Carbon, 2022, 195, 112-122.	5.4	16
41	Preparation of multicolor carbon dots with high fluorescence quantum yield and application in white LED. Chemical Physics Letters, 2022, 794, 139497.	1.2	24
42	A novel chiral fluorescence probe based on carbon dots-copper(II) system for ratio fluorescence detection of gatifloxacin. Sensors and Actuators B: Chemical, 2022, 359, 131602.	4.0	19
43	Seeking eye protection from biomass: Carbon dot-based optical blocking films with adjustable levels of blue light blocking. Journal of Colloid and Interface Science, 2022, 617, 44-52.	5.0	19
44	Programmable Polarization of 2D Anisotropic Rare Earth Material for Images Transmission and Encryption. Advanced Optical Materials, 2022, 10, .	3.6	10
45	Tunable Secondâ€Level Roomâ€Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
46	Tunable Second‣evel Roomâ€Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angewandte Chemie, 2022, 134, .	1.6	9
47	Selfâ€Erase Forceâ€Induced Turnâ€On Organic ASE Output Cryptographic Primitive for Advanced Multiple Information Encryption. Laser and Photonics Reviews, 2022, 16, .	4.4	4
48	Edible Matrix Code with Photogenic Silk Proteins. ACS Central Science, 2022, 8, 513-526.	5.3	16
49	Rational preparation of anti-water phosphorescent carbon-dots and flake C3N4 composites through microwave-heating method for multiple data encryption. Journal of Luminescence, 2022, 248, 118928.	1.5	7
50	Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. Journal of Nanobiotechnology, 2022, 20, 236.	4.2	9
51	Triple optically modulated and enzymatically responsive organic afterglow materials for dynamic anti-counterfeiting. Materials Chemistry Frontiers, 2022, 6, 1824-1834.	3.2	12
52	Ultraviolet phosphorescent carbon nanodots. Light: Science and Applications, 2022, 11, .	7.7	33
53	Halogen-doped phosphorescent carbon dots for grayscale patterning. Light: Science and Applications, 2022, 11, .	7.7	27
54	Electricâ€Tunable Photoluminescence of 2D ErOCl for Highâ€Security Encryption of Programmable Information. Advanced Optical Materials, 2022, 10, .	3.6	4

#	Article	IF	CITATIONS
55	Multimodal, Convertible, and Chiral Optical Films for Anti ounterfeiting Labels. Advanced Functional Materials, 2022, 32, .	7.8	33
56	pH and solvent induced discoloration behavior of multicolor fluorescent carbon dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129261.	2.3	9
57	Quadruple Anticounterfeiting Encryption: Anion-Modulated Forward and Reverse Excitation-Dependent Multicolor Afterglow in Two-Component Ionic Crystals. ACS Applied Materials & Interfaces, 2022, 14, 30246-30255.	4.0	23
58	Carbon Dots in Hydroxy Fluorides: Achieving Multicolor Long-Wavelength Room-Temperature Phosphorescence and Excellent Stability via Crystal Confinement. Nano Letters, 2022, 22, 5127-5136.	4.5	46
59	Recent progress on performances and mechanisms of carbon dots for gas sensing. Luminescence, 2023, 38, 896-908.	1.5	3
60	Binding model-tuned room-temperature phosphorescence of the bromo-naphthol derivatives based on cyclodextrins. RSC Advances, 2022, 12, 19313-19316.	1.7	1
61	One-step high-yield preparation of nitrogen- and sulfur-codoped carbon dots with applications in chromium(<scp>vi</scp>) and ascorbic acid detection. RSC Advances, 2022, 12, 19686-19694.	1.7	3
62	Excitation-Wavelength-Dependent Organic Long-Persistent Luminescence Originating from Excited-State Long-Range Proton Transfer. Journal of the American Chemical Society, 2022, 144, 12652-12660.	6.6	40
63	Phosphorus and Nitrogen Codoped Carbonized Polymer Dots with Multicolor Room Temperature Phosphorescence for Anticounterfeiting Painting. Langmuir, 2022, 38, 8304-8311.	1.6	10
64	Boric Acidâ€Activated Roomâ€Temperature Phosphorescence and Thermally Activated Delayed Fluorescence for Efficient Solidâ€State Photoluminescence Materials. Advanced Optical Materials, 2022, 10, .	3.6	17
65	One-Step Synthesis of Nitrogen/Fluorine Co-Doped Carbon Dots for Use in Ferric lons and Ascorbic Acid Detection. Nanomaterials, 2022, 12, 2377.	1.9	11
66	Ultra-sensitive and stable N-doped carbon dots for selective detection of uranium through electron transfer induced UO2+(V) sensing mechanism. Carbon, 2022, 198, 162-170.	5.4	14
67	Solid-state carbon dots with orange phosphorescence and tunable fluorescence via in-situ growth in phthalimide crystal matrix. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129626.	2.3	10
68	Intelligent Surface with Multi-dimensional Information Enabled by a Dual Responsive Pattern with Fluorescence and Wrinkle. Macromolecules, 2022, 55, 6405-6414.	2.2	8
69	A dynamic assembly-induced emissive system for advanced information encryption with time-dependent security. Nature Communications, 2022, 13, .	5.8	96
70	Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature. Nature Communications, 2022, 13, .	5.8	12
71	Singleâ€Fluorophoreâ€Based Organic Crystals with Distinct Conformers Enabling Wideâ€Range Excitationâ€Dependent Emissions. Angewandte Chemie, 0, , .	1.6	3
72	Natural ultralong hemicelluloses phosphorescence. Cell Reports Physical Science, 2022, 3, 101015.	2.8	17

#	Article	IF	CITATIONS
73	Singleâ€Fluorophoreâ€Based Organic Crystals with Distinct Conformers Enabling Wideâ€Range Excitationâ€Dependent Emissions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
74	Dielectric Contrast Tailoring for Polarized Photosensitivity toward Multiplexing Optical Communications and Dynamic Encrypt Technology. ACS Nano, 2022, 16, 12852-12865.	7.3	22
75	Lighting up Micro-/Nanorobots with Fluorescence. Chemical Reviews, 2023, 123, 3944-3975.	23.0	33
76	An overview of optical, physical, biological, and catalytic properties of carbon dots. , 2023, , 31-41.		3
77	Stereospecific redox-mediated clusterization reconstruction for constructing long-lived, color-tunable, and processable phosphorescence cellulose. Chemical Engineering Journal, 2023, 451, 138923.	6.6	16
78	Data storage and encryption with a high security level based on molecular configurational isomers. Soft Matter, 2022, 18, 6599-6606.	1.2	2
79	Natural hybrid-mediated long-lived room temperature phosphorescence of milk powder. Journal of Materials Chemistry C, 2022, 10, 15629-15637.	2.7	4
80	Quantum Dotsâ€Functionalized Encryption Camera for Text Image Security Protection. Advanced Intelligent Systems, 0, , 2200171.	3.3	0
81	Carbon Surface Chemistry: New Insight into the Old Story. Advanced Materials, 2022, 34, .	11.1	43
82	Color-tunable and high-quantum-yield afterglow of carbon dots by covalent fixation. Journal of Luminescence, 2022, 252, 119399.	1.5	5
83	A Timeâ€Dependent Fluorescent Hydrogel for "Time‣ock―Information Encryption. Advanced Functional Materials, 2022, 32, .	7.8	53
84	Novel visible-light-excited afterglow rose-bengal-derived carbon dots and their applications. Journal of Luminescence, 2022, 252, 119370.	1.5	4
85	Ultraâ€Broadband Photoluminescent Carbon Dots Synthesized by Laserâ€Induced Thermal Shock. Laser and Photonics Reviews, 0, , 2200295.	4.4	1
86	Assignment of Core and Surface States in Multicolorâ€Emissive Carbon Dots. Small, 2023, 19, .	5.2	28
87	NaYF ₄ :Yb,Er@NaYF ₄ :Yb,Tm and NaYF ₄ :Yb,Tm@NaYF ₄ :Yb,Er Core@Shell Upconversion Nanoparticles Embedded in Acrylamide Hydrogels for Anti-Counterfeiting and Information Encryption. ACS Applied Nano Materials. 2022. 5, 16642-16654.	2.4	5
88	Controlled Synthesis of Multicolor Carbon Dots Assisted by Machine Learning. Advanced Functional Materials, 2023, 33, .	7.8	16
89	Constructing matrix-free solid-state carbon dots with efficient room-temperature phosphorescence. Journal of Luminescence, 2023, 253, 119454.	1.5	3
90	Photostable and printable fluorescence carbon quantum dots for advanced message encryption and specific reversible multiple sensing of Cu2+ and cysteine. Chemical Engineering Journal, 2023, 453, 139722.	6.6	17

#	Article	IF	CITATIONS
91	Nanoengineered Carbonâ€Based Interfaces for Advanced Energy and Photonics Applications: A Recent Progress and Innovations. Advanced Materials Interfaces, 2023, 10, .	1.9	6
92	Dual encryption of digital information in a tough fluorescent hydrogel. Polymer Chemistry, 2022, 13, 6255-6260.	1.9	7
93	Excitationâ€Dependent Multicolour Luminescence of Organic Materials: Internal Mechanism and Potential Applications. Angewandte Chemie, 2023, 135, .	1.6	4
94	Doped Carbon Dots as Promising Fluorescent Nanosensors: Synthesis, Characterization, and Recent Applications. Current Pharmaceutical Design, 2023, 29, 415-444.	0.9	19
95	Regulating photochemical properties of carbon dots for theranostic applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	10
96	Excitationâ€Dependent Multicolour Luminescence of Organic Materials: Internal Mechanism and Potential Applications. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
97	Fabrication of nano-objects with morphology-correlated room-temperature phosphorescence and their application in information encryption. Polymer Chemistry, 0, , .	1.9	0
98	One-step synthesis of N-doped carbon dots as sensitive "on–off-on―fluorescent sensor for tetracycline and Al3+ detection. Microchemical Journal, 2023, 185, 108290.	2.3	4
99	Aggregation in carbon dots. Aggregate, 2022, 3, .	5.2	40
100	A Readily Obtained Alternative to 1 <i>H</i> -Benzo[<i>f</i>]indole toward Room-Temperature Ultralong Organic Phosphorescence. Chemistry of Materials, 2023, 35, 347-357.	3.2	17
101	A Molecular Engineering Strategy for Achieving Blue Phosphorescent Carbon Dots with Outstanding Efficiency above 50%. Advanced Materials, 2023, 35, .	11.1	54
102	Benzo[<i>d</i>][1,2,3]thiadiazole-Based Polymer Dots as Photocatalysts for Enhanced Efficiency and Stability of Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Macromolecules, 2023, 56, 1352-1361.	2.2	6
103	Phosphorescent LaCO3OH core-satellite superstructures with highly efficient photocatalysis. Materials Today Sustainability, 2023, 21, 100290.	1.9	2
104	A Class of Organic Units Featuring Matrixâ€Controlled Colorâ€Tunable Ultralong Organic Room Temperature Phosphorescence. Advanced Science, 2023, 10, .	5.6	27
105	Interplay of defect levels and rare earth emission centers in multimode luminescent phosphors. Nature Communications, 2022, 13, .	5.8	63
106	"One stone, five birds― Ultrabright and multifaceted carbon dots for precise cell imaging and glutathione detection. Chemical Engineering Journal, 2023, 457, 140997.	6.6	12
107	High biocompatible nitrogen and sulfur Co-doped carbon dots for Hg(II) detection and their long-term biological stability in living cells. Analytica Chimica Acta, 2023, 1245, 340847.	2.6	18
108	RNAâ€Targeting Carbon Dots for Liveâ€Cell Imaging of Granule Dynamics. Advanced Materials, 2023, 35, .	11.1	33

#	Article	IF	CITATIONS
109	Designing stimuli-responsive and color-tunable indicators <i>via</i> the coexistence of dual emitting centers. Materials Chemistry Frontiers, 2023, 7, 535-544.	3.2	3
110	Long‣ived Dynamic Room Temperature Phosphorescence from Carbon Dots Based Materials. Small, 2023, 19, .	5.2	32
111	Multiple Stimuliâ€Response Polychromatic Carbon Dots for Advanced Information Encryption and Safety. Small, 2023, 19, .	5.2	22
112	Time-resolved encryption via photochromic and mechanochromic system based on silane-substituted spiropyran. Chemical Engineering Journal, 2023, 457, 141293.	6.6	14
113	Enhancement of Long-Lived Persistent Room-Temperature Phosphorescence and Anion Exchange with I [–] and SCN [–] via Metal–Organic Hybrid Formation. ACS Applied Materials & Interfaces, 2023, 15, 1495-1504.	4.0	6
114	High Color Stability Blue-to-Violet Room Temperature Phosphorescent Carbon Dot Composites with Ultralong Lifetime for Information Encryption. ACS Sustainable Chemistry and Engineering, 2023, 11, 1809-1819.	3.2	21
115	Macrocyclization-induced phosphorescence enhancement of pyridinium-based macrocycles. Journal of Materials Chemistry A, 2023, 11, 4957-4962.	5.2	4
116	Chiroâ€Optoelectronic Encodable Multilevel Thin Film Electronic Elements with Active Bioâ€Organic Electrolyte Layer. Small, 2023, 19, .	5.2	4
117	Polymer–Structureâ€Induced Roomâ€Temperature Phosphorescence of Carbon Dot Materials. Small Structures, 2023, 4, .	6.9	30
118	Photo-stimuli responsive phosphorescence from carbon dots in porous gelatin. Journal of Luminescence, 2023, 257, 119725.	1.5	2
119	Moistâ€Electric Generator with Efficient Output and Scalable Integration Based on Carbonized Polymer Dot and Liquid Metal Active Electrode. Advanced Functional Materials, 2023, 33, .	7.8	11
120	Thermally Enhanced and Long Lifetime Red TADF Carbon Dots via Multiâ€Confinement and Phosphorescence Assisted Energy Transfer. Advanced Materials, 2023, 35, .	11.1	41
121	Water-triggered visible and infrared light reversible switch using nanowires-covered micropores superhydrophilic surfaces. Chemical Engineering Journal, 2023, 461, 141894.	6.6	5
122	Achieving purple light excitable high-efficiency temperature-responsive dual- and single-mode afterglow in carbon dots. Carbon, 2023, 208, 365-373.	5.4	29
123	Hydrogen bonds and space restriction promoting long-lived room-temperature phosphorescence and its application for white light-emitting diodes. Journal of Colloid and Interface Science, 2023, 639, 78-86.	5.0	12
124	Efficient color-tunable room temperature phosphorescence through confining carbon dots in ionic crystal. Journal of Alloys and Compounds, 2023, 948, 169674.	2.8	2
125	Dual fluorescence and RTP features of carbazole-cyclic triimidazole derivatives: The fluorophores' connectivity does matter. Dyes and Pigments, 2023, 215, 111274.	2.0	2
126	Down-converting luminescent optoelectronics and their applications. APL Photonics, 2023, 8, .	3.0	6

#	Article	IF	CITATIONS
127	Multiple-color room-temperature phosphorescence regulated by graphitization and carbonyls. Chemical Engineering Journal, 2023, 459, 141635.	6.6	2
128	Recent developments in carbon dots: a biomedical application perspective. Journal of Materials Chemistry B, 2023, 11, 3038-3053.	2.9	5
129	Recent Advances of Carbon Dots with Afterglow Emission. Small, 2023, 19, .	5.2	31
130	Multiplexed stimuli-responsive molecules for high-security anti-counterfeiting applications. Journal of Materials Chemistry C, 2023, 11, 4164-4170.	2.7	2
131	Colorful Triplet Excitons in Carbon Nanodots for Time Delay Lighting. Advanced Materials, 2023, 35, .	11.1	25
132	Propeller Ultralong Room Temperature Phosphorescence: New Aspect of Triphenylphosphine Derivatives. Advanced Optical Materials, 2023, 11, .	3.6	5
133	Evolution and fabrication of carbon dot-based room temperature phosphorescence materials. Chemical Science, 2023, 14, 3705-3729.	3.7	41
134	Selective Expression of Organic P hosphorescence Units: When <i>H</i> -Benzo[f]indole Meets 7 <i>H</i> -Benzo[c]carbazole. Chemistry of Materials, 2023, 35, 2624-2634.	3.2	6
135	Enhanced moisture-enabled electricity generation through carbon dot surface functionalization using strong ionizing organic acid. New Journal of Chemistry, 2023, 47, 7211-7216.	1.4	2
136	Aggregation-induced color fine-tunable carbon dot phosphorescence covering from green to near-infrared for advanced information encryption. Chemical Engineering Journal, 2023, 462, 142339.	6.6	18
137	Pyridinic Nitrogen Doped Carbon Dots Supply Electrons to Improve Photosynthesis and Extracellular Electron Transfer of <i>Chlorella pyrenoidosa</i> . Small, 2023, 19, .	5.2	5
138	Carbon Dots for Electroluminescent Lightâ€Emitting Diodes: Recent Progress and Future Prospects. Advanced Materials, 2023, 35, .	11.1	26
139	Synthesis of Visible Light Excitable Carbon Dot Phosphorâ€Al ₂ O ₃ Hybrids for Antiâ€Counterfeiting and Information Encryption. Small, 2023, 19, .	5.2	12
140	Intense Circularly Polarized Fluorescence and Room-Temperature Phosphorescence in Carbon Dots/Chiral Helical Polymer Composite Films. ACS Nano, 2023, 17, 6912-6921.	7.3	17
141	Timeâ€dependent Phosphorescence Color of Carbon Dots in Binary Salt Matrices through Activations by Structural Confinement and Defects for Dynamic Information Encryption. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
142	Timeâ€dependent Phosphorescence Color of Carbon Dots in Binary Salt Matrices through Activations by Structural Confinement and Defects for Dynamic Information Encryption. Angewandte Chemie, 2023, 135, .	1.6	1
143	Mechanical Force-Induced Color-Variable Luminescence of Carbon Dots in Boric Acid Matrix. Molecules, 2023, 28, 3388.	1.7	0
144	One-pot solvothermal preparation of triple-emission N, Cl doped carbon quantum dots from waste traditional Chinese medicines as a fluorescent sensor for sensing water and Cr (â¥). Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023. 669. 131471.	2.3	3

#	Article	IF	CITATIONS
145	Acid/Base-driven visualized molecular hinge for advanced information encryption. Chemical Engineering Journal, 2023, 465, 142927.	6.6	3
146	Room Temperature Phosphorescence Carbon Dots: Preparations, Regulations, and Applications. Small, 2023, 19, .	5.2	22
168	Phosphorescence Enhancement of Pyridinium Macrocycles by Poly(vinylalcohol). Chemical Communications, 0, , .	2.2	0
190	High-efficiency NP-carbon dots above 60% with both delayed fluorescence and room-temperature phosphorescence. Chemical Communications, 2023, 59, 13474-13477.	2.2	2
205	Recent advances in red-emissive carbon dots and their biomedical applications. Materials Chemistry Frontiers, 2024, 8, 930-955.	3.2	0
219	Achieving time-dependent and color-tunable ultralong room temperature phosphorescence through sodiation reconfiguration for dynamic 5D information encryption. Journal of Materials Chemistry C, 2024, 12, 1945-1951.	2.7	0