The Triboelectric Nanogenerator as an Innovative Tech

Advanced Materials 33, e2004178 DOI: 10.1002/adma.202004178

Citation Report

#	Article	IF	CITATIONS
1	Recent developments of hybrid piezo–triboelectric nanogenerators for flexible sensors and energy harvesters. Nanoscale Advances, 2021, 3, 5465-5486.	2.2	47
2	A Portable and Flexible Self-Powered Multifunctional Sensor for Real-Time Monitoring in Swimming. Biosensors, 2021, 11, 147.	2.3	22
3	Instantaneous Self-Powered Sensing System Based on Planar-Structured Rotary Triboelectric Nanogenerator. Sensors, 2021, 21, 3741.	2.1	8
4	Smart Table Tennis Racket with Tunable Stiffness for Diverse Play Styles and Unconventional Technique Training. Advanced Materials Technologies, 2021, 6, 2100535.	3.0	7
5	Harvesting ambient mechanical energy by multiple mode triboelectric nanogenerator with charge excitation for self-powered freight train monitoring. Nano Energy, 2021, 90, 106543.	8.2	35
6	Wearable Selfâ€Powered Electrochemical Devices for Continuous Health Management. Advanced Functional Materials, 2021, 31, 2107042.	7.8	58
7	Flexible Ag Microparticle/MXene-Based Film for Energy Harvesting. Nano-Micro Letters, 2021, 13, 201.	14.4	57
8	Self-powered mobile sterilization and infection control system. Nano Energy, 2021, 88, 106313.	8.2	25
9	Growth ontrollable Triboelectric Nanogenerator Based on Surfaceâ€Attached Metalâ€Organic Framework Layer on Living Leaf. Small, 2021, 17, e2103430.	5.2	21
10	Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators. Nano Energy, 2021, 88, 106227.	8.2	76
11	Anti-stress ball energy harvester. Nano Energy, 2021, 90, 106493.	8.2	9
12	Multifunctional and Physically Transient Supercapacitors, Triboelectric Nanogenerators, and Capacitive Sensors. Advanced Functional Materials, 2022, 32, 2106066.	7.8	31
13	A Flexible and Stretchable Self-Powered Nanogenerator in Basketball Passing Technology Monitoring. Electronics (Switzerland), 2021, 10, 2584.	1.8	9
14	Artificial Intelligence of Things (AIoT) Enabled Floor Monitoring System for Smart Home Applications. ACS Nano, 2021, 15, 18312-18326.	7.3	80
15	Omnidirectional wind energy harvester for self-powered agro-environmental information sensing. Nano Energy, 2022, 91, 106686.	8.2	33
16	Triboelectric nanogenerator and artificial intelligence to promote precision medicine for cancer. Nano Energy, 2022, 92, 106783.	8.2	31
17	Wearable, Breathable and Waterproof Triboelectric Nanogenerators for Harvesting Human Motion and Raindrop Energy. Advanced Materials Technologies, 2022, 7, .	3.0	30
18	High-voltage output triboelectric nanogenerator with DC/AC optimal combination method. Nano Research, 2022, 15, 3239-3245.	5.8	20

#	Article	IF	CITATIONS
19	Piezoelectric Nanogenerator for Highly Sensitive and Synchronous Multi-Stimuli Sensing. ACS Nano, 2021, 15, 19783-19792.	7.3	44
20	Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoTâ€Based Smart Healthcare Applications. Advanced Science, 2022, 9, e2103694.	5.6	143
21	Emerging wearable flexible sensors for sweat analysis. Bio-Design and Manufacturing, 2022, 5, 64-84.	3.9	29
22	Evolving Flexible Sensors, Wearable and Implantable Technologies Towards BodyNET for Advanced Healthcare and Reinforced Life Quality. IEEE Open Journal of Circuits and Systems, 2021, 2, 702-720.	1.4	34
23	A robust hybrid generator for harvesting vehicle suspension vibration energy from random road excitation. Applied Energy, 2022, 309, 118506.	5.1	18
24	Green fabrication of double-sided self-supporting triboelectric nanogenerator with high durability for energy harvesting and self-powered sensing. Nano Energy, 2022, 93, 106827.	8.2	29
25	Opportunities and Challenges in Triboelectric Nanogenerator (TENG) based Sustainable Energy Generation Technologies: A Mini-Review. Chemical Engineering Journal Advances, 2022, 9, 100237.	2.4	65
26	Current degradation mechanism of tip contact metal-silicon Schottky nanogenerator. Nano Energy, 2022, 94, 106888.	8.2	15
27	Self-Rebound Cambered Triboelectric Nanogenerator Array for Self-Powered Sensing in Kinematic Analytics. ACS Nano, 2022, 16, 1271-1279.	7.3	18
28	Biomimetic jagged micropatterns templated from photoswitchable liquid crystal topography for energy harvesting and sensing applications. Journal of Materials Chemistry C, 2022, 10, 1808-1815.	2.7	7
29	Stimulation of ambient energy generated electric field on crop plant growth. Nature Food, 2022, 3, 133-142.	6.2	70
30	High performance single material-based triboelectric nanogenerators made of hetero-triboelectric half-cell plant skins. Nano Energy, 2022, 94, 106959.	8.2	9
31	Flexible Wood-Based Triboelectric Self-Powered Smart Home System. ACS Nano, 2022, 16, 3341-3350.	7.3	72
32	Applications of nanogenerators for biomedical engineering and healthcare systems. InformaÄnÃ- Materiály, 2022, 4, .	8.5	45
33	Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 1.	0.2	0
34	Interface synergistic effects induced multi-mode luminescence. Nano Research, 2022, 15, 4457-4465.	5.8	21
35	Human movement monitoring and behavior recognition for intelligent sports using customizable and flexible triboelectric nanogenerator. Science China Technological Sciences, 2022, 65, 826-836.	2.0	27
36	Improving Wastewater Treatment by Triboelectric-Photo/Electric Coupling Effect. ACS Nano, 2022, 16, 3449-3475.	7.3	60

#	Article	IF	CITATIONS
37	Monitoring the Degree of Comfort of Shoes In-Motion Using Triboelectric Pressure Sensors with an Ultrawide Detection Range. ACS Nano, 2022, 16, 4654-4665.	7.3	90
38	Influence of shape effect on dynamic surface charge transport mechanism of cellular electret after corona discharge. Plasma Science and Technology, 2022, 24, 044009.	0.7	3
39	Mechanoâ€Nanoarchitectonics: Design and Function. Small Methods, 2022, 6, e2101577.	4.6	23
40	An Automated Power Evaluation Workbench for Triboelectric Nanogenerators. Micromachines, 2022, 13, 444.	1.4	2
41	Electromechanical Nanogenerators for Cell Modulation. Nanoenergy Advances, 2022, 2, 110-132.	3.6	2
42	Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart Homes and Health Care. ACS Materials Au, 2022, 2, 394-435.	2.6	31
43	Flexible pressure sensors via engineering microstructures for wearable human-machine interaction and health monitoring applications. IScience, 2022, 25, 104148.	1.9	58
44	All-textile sensors for boxing punch force and velocity detection. Nano Energy, 2022, 97, 107114.	8.2	45
45	Optimization of bidirectional bending sensor as flexible ternary terminal for high-capacity human-machine interaction. Nano Energy, 2022, 97, 107173.	8.2	15
46	Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics. Nano Energy, 2022, 97, 107208.	8.2	58
47	Ice-based triboelectric nanogenerator with low friction and self-healing properties for energy harvesting and ice broken warning. Nano Energy, 2022, 97, 107144.	8.2	10
48	Electromagnetic Shielding Triboelectric Yarns for Human–Machine Interacting. Advanced Electronic Materials, 2022, 8, .	2.6	16
49	Machine-Learning-Aided Self-Powered Assistive Physical Therapy Devices. ACS Nano, 2021, 15, 18633-18646.	7.3	53
50	Analysis of Digital Long Jump Take-off Wearable Sensor Monitoring System. Journal of Sensors, 2021, 2021, 1-10.	0.6	0
51	Tuning Molecular Conformations to Enhance Spontaneous Orientation Polarization in Organic Thin Films. ACS Applied Materials & amp; Interfaces, 2022, 14, 18773-18781.	4.0	7
52	Selfâ€Powered Active Sensing Based on Triboelectric Generators. Advanced Materials, 2022, 34, e2200724.	11.1	72
53	A functional triboelectric nanogenerator based on the LiCl/PVA hydrogel for cheerleading training. Materials Technology, 2022, 37, 2752-2757.	1.5	8
54	Liquid Crystalline Thermosetting Compositesâ€Based Triboelectric Nanogenerators with Intrinsic Flame Retardancy. Advanced Materials Technologies, 2022, 7, .	3.0	5

#	Article	IF	CITATIONS
55	Multifunctional Textile Electronic with Sensing, Energy Storing, and Electrothermal Heating Capabilities. ACS Applied Materials & Interfaces, 2022, 14, 22497-22509.	4.0	11
56	From Triboelectric Nanogenerator to Polymer-Based Biosensor: A Review. Biosensors, 2022, 12, 323.	2.3	15
57	Multi-dimensional, transparent and foldable cellulose-based triboelectric nanogenerator for touching password recognition. Nano Energy, 2022, 98, 107307.	8.2	20
58	A high output triboelectric nanogenerator integrated with wave-structure electrode for football monitoring. Current Applied Physics, 2022, 39, 122-127.	1.1	7
59	Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. Polymer Reviews, 2023, 63, 67-126.	5.3	31
60	Magnets Assisted Triboelectric Nanogenerator for Harvesting Water Wave Energy. Advanced Materials Technologies, 2022, 7, .	3.0	4
61	Inhalationâ€Driven Vertical Flutter Triboelectric Nanogenerator with Amplified Output as a Gasâ€Maskâ€Integrated Selfâ€Powered Multifunctional System. Advanced Energy Materials, 2022, 12, .	10.2	9
62	Bone Repairment via Mechanosensation of Piezo1 Using Wearable Pulsed Triboelectric Nanogenerator. Small, 2022, 18, .	5.2	23
63	Recent Advances in Flexible Sensors and Their Applications. Sensors, 2022, 22, 4653.	2.1	32
64	Kirigamiâ€Based Flexible, Highâ€Performance Piezoelectric/Triboelectric Hybrid Nanogenerator for Mechanical Energy Harvesting and Multifunctional Selfâ€Powered Sensing. Energy Technology, 2022, 10,	1.8	6
65	Improving and Quantifying Surface Charge Density via Charge Injection Enabled by Air Breakdown. Advanced Functional Materials, 2022, 32, .	7.8	28
66	Recent Development of Morphology ontrolled Hybrid Nanomaterials for Triboelectric Nanogenerator: A Review. Chemical Record, 2022, 22, .	2.9	12
67	Ultrahigh Performance Triboelectric Nanogenerator Enabled by Charge Transmission in Interfacial Lubrication and Potential Decentralization Design. Research, 2022, 2022, .	2.8	22
68	Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications. Nano-Micro Letters, 2022, 14, .	14.4	75
69	Human Sports Action and Ideological and PoliticalEvaluation by Lightweight Deep Learning Model. Computational Intelligence and Neuroscience, 2022, 2022, 1-8.	1.1	1
70	A critical review of the recent progress on carbon nanotubes-based nanogenerators. Sensors and Actuators A: Physical, 2022, 344, 113743.	2.0	14
71	Selfâ€Powered Multifunctional Human–Machine Interfaces for Respiratory Monitoring and Smart System Control. Advanced Materials Interfaces, 2022, 9, .	1.9	8
72	Nerve Stimulation by Triboelectric Nanogenerator Based on Nanofibrous Membrane for Spinal Cord Injury. Frontiers in Chemistry, 0, 10, .	1.8	3

#	Article	IF	CITATIONS
73	MXene-based materials for advanced nanogenerators. Nano Energy, 2022, 101, 107556.	8.2	19
74	Highâ€Performance Liquid Crystalline Polymer for Intrinsic Fireâ€Resistant and Flexible Triboelectric Nanogenerators. Advanced Materials, 2022, 34, .	11.1	48
75	Electrospun PA66/Graphene Fiber Films and Application on Flexible Triboelectric Nanogenerators. Materials, 2022, 15, 5191.	1.3	1
76	Performance analysis and application of a hybrid electromagnetic-triboelectric nanogenerator for energy harvesting. Energy Reports, 2022, 8, 9184-9200.	2.5	5
77	Research on Self-Powered Coded Angle Sensor for Rock Climbing Training. IEEE Sensors Journal, 2022, 22, 17326-17333.	2.4	2
78	High Output Performance and Ultra-Durable DC Output for Triboelectric Nanogenerator Inspired by Primary Cell. Nano-Micro Letters, 2022, 14, .	14.4	27
79	Intrinsic Flame Retardant Triboelectric Nanogenerators Based on Liquid-Crystalline Copolyesters. ACS Applied Polymer Materials, 2022, 4, 5813-5820.	2.0	4
80	Textile-Triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices. Chemical Engineering Journal, 2023, 451, 138741.	6.6	40
81	Manufacturing Technics for Fabric/Fiber-Based Triboelectric Nanogenerators: From Yarns to Micro-Nanofibers. Nanomaterials, 2022, 12, 2703.	1.9	11
82	Research Progress on Triboelectric Nanogenerator for Sports Applications. Energies, 2022, 15, 5807.	1.6	9
84	Application of Artificial Intelligence and Big Data Technology in Basketball Sports Training. Wireless Communications and Mobile Computing, 2022, 2022, 1-10.	0.8	1
85	A triboelectric joint sensor imitating soft robot for human joint rehabilitation monitoring. Nano, 0, ,	0.5	0
86	Output Enhancement of Triboelectric Nanogenerators Based on Hierarchically Regular Cadmium Coordination Polymers for Photocycloaddition. Inorganic Chemistry, 2022, 61, 12736-12745.	1.9	13
87	Ultraâ^'Wide Range Vibration Frequency Detection Sensors Based on Elastic Steel Triboelectric Nanogenerators for Intelligent Machinery Monitoring. Nanomaterials, 2022, 12, 2790.	1.9	9
88	Scalable, stretchable and washable triboelectric fibers for self-powering human-machine interaction and cardiopulmonary resuscitation training. Nano Energy, 2022, 102, 107737.	8.2	11
89	Multifunctional respiration-driven triboelectric nanogenerator for self-powered detection of formaldehyde in exhaled gas and respiratory behavior. Nano Energy, 2022, 102, 107711.	8.2	68
90	Wearable and flexible electrodes in nanogenerators for energy harvesting, tactile sensors, and electronic textiles: novel materials, recent advances, and future perspectives. Materials Today Sustainability, 2022, 20, 100233.	1.9	16
91	Copper particles-PTFE tube based triboelectric nanogenerator for wave energy harvesting. Nano Energy, 2022, 102, 107749.	8.2	16

#	Article	IF	CITATIONS
92	Highly transparent and water-repellent hierarchical-wrinkled-architecture triboelectric nanogenerator with ultrathin plasma-polymer-fluorocarbon film for artificial triboelectric skin. Nano Energy, 2022, 103, 107785.	8.2	8
93	One-step fabrication of sandwiched film based triboelectric nanogenerator for large-area energy harvester and precise self-powered sensor. Nano Energy, 2022, 103, 107771.	8.2	12
94	PEO-PDMS-based triboelectric nanogenerators as self-powered sensors for driver status monitoring. Chemical Engineering Journal, 2023, 451, 138961.	6.6	18
95	Natural ginkgo tree leaves as piezo-energy harvesters. Journal of Materials Chemistry C, 2022, 10, 15016-15027.	2.7	4
96	A nonlinear triboelectric nanogenerator with a broadened bandwidth for effective harvesting of vibration energy. , 2022, 1, 236-242.		7
97	Multi-view block Fusion Algorithm for Data Mining and Intelligent Sports Training. , 2022, , .		0
98	Soft Human–Machine Interface Sensing Displays: Materials and Devices. Advanced Materials, 2023, 35, .	11.1	12
99	A Stretchable Triboelectric Nanogenerator Integrated Ion Coagulation Electrode for Cheerleading Monitoring. Journal of Electronic Materials, 2022, 51, 7182-7189.	1.0	5
100	Construction and Development Strategy of an Application System of Intelligent Sports in China's Sports Industry. Mathematical Problems in Engineering, 2022, 2022, 1-14.	0.6	0
101	An ultrasound-driven implantable wireless energy harvesting system using a triboelectric transducer. Matter, 2022, 5, 4315-4331.	5.0	28
102	Enhanced Performance of Triboelectric Nanogenerators and Sensors via Cold Spray Particle Deposition. ACS Applied Materials & Interfaces, 2022, 14, 46410-46420.	4.0	4
103	Development of polymer-dispersed liquid crystals: From mode innovation to applications. Composites Part A: Applied Science and Manufacturing, 2022, 163, 107234.	3.8	33
104	High-sensitive and ultra-wide spectrum multifunctional triboelectric acoustic sensor for broad scenario applications. Nano Energy, 2022, 104, 107932.	8.2	11
105	Advanced Fiber Materials for Wearable Electronics. Advanced Fiber Materials, 2023, 5, 12-35.	7.9	81
106	Application of Intelligent Sensor Network in the Assessment of Table Tennis Teaching and Training Intensity, Training Volume, and Physical Fitness. Journal of Sensors, 2022, 2022, 1-6.	0.6	3
107	A Stretchable and Human-Compatible Triboelectric Nanogenerator Integrated with LiCl Liquid Electrode for Volleyball Monitoring. Journal of Electronic Materials, 2022, 51, 7304-7312.	1.0	1
108	Boosting performance of triboelectric nanogenerator via polydimethylsiloxane modified with perovskite BiFeO ₃ nanoparticles. Materials Technology, 2022, 37, 3212-3221.	1.5	2
109	Selfâ€powered virtual olfactory generation system based on bionic fibrous membrane and electrostatic field accelerated evaporation. EcoMat, 2023, 5, .	6.8	12

#	Article	IF	Citations
110	Roadmap on nanogenerators and piezotronics. APL Materials, 2022, 10, . A Lightweight Sensitive Triboelectric Nanogenerator Sensor for Monitoring Loop Drive Technology	2.2	22
111	in Table Tennis Training. Electronics (Switzerland), 2022, 11, 3212.	1.8	6
112	Expedient secondary functions of flexible piezoelectrics for biomedical energy harvesting. Bioactive Materials, 2023, 22, 291-311.	8.6	15
113	Coordinated Intelligent Control of Car's Handling Stability based on Electronically Controlled Air Suspension IoT Monitoring. , 2022, , .		0
114	A Ring-Shaped Curved Deformable Self-Powered Vibration Sensor Applied in Drilling Conditions. Energies, 2022, 15, 8268.	1.6	1
115	Gas-Supported Triboelectric Nanogenerator Based on In Situ Gap-Generation Method for Biomechanical Energy Harvesting and Wearable Motion Monitoring. Sustainability, 2022, 14, 14422.	1.6	5
116	A durable triboelectric nanogenerator with a coaxial counter-rotating design for efficient harvesting of random mechanical energy. Nano Energy, 2023, 105, 108006.	8.2	3
117	Challenges and Opportunities of Chemiresistors Based on Microelectromechanical Systems for Chemical Olfaction. ACS Nano, 2022, 16, 17778-17801.	7.3	6
118	3D stretchable and self-encapsulated multimaterial triboelectric fibers. Science Advances, 2022, 8, .	4.7	8
119	Biocompatible and breathable healthcare electronics with sensing performances and photothermal antibacterial effect for motion-detecting. Npj Flexible Electronics, 2022, 6, .	5.1	12
120	Ultralarge Curvature and Extreme Rapid Degradable Porous Wood Based Flexible Triboelectric Sensor for Physical Motion Monitoring. Advanced Materials Technologies, 2023, 8, .	3.0	6
121	Deep Trap Boosted Ultrahigh Triboelectric Charge Density in Nanofibrous Cellulose-Based Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2023, 15, 997-1009.	4.0	10
122	Functional properties of PVDF-based NZF-BT flexible films. Lithuanian Journal of Physics, 2022, 62, .	0.1	0
123	Recent advances in determination applications of emerging films based on nanomaterials. Advances in Colloid and Interface Science, 2023, 311, 102828.	7.0	3
124	Electromechanical Properties of a Hybrid Broadband Wind Energy Harvester for Smart Agriculture Monitoring in the Loess Plateau. Electronics (Switzerland), 2023, 12, 34.	1.8	3
125	A Novel Triboelectric Nanogenerator Based on PDMS/Carbon for Energy Harvesting and Long-Distance Running Monitoring. Journal of Electronic Materials, 0, , .	1.0	1
126	A Novel Triboelectric Nanogenerator Based on Chitosan-Cotton-Paper Film for Biomechanical Energy Harvesting and Grip Force Motion Sensing. Journal of Electronic Materials, 2023, 52, 2380-2387.	1.0	6
127	A Box-Shaped Triboelectric Nanogenerator for Basketball Training Monitoring. Nano, 2023, 18, .	0.5	1

#	Article	IF	CITATIONS
128	Self-Powered Electronic Skin for Remote Human–Machine Synchronization. ACS Applied Electronic Materials, 2023, 5, 498-508.	2.0	48
129	A Method of Vibration Measurement with the Triboelectric Sensor during Geo-Energy Drilling. Energies, 2023, 16, 770.	1.6	2
130	Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators. Journal of Energy Chemistry, 2023, 79, 477-488.	7.1	25
131	A Wireless Intelligent Motion Correction System for Skating Monitoring Based on a Triboelectric Nanogenerator. Electronics (Switzerland), 2023, 12, 320.	1.8	3
132	Enhancing Performance of Triboelectric Nanogenerator via Surface Structure Coupling by Light-Cured 3-D Printing. IEEE Transactions on Electron Devices, 2023, 70, 1231-1235.	1.6	2
133	The role of branched alkylthio side chain on dispersion and thermoelectric properties of regioregular polythiophene/carbon nanotubes nanocomposites. Chemical Engineering Journal, 2023, 458, 141366.	6.6	10
134	High performance additional mass enhanced film structure triboelectric nanogenerator for scavenging vibration energy in broadband frequency range. Nano Energy, 2023, 107, 108182.	8.2	12
135	Natural sepiolite modified PVDF electrospun films for mechanically robust and high-performance triboelectric nanogenerators. Applied Clay Science, 2023, 233, 106819.	2.6	6
136	A triboelectric nanogenerator powered piezoresistive strain sensing technique insensitive to output variations. Nano Energy, 2023, 108, 108185.	8.2	7
137	Biodegradable Polymers in Triboelectric Nanogenerators. Polymers, 2023, 15, 222.	2.0	23
138	Highly Sensitive and Durable, Triboelectric Based Selfâ€Powered Nanosensor for Boundary Detection in Sports Event. Advanced Materials Technologies, 0, , 2201766.	3.0	0
139	Innovative Technology for Selfâ€Powered Sensors: Triboelectric Nanogenerators. , 2023, 2, .		5
140	Triboelectric Nanogenerator-Based Vibration Energy Harvester Using Bio-Inspired Microparticles and Mechanical Motion Amplification. Energies, 2023, 16, 1315.	1.6	3
141	Triboelectric Nanogenerator for Tactile Sensing and Al. , 2023, , 1-53.		0
142	A self-assembled molecularly triboelectronegative cellulose nanofiber material with ultrahigh contact triboelectrification for the design of green triboelectric nanogenerators. Sustainable Energy and Fuels, 2023, 7, 2087-2093.	2.5	2
143	Self-healing fluorinated poly(urethane urea) for mechanically and environmentally stable, high performance, and versatile fully self-healing triboelectric nanogenerators. Nano Energy, 2023, 108, 108243.	8.2	16
144	An internal electrode strategy for enhancing the stability and durability of triboelectric nanogenerator. Composites Science and Technology, 2023, 237, 110014.	3.8	6
145	On the temperature and humidity effects of contact electrification in semiconductor-semiconductor case: An energy band model for electron transfer in triboelectrification. Applied Materials Today, 2023, 32, 101791.	2.3	0

#	Article	IF	CITATIONS
146	A flexible piezoresistive strain sensor based on black phosphorus/gold nanocomposites interspersed sponge for motion sensing. Sensors and Actuators A: Physical, 2023, 356, 114359.	2.0	6
147	Self-powered microbial blocking textile driven by triboelectric charges. Nano Energy, 2023, 110, 108343.	8.2	19
148	A triboelectric nanogenerator coupled with internal and external friction for gesture recognition based on EHD printing technology. Nano Energy, 2023, 110, 108357.	8.2	6
149	An organic semiconductor/metal Schottky heterojunction based direct current triboelectric nanogenerator windmill for wind energy harvesting. Nano Energy, 2023, 109, 108302.	8.2	8
150	Soft Ballâ€Based Triboelectric–Electromagnetic Hybrid Nanogenerators for Wave Energy Harvesting. Advanced Materials Technologies, 2023, 8, .	3.0	9
151	Circuit representation, experiment and analysis of parallel-cell triboelectric nanogenerator. Energy Conversion and Management, 2023, 278, 116741.	4.4	2
152	Piezo/Triboelectric Nanogenerator from Lithium-Modified Zinc Titanium Oxide Nanofibers to Monitor Contact in Sports. ACS Applied Nano Materials, 2023, 6, 1770-1782.	2.4	11
153	Bioinspired Selfâ€healing Soft Electronics. Advanced Functional Materials, 2023, 33, .	7.8	25
154	A Flexible Triboelectric Nanogenerator Based on MXene for Jumping Motion Monitoring. Nano, 0, , .	0.5	0
155	Wearable Device-Based Intelligent Patrol Inspection System Design and Implementation. International Journal of Distributed Systems and Technologies, 2023, 14, 1-10.	0.6	1
156	Thermalâ€Triggered "On–Off―Switchable Triboelectric Nanogenerator Based on Twoâ€Way Shape Memor Polymer. Advanced Functional Materials, 2023, 33, .	У _{7.8}	12
157	Flexible and Robust Triboelectric Nanogenerators with Chemically Prepared Metal Electrodes and a Plastic Contact Interface Based on Low-Cost Pressure-Sensitive Adhesive. Sensors, 2023, 23, 2021.	2.1	1
158	Selfâ€Powered Smart Textile Based on Dynamic Schottky Diode for Humanâ€Machine Interactions. Advanced Science, 2023, 10, .	5.6	7
159	Triboelectric Nanogenerator as Intelligent Sensors for Security and Human Behavior. , 2023, , 1-30.		0
160	A Flexible Triboelectric Nanogenerator Integrated with CMCh-Fe/LiCl Hydrogel Electrode for Cheerleading Monitoring. Nano, 2023, 18, .	0.5	1
161	A mechanically adaptive polymer based triboelectric nanogenerator for long-life self-powered wearable electronics. European Polymer Journal, 2023, 188, 111937.	2.6	2
162	Electric Eel Biomimetics for Energy Storage and Conversion. Small Methods, 0, , .	4.6	4
163	Triboelectric Nanogenerator for Sports. , 2023, , 1-20.		0

#	Article	IF	CITATIONS
164	Mosaic Charge Distribution-Based Sliding and Pressing Triboelectrification under Wavy Configuration. Journal of Physical Chemistry Letters, 2023, 14, 2509-2517.	2.1	2
165	Exploring nonlinear degradation benefit of bio-inspired oscillator for engineering applications. Applied Mathematical Modelling, 2023, 119, 736-762.	2.2	8
166	Recent progress in textile-based triboelectric force sensors for wearable electronics. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	15
167	Waterproof, Breathable, and UV-Protective Nanofiber-Based Triboelectric Nanogenerator for Self-Powered Sensors. ACS Sustainable Chemistry and Engineering, 2023, 11, 5608-5616.	3.2	9
168	Piezoelectric Enhancement of Piezoceramic Nanoparticle-Doped PVDF/PCL Core-Sheath Fibers. Nanomaterials, 2023, 13, 1243.	1.9	8
169	Triboelectric nanogenerators: the beginning of blue dream. Frontiers of Chemical Science and Engineering, 2023, 17, 635-678.	2.3	21
170	Synergetic H-Bonding and C-T Interaction-Mediated Self-Assembled Structure Results in a Room-Temperature Ferroelectric Material Exhibiting Electric Field-Induced Dipole Switching and Piezo- and Pyroelectric Energy Conversion. Chemistry of Materials, 2023, 35, 3316-3328.	3.2	3
171	A Self-Powered Piezoelectric Nanofibrous Membrane as Wearable Tactile Sensor for Human Body Motion Monitoring and Recognition. Advanced Fiber Materials, 2023, 5, 1417-1430.	7.9	19
184	Triboelectric nanogenerators as self-powered sensors for biometric authentication. Nanoscale, 2023, 15, 9635-9651.	2.8	2
186	Flexible triboelectric nanogenerators using transparent copper nanowire electrodes: energy harvesting, sensing human activities and material recognition. Materials Horizons, 2023, 10, 3124-3134.	6.4	6
195	Applications of multifunctional triboelectric nanogenerator (TENG) devices: materials and prospects. Sustainable Energy and Fuels, 2023, 7, 3796-3831.	2.5	7
196	Progress in self-powered sensors—Moving toward artificial intelligent and neuromorphic system. Nano Research, 2023, 16, 11801-11821.	5.8	6
202	Triboelectric Nanogenerator as Intelligent Sensors for Security and Human Behavior. , 2023, , 1741-1770.		0
203	Triboelectric Nanogenerator for Sports. , 2023, , 951-970.		0
204	Triboelectric Nanogenerator for Tactile Sensing and Al. , 2023, , 1537-1589.		0
210	Emerging trends in self-healable nanomaterials for triboelectric nanogenerators: A comprehensive review and roadmap. Frontiers in Energy, 2023, 17, 727-750.	1.2	3
219	A Liquid-Solid Triboelectric Sensor for Minor and Invisible Leakage Monitoring in Ship Pipelines. , 2023, , .		0
230	Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses. Nano-Micro Letters, 2024, 16, .	14.4	5

#	Article	IF	CITATIONS
245	Wearable flexible pressure sensors: an intriguing design towards microstructural functionalization. Journal of Materials Chemistry A, 0, , .	5.2	0
253	Acceptance of Digital Technologies. Advances in Marketing, Customer Relationship Management, and E-services Book Series, 2024, , 251-263.	0.7	0
271	Energy Harvesting Technologies for Wireless Sensor Networks. Lecture Notes in Networks and Systems, 2024, , 77-87.	0.5	0