A â€~How to†guide for interpreting parameters in ha

Journal of Animal Ecology 90, 1027-1043 DOI: 10.1111/1365-2656.13441

Citation Report

#	Article	IF	CITATIONS
1	A â€~How to' guide for interpreting parameters in habitatâ€selection analyses. Journal of Animal Ecology, 2021, 90, 1027-1043.	2.8	119
2	Analysis of local habitat selection and large-scale attraction/avoidance based on animal tracking data: is there a single best method?. Movement Ecology, 2021, 9, 20.	2.8	5
3	Visitation of artificial watering points by the red fox (Vulpes vulpes) in semiarid Australia. Ecology and Evolution, 2021, 11, 9815-9826.	1.9	2
5	Solving the sample size problem for resource selection functions. Methods in Ecology and Evolution, 2021, 12, 2421-2431.	5.2	11
6	Using LiDAR and Random Forest to improve deer habitat models in a managed forest landscape. Forest Ecology and Management, 2021, 499, 119580.	3.2	14
7	Conceptual and methodological advances in habitatâ€selection modeling: guidelines for ecology and evolution. Ecological Applications, 2022, 32, e02470.	3.8	63
8	Roads constrain movement across behavioural processes in a partially migratory ungulate. Movement Ecology, 2021, 9, 57.	2.8	10
9	GPS tracking reveals landfill closures induce higher foraging effort and habitat switching in gulls. Movement Ecology, 2021, 9, 56.	2.8	12
10	Ocean warming alters the distributional range, migratory timing, and spatial protections of an apex predator, the tiger shark (<i>Galeocerdo cuvier</i>). Global Change Biology, 2022, 28, 1990-2005.	9.5	39
11	Circular–linear copulae for animal movement data. Methods in Ecology and Evolution, 2022, 13, 1001-1013.	5.2	10
14	Puma responses to unreliable human cues suggest an ecological trap in a fragmented landscape. Oikos, 2022, 2022, .	2.7	6
15	Habitat Selection and Specialisation of Herring Gulls During the Non-breeding Season. Frontiers in Marine Science, 2022, 9, .	2.5	4
16	Temperature and barometric pressure affect the activity intensity and movement of an endangered thermoconforming lizard. Ecosphere, 2022, 13, .	2.2	6
17	Estimating animal utilization distributions from multiple data types: A joint spatiotemporal point process framework. Annals of Applied Statistics, 2021, 15, .	1.1	8
18	Evaluating habitat selection models to predict critical habitat for mountain goats in northwest British Columbia. Journal of Wildlife Management, 2022, 86, .	1.8	3
21	Assessing the predictive power of step selection functions: How social and environmental interactions affect animal space use. Methods in Ecology and Evolution, 2022, 13, 1805-1818.	5.2	11
23	Targeting Sagebrush (Artemisia Spp.) Restoration Following Wildfire with Greater Sage-Grouse (Centrocercus Urophasianus) Nest Selection and Survival Models. Environmental Management, 2022, 70, 288-306.	2.7	4
26	Defining an epidemiological landscape that connects movement ecology to pathogen transmission and paceâ€ofâ€life. Ecology Letters, 2022, 25, 1760-1782.	6.4	18

#	Article	IF	CITATIONS
28	Cost distance models to predict contact between bighorn sheep and domestic sheep. Wildlife Society Bulletin, 2022, 46, .	0.8	1
29	Wolf spatial behavior promotes encounters and kills of abundant prey. Oecologia, 2022, 200, 11-22.	2.0	3
30	Climate, habitat interactions, and mule deer resource selection on winter landscapes. Journal of Wildlife Management, 2022, 86, .	1.8	0
31	Is it the road or the fence? Influence of linear anthropogenic features on the movement and distribution of a partially migratory ungulate. Movement Ecology, 2022, 10, .	2.8	6
32	Are we telling the same story? Comparing inferences made from camera trap and telemetry data for wildlife monitoring. Ecological Applications, 2023, 33, .	3.8	11
34	Temporal mismatch in space use by a sagebrush obligate species after largeâ€scale wildfire. Ecosphere, 2022, 13, .	2.2	4
35	Predator avoidance influences selection of neonatal lambing habitat by Sierra Nevada bighorn sheep. Journal of Wildlife Management, 0, , .	1.8	1
36	Using Bayesian networks to map winter habitat for mountain goats in coastal British Columbia, Canada. Frontiers in Environmental Science, 0, 10, .	3.3	0
37	Agricultural land use shapes dispersal in white-tailed deer (Odocoileus virginianus). Movement Ecology, 2022, 10, .	2.8	3
39	How to scale up from animal movement decisions to spatiotemporal patterns: An approach via step selection. Journal of Animal Ecology, 2023, 92, 16-29.	2.8	14
40	Behavioural syndromes going wild: individual risk-taking behaviours of free-ranging wild boar. Animal Behaviour, 2022, 194, 79-88.	1.9	3
41	Experience and social factors influence movement and habitat selection in scimitar-horned oryx (Oryx) Tj ETQq1	1 0.78431 2.8	.4 rgBT /Over
42	Grizzly bear habitat selection across the Northern Continental Divide Ecosystem. Biological Conservation, 2022, 276, 109813.	4.1	2
43	Timing rather than movement decisions explains age-related differences in wind support for a migratory bird. Animal Behaviour, 2023, 196, 23-42.	1.9	1
44	Moisture abundance and proximity mediate seasonal use of mesic areas and survival of greater sageâ€grouse broods. Ecological Solutions and Evidence, 2022, 3, .	2.0	0
45	Mitigating pseudoreplication and bias in resource selection functions with autocorrelationâ€informed weighting. Methods in Ecology and Evolution, 2023, 14, 643-654.	5.2	5
46	LiDAR reveals a preference for intermediate visibility by a forestâ€dwelling ungulate species. Journal of Animal Ecology, 0, , .	2.8	2
47	Environmental and anthropogenic features mediate risk from human hunters and wolves for moose. Ecosphere, 2022, 13, .	2.2	9

#	Article	IF	CITATIONS
48	Habitat selection by free-roaming domestic dogs in rabies endemic countries in rural and urban settings. Scientific Reports, 2022, 12, .	3.3	5
49	Densityâ€dependent habitat selection alters drivers of population distribution in northern Yellowstone elk. Ecology Letters, 2023, 26, 245-256.	6.4	6
50	Experience does not change the importance of wind support for migratory route selection by a soaring bird. Royal Society Open Science, 2022, 9, .	2.4	3
51	Using pseudo-absence models to test for environmental selection in marine movement ecology: the importance of sample size and selection strength. Movement Ecology, 2022, 10, .	2.8	4
53	Movement models and simulation reveal highway impacts and mitigation opportunities for a metapopulation-distributed species. Landscape Ecology, 2023, 38, 1085-1103.	4.2	2
54	Lead exposure in brown bears is linked to environmental levels and the distribution of moose kills. Science of the Total Environment, 2023, 873, 162099.	8.0	3
55	The Joint Evolution of Animal Movement and Competition Strategies. American Naturalist, 2023, 202, E65-E82.	2.1	3
56	Rapid behavioral responses of endangered tigers to major roads during COVID-19 lockdown. Global Ecology and Conservation, 2023, 42, e02388.	2.1	2
57	A three-step approach for assessing landscape connectivity via simulated dispersal: African wild dog case study. Landscape Ecology, 2023, 38, 981-998.	4.2	10
58	Influence of prey availability on habitat selection during the non-breeding period in a resident bird of prey. Movement Ecology, 2023, 11, .	2.8	2
60	Open problems in PDE models for knowledge-based animal movement via nonlocal perception and cognitive mapping. Journal of Mathematical Biology, 2023, 86, .	1.9	16
61	Multiâ€ le vel habitat selection of boreal breeding mallards. Journal of Wildlife Management, 2023, 87, .	1.8	0
63	A multi-level modeling approach to guide management of female feral hogs in great smoky mountains National Park. Biological Invasions, 0, , .	2.4	0
64	Can we predict visitor movement? Using step selection function analysis to map high probability camping areas in a remote Alaskan wilderness. Landscape and Urban Planning, 2023, 237, 104796.	7.5	0
65	Semi-domesticated reindeer avoid winter habitats with exotic tree species Pinus contorta. Forest Ecology and Management, 2023, 540, 121062.	3.2	1
66	Flexible hidden Markov models for behaviour-dependent habitat selection. Movement Ecology, 2023, 11,	2.8	5
67	Waterbird–habitat relationships in South Carolina: implications for protection, restoration, and management of coastal and inland wetlands. Restoration Ecology, 2023, 31, .	2.9	0
68	Space–time homeâ€range estimates and resource selection for the Critically Endangered Philippine Eagle on Mindanao. Ibis, 2024, 166, 156-170.	1.9	0

#	Article	IF	CITATIONS
69	Habitat and climatic associations of <scp>climateâ€sensitive</scp> species along a southern range boundary. Ecology and Evolution, 2023, 13, .	1.9	1
70	Accounting for central place foraging constraints in habitat selection studies. Ecology, 0, , .	3.2	2
73	Death comes for us all: relating movement-integrated habitat selection and social behavior to human-associated and disease-related mortality among gray wolves. Oecologia, 0, , .	2.0	1
74	Individual variation in the habitat selection of upstream migrating fish near a barrier. Movement Ecology, 2023, 11, .	2.8	1
75	Novel pathogen introduction triggers rapid evolution in animal social movement strategies. ELife, 0, 12, .	6.0	2
78	Fast range expansion of the red imported fire ant in Virginia and prediction of future spread in the United States. Ecosphere, 2023, 14, .	2.2	1
79	Accounting for unobserved spatial variation in step selection analyses of animal movement via spatial random effects. Methods in Ecology and Evolution, 2023, 14, 2639-2653.	5.2	5
81	The method matters. A comparative study of biologging and camera traps as data sources with which to describe wildlife habitat selection. Science of the Total Environment, 2023, 902, 166053.	8.0	2
82	Shift in habitat selection during natal dispersal in a longâ€lived raptor species. Ecography, 2023, 2023, .	4.5	1
83	Sex and diel period influence patterns of resource selection in elk. Journal of Wildlife Management, 2024, 88, .	1.8	0
85	Logging, linear features, and human infrastructure shape the spatial dynamics of wolf predation on an ungulate neonate. Ecological Applications, 2023, 33, .	3.8	3
87	Effects of vehicle traffic on space use and road crossings of caribou in the <scp>A</scp> rctic. Ecological Applications, 2023, 33, .	3.8	1
88	The Habitat Selection of Animals. , 2024, , 36-50.		0
89	A multistate <scp>L</scp> angevin diffusion for inferring behaviorâ€specific habitat selection and utilization distributions. Ecology, 2024, 105, .	3.2	1
90	Avoidance of offshore wind farms by Sandwich Terns increases with turbine density. Condor, 2024, 126, .	1.6	2
91	Habitat visibility affects the behavioral response of a large herbivore to human disturbance in forest landscapes. Journal of Environmental Management, 2023, 348, 119244.	7.8	0
92	Biological Modelling with Nonlocal Advection Diffusion Equations. Mathematical Models and Methods in Applied Sciences, 0, , .	3.3	0
93	Wild Mountain reindeer Rangifer tarandus tarandus winter foraging: snow-free areas a key resource for feeding. Polar Biology, 0, , .	1.2	0

#	Article	IF	CITATIONS
94	Movement behavior, habitat selection, and functional responses to habitat availability among four species of wintering waterfowl in California. Frontiers in Ecology and Evolution, 0, 11, .	2.2	0
95	Using individualâ€based habitat selection analyses to understand the nuances of habitat use in an anthropogenic landscape: a case study using greater sageâ€grouse trying to raise young in an oil and gas field. Wildlife Biology, 2024, 2024, .	1.4	0
96	Spatial behaviors and seasonal habitat use of the increasingly endangered thick-billed parrot (Rhynchopsitta pachyrhyncha). Global Ecology and Conservation, 2023, 48, e02712.	2.1	0
97	Preferential selection of marine protected areas by the recreational scuba diving industry. Marine Policy, 2024, 159, 105908.	3.2	1
100	Bringing the Black rhino back: Key factors for reintroduction success. Global Ecology and Conservation, 2023, 48, e02756.	2.1	0
101	Simulating animal space use from fitted integrated <scp>Stepâ€Selection Functions</scp> (<scp>iSSF</scp>). Methods in Ecology and Evolution, 2024, 15, 43-50.	5.2	3
102	Understanding step selection analysis through numerical integration. Methods in Ecology and Evolution, 2024, 15, 24-35.	5.2	2
103	Ecological Characteristics of Diurnal Rest Sites Used by Ringtails (Bassariscus astutus). Northwest Science, 2023, 96, .	0.2	0
104	Boundary Spanning Methodological Approaches for Collaborative Moose Governance in Eeyou Istchee. Environmental Management, 0, , .	2.7	0
105	Movement ecology of an endangered mesopredator in a mining landscape. Movement Ecology, 2024, 12,	2.8	0
106	Ecological Characteristics of Diurnal Rest Sites Used by Ringtails (Bassariscus astutus). Northwest Science, 2023, 96, .	0.2	0
108	Resource Selection Function-Adjusted Carrying Capacity Informs Bison Conservation Management in the Imperilled Mixed Grassland Ecosystem. Rangeland Ecology and Management, 2024, 93, 1-14.	2.3	0
109	Home range and habitat utilization of gaur (Bos gaurus) in transition zone between protected forest and human-dominated landscape, Eastern Thailand. Global Ecology and Conservation, 2024, 50, e02811.	2.1	0
110	Rayleigh step-selection functions and connections to continuous-time mechanistic movement models. Movement Ecology, 2024, 12, .	2.8	0
111	Effects of large-scale gold mining on habitat use and selection by American pronghorn. Science of the Total Environment, 2024, 921, 170750.	8.0	0
112	Use of linear features by red-legged partridges in an intensive agricultural landscape: implications for landscape management in farmland. , 0, 4, .		0
113	Feral horses and pronghorn: a test of the forage maturation hypothesis in an arid shrubland. Animal Behaviour, 2024, 210, 55-61.	1.9	0
114	Spatial prey availability and pulsed reproductive tactics: Encounter risk in a canid–ungulate system. Journal of Animal Ecology, 2024, 93, 447-459.	2.8	0

#	Article	IF	CITATIONS
115	How to account for behavioral states in step-selection analysis: a model comparison. PeerJ, 0, 12, e16509.	2.0	0
116	Human access constrains optimal foraging and habitat availability in an avian generalist. Ecological Applications, 2024, 34, .	3.8	0
118	The use of social information in vulture flight decisions. Proceedings of the Royal Society B: Biological Sciences, 2024, 291, .	2.6	0