Enhanced Cuprophilic Interactions in Crystalline Cataly Electroreduction of CO₂ to CH<sub>4</sub

Journal of the American Chemical Society 143, 3808-3816

DOI: 10.1021/jacs.0c11450

Citation Report

#	Article	IF	Citations
1	A 20-core copper(<scp>i</scp>) nanocluster as electron–hole recombination inhibitor on TiO ₂ nanosheets for enhancing photocatalytic H ₂ evolution. Nanoscale, 2021, 13, 16182-16188.	2.8	5
2	Novel ultrabright luminescent copper nanoclusters and application in light-emitting devices. Chemical Communications, 2021, 57, 9890-9893.	2.2	9
3	MOF-based electrocatalysts for high-efficiency CO ₂ conversion: structure, performance, and perspectives. Journal of Materials Chemistry A, 2021, 9, 22710-22728.	5.2	20
4	Crystalline mixed-valence copper supramolecular isomers for electroreduction of CO ₂ to hydrocarbons. Journal of Materials Chemistry A, 2021, 9, 23477-23484.	5. 2	7
5	Tandem-like vanadium cluster chains in a polyoxovanadate-based metal–organic framework for efficient catalytic oxidation of sulfides. Inorganic Chemistry Frontiers, 2021, 8, 4367-4375.	3.0	27
6	Two Co(II)-Based MOFs Constructed from Resorcin[4]Arene Ligand: Syntheses, Structures, and Heterogeneous Catalyst for Conversion of CO2. Crystals, 2021, 11, 574.	1.0	2
7	Hairy sphere-like Ni9S8/CuS/Cu2O composites grown on nickel foam as bifunctional electrocatalysts for hydrogen evolution and urea electrooxidation. International Journal of Hydrogen Energy, 2021, 46, 20950-20960.	3.8	44
8	Advances in Understanding the Electrocatalytic Reconstruction Chemistry of Coordination Compounds. Small, 2021, 17, e2100629.	5. 2	10
9	Self-assembly of single metal sites embedded covalent organic frameworks into multi-dimensional nanostructures for efficient CO2 electroreduction. Chinese Chemical Letters, 2022, 33, 1439-1444.	4.8	31
10	In(III) Metal–Organic Framework Incorporated with Enzyme-Mimicking Nickel Bis(dithiolene) Ligand for Highly Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2021, 143, 14071-14076.	6.6	54
11	Predesign of Catalytically Active Sites via Stable Coordination Cluster Model System for Electroreduction of CO2 to Ethylene. Angewandte Chemie, 0, , .	1.6	4
12	In Situ Phase Separation into Coupled Interfaces for Promoting CO ₂ Electroreduction to Formate over a Wide Potential Window. Angewandte Chemie, 2021, 133, 23122-23129.	1.6	11
13	Copper/Carbon Heterogenous Interfaces for Enhanced Selective Electrocatalytic Reduction of CO ₂ to Formate. Small, 2021, 17, e2102629.	5. 2	18
14	Predesign of Catalytically Active Sites via Stable Coordination Cluster Model System for Electroreduction of CO ₂ to Ethylene. Angewandte Chemie - International Edition, 2021, 60, 26210-26217.	7.2	44
15	Highly Selective Tandem Electroreduction of CO ₂ to Ethylene over Atomically Isolated Nickel–Nitrogen Site/Copper Nanoparticle Catalysts. Angewandte Chemie, 2021, 133, 25689-25696.	1.6	31
16	Highly Efficient Electroconversion of CO ₂ into CH ₄ by a Metal–Organic Framework with Trigonal Pyramidal Cu(I)N ₃ Active Sites. ACS Catalysis, 2021, 11, 11786-11792.	5.5	54
17	In Situ Phase Separation into Coupled Interfaces for Promoting CO ₂ Electroreduction to Formate over a Wide Potential Window. Angewandte Chemie - International Edition, 2021, 60, 22940-22947.	7.2	67
18	Highly Selective Tandem Electroreduction of CO ₂ to Ethylene over Atomically Isolated Nickel–Nitrogen Site/Copper Nanoparticle Catalysts. Angewandte Chemie - International Edition, 2021, 60, 25485-25492.	7.2	168

#	Article	IF	CITATIONS
19	Effects of the Catalyst Dynamic Changes and Influence of the Reaction Environment on the Performance of Electrochemical CO ₂ Reduction. Advanced Materials, 2022, 34, e2103900.	11.1	61
20	Life cycle and economic analysis of chemicals production via electrolytic (bi)carbonate and gaseous CO2 conversion. Applied Energy, 2021, 304, 117768.	5.1	15
21	Self-assembly of cuprous iodide cluster-based calix[4]resorcinarenes and photocatalytic properties. CrystEngComm, 2021, 23, 7179-7185.	1.3	11
22	Steric effect induces CO electroreduction to CH ₄ on Cu–Au alloys. Journal of Materials Chemistry A, 2021, 9, 21779-21784.	5.2	16
23	Factors Influencing the Performance of Copper-Bearing Catalysts in the CO ₂ Reduction System. ACS Energy Letters, 2021, 6, 3992-4022.	8.8	58
24	Dynamic Restructuring of Coordinatively Unsaturated Copper Paddle Wheel Clusters to Boost Electrochemical CO ₂ Reduction to Hydrocarbons**. Angewandte Chemie, 2022, 134, .	1.6	8
25	Dynamic Restructuring of Coordinatively Unsaturated Copper Paddle Wheel Clusters to Boost Electrochemical CO ₂ Reduction to Hydrocarbons**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	61
26	Covalently anchoring covalent organic framework on carbon nanotubes for highly efficient electrocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2022, 303, 120897.	10.8	62
27	Unveiling the reaction pathway on Cu/CeO2 catalyst for electrocatalytic CO2 reduction to CH4. Applied Catalysis B: Environmental, 2022, 304, 120951.	10.8	54
28	MOF Encapsulating Nâ€Heterocyclic Carbeneâ€Ligated Copper Singleâ€Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angewandte Chemie, 2022, 134, e202114450.	1.6	15
29	MOF Encapsulating Nâ€Heterocyclic Carbene‣igated Copper Singleâ€Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	170
30	Boron-doped Covalent Triazine Framework for Efficient CO2 Electroreduction. Chemical Research in Chinese Universities, 2022, 38, 141-146.	1.3	9
31	Dynamic Evolution of Active Sites in Electrocatalytic CO ₂ Reduction Reaction: Fundamental Understanding and Recent Progress. Advanced Functional Materials, 2022, 32, .	7.8	65
32	MOF-derived Cu@Cu2O heterogeneous electrocatalyst with moderate intermediates adsorption for highly selective reduction of CO2 to methanol. Chemical Engineering Journal, 2022, 431, 134171.	6.6	59
33	Ultrathin covalent and cuprophilic interaction-assembled copper–sulfur monolayer in organic metal chalcogenide for oriented photoconductivity. Chemical Communications, 2022, 58, 2858-2861.	2.2	7
34	Assembling Metal Organic Layer Composites for Highâ€Performance Electrocatalytic CO ₂ Reduction to Formate. Angewandte Chemie, 2022, 134, .	1.6	3
35	Boosting CO ₂ electroreduction over Co nanoparticles supported on N,B-co-doped graphitic carbon. Green Chemistry, 2022, 24, 1488-1493.	4.6	18
36	Single-phase proton- and electron-conducting Ag-organic coordination polymers for efficient CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 3216-3225.	5.2	7

3

#	ARTICLE	IF	CITATIONS
37	Uncovering the synergistic photocatalytic behavior of bimetallic molecular catalysts. Chinese Chemical Letters, 2023, 34, 107146.	4.8	4
38	Assembling Metal Organic Layer Composites for Highâ€Performance Electrocatalytic CO ₂ Reduction to Formate. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
39	Hydroxyâ€Groupâ€Functionalized Single Crystal of Copper(II)â€Porphyrin Complex for Electroreduction CO 2 to CH 4. ChemSusChem, 2022, , .	3.6	3
40	Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. Nature Communications, 2022, 13, 63.	5.8	64
41	Dual-active sites design of Snx-Sby-O-GO nanosheets for enhancing electrochemical CO2 reduction via Sb-accelerating water activation. Applied Catalysis B: Environmental, 2022, 307, 121171.	10.8	7
42	Design Syntheses of Metal-Organic Layer with Rich N-sites for CO2 Chemical Fixation. CrystEngComm, 0, , .	1.3	2
43	Comparative life cycle and economic assessments of various value-added chemicals' production <i>via</i> electrochemical CO ₂ reduction. Green Chemistry, 2022, 24, 2927-2936.	4.6	7
44	Highlyâ€Exposed Singleâ€Interlayered Cu Edges Enable Highâ€Rate CO ₂ â€toâ€CH ₄ Electrosynthesis. Advanced Energy Materials, 2022, 12, .	10.2	26
45	Electrocatalytic CO2 Reduction and H2 Evolution by a Copper (II) Complex with Redox-Active Ligand. Molecules, 2022, 27, 1399.	1.7	5
46	Adjusting Local CO Confinement in Porous-Shell Ag@Cu Catalysts for Enhancing C–C Coupling toward CO ₂ Eletroreduction. Nano Letters, 2022, 22, 2554-2560.	4.5	43
47	Steering Unit Cell Dipole and Internal Electric Field by Highly Dispersed Er atoms Embedded into NiO for Efficient CO ₂ Photoreduction. Advanced Functional Materials, 2022, 32, .	7.8	52
48	Toward Highâ€Performance CO ₂ â€toâ€C ₂ Electroreduction via Linker Tuning on MOFâ€Derived Catalysts. Small, 2022, 18, e2200720.	5.2	15
49	Unraveling and tuning the linear correlation between CH4 and C2 production rates in CO2 electroreduction. Science Bulletin, 2022, 67, 1042-1048.	4.3	11
50	Unprecedented Electroreduction of CO ₂ over Metal Organic Framework-Derived Intermetallic Nano-Alloy Cu _{0.85} Ni _{0.15} /C. ACS Applied Energy Materials, 2022, 5, 4945-4955.	2.5	20
51	Enhanced CO2 electroreduction to formate over tin coordination polymers via amino-functionalization. Journal of Power Sources, 2022, 529, 231252.	4.0	7
52	Self-reconstruction of paddle-wheel copper-node to facilitate the photocatalytic CO2 reduction to ethane. Applied Catalysis B: Environmental, 2022, 310, 121320.	10.8	56
53	Constructing crystalline redox catalyst to achieve efficient CO2 photoreduction reaction in water vapor. Chemical Engineering Journal, 2022, 442, 136157.	6.6	22
54	The Crystal Plane is not the Key Factor for CO ₂ â€toâ€Methane Electrosynthesis on Reconstructed Cu ₂ O Microparticles. Angewandte Chemie, 2022, 134, .	1.6	1

#	Article	IF	CITATIONS
55	The Crystal Plane is not the Key Factor for CO ₂ â€toâ€Methane Electrosynthesis on Reconstructed Cu ₂ O Microparticles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	69
56	Ga doping disrupts C-C coupling and promotes methane electroproduction on CuAl catalysts. Chem Catalysis, 2022, 2, 908-916.	2.9	24
57	Electrolytic Methane Production from Reactive Carbon Solutions. ACS Energy Letters, 2022, 7, 1712-1718.	8.8	23
58	Structural and interfacial engineering of well-defined metal-organic ensembles for electrocatalytic carbon dioxide reduction. Chinese Journal of Catalysis, 2022, 43, 1417-1432.	6.9	11
59	Flexible Cuprous Triazolate Frameworks as Highly Stable and Efficient Electrocatalysts for CO ₂ Reduction with Tunable C ₂ H ₄ /CH ₄ > Selectivity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	50
60	Flexible Cuprous Triazolate Frameworks as Highly Stable and Efficient Electrocatalysts for CO ₂ Reduction with Tunable C ₂ H ₄ /CH ₄ Selectivity. Angewandte Chemie, 2022, 134, .	1.6	4
61	Interfacial Electron Delocalization in Engineering Nanosized Anti-Perovskite Nitride for Efficient CO ₂ Electroreduction. Chemistry of Materials, 2022, 34, 5607-5620.	3.2	11
62	Metal-organic layers induce in situ nano-structuring of Cu surface in electrocatalytic CO2 reduction. Nano Research, 2023, 16, 4554-4561.	5. 8	4
63	Metal-Organic framework catalysts: A versatile platform for bioinspired electrochemical conversion of carbon dioxide. Chemical Engineering Journal, 2022, 446, 137311.	6.6	13
64	Redoxâ€Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxidation and CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	1.6	6
65	Redoxâ€Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxidation and CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
66	Mediating CO ₂ Electroreduction Activity and Selectivity over Atomically Precise Copper Clusters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
67	Electrocatalysis CO ₂ to Tunable Syngas upon Fe Clusters Catalyst Dispersed on Bamboo-like NCTs. Inorganic Chemistry, 2022, 61, 9375-9380.	1.9	6
68	Polydopamine Coating of a Metal–Organic Framework with Bi-Copper Sites for Highly Selective Electroreduction of CO ₂ to C ₂₊ Products. ACS Catalysis, 2022, 12, 7986-7993.	5 . 5	37
69	2022 roadmap on low temperature electrochemical CO ₂ reduction. JPhys Energy, 2022, 4, 042003.	2.3	76
70	Mediating CO ₂ Electroreduction Activity and Selectivity over Atomically Precise Copper Clusters. Angewandte Chemie, 2022, 134, .	1.6	8
71	Highly efficient multi-site synergistic catalysis of a polyoxovanadate-based metal–organic framework for benzylic C–H bond oxidation. Journal of Materials Chemistry A, 2022, 10, 16514-16523.	5.2	16
72	Boosting the Electrocatalytic CO2 Reduction Reaction by Nanostructured Metal Materials via Defects Engineering. Nanomaterials, 2022, 12, 2389.	1.9	9

#	Article	IF	CITATIONS
73	CoN ₅ Sites Constructed by Anchoring Co Porphyrins on Vinyleneâ€Linked Covalent Organic Frameworks for Electroreduction of Carbon Dioxide. Small, 2022, 18, .	5.2	23
74	Engineering Water Molecules Activation Center on Multisite Electrocatalysts for Enhanced CO ₂ Methanation. Journal of the American Chemical Society, 2022, 144, 12807-12815.	6.6	74
75	Directed synthesis of an unusual uniform trimetallic hydrogen evolution catalyst by a predesigned cobalt-bipy modified bivanadyl capped polymolybdate. Journal of Solid State Chemistry, 2022, 314, 123403.	1.4	3
76	Porous copper cluster-based MOF with strong cuprophilic interactions for highly selective electrocatalytic reduction of CO2 to CH4. Nano Research, 2022, 15, 10185-10193.	5.8	24
77	Atomically dispersed Coâ^'Cu alloy reconstructed from metal-organic framework to promote electrochemical CO2 methanation. Nano Research, 2023, 16, 3680-3686.	5.8	8
78	Challenges and Opportunities in Electrocatalytic CO ₂ Reduction to Chemicals and Fuels. Angewandte Chemie, 2022, 134, .	1.6	8
79	Rational Manipulation of Intermediates on Copper for CO2 Electroreduction Toward Multicarbon Products. Transactions of Tianjin University, 2022, 28, 265-291.	3.3	16
80	Surface Coâ€Modification of Halide Anions and Potassium Cations Promotes Highâ€Rate CO ₂ â€toâ€Ethanol Electrosynthesis. Advanced Materials, 2022, 34, .	11.1	26
81	Atomically Dispersed CuN _{<i>x</i>} Sites from Thermal Activation of Boron Imidazolate Cages for Electrocatalytic Methane Generation. ACS Applied Energy Materials, 2023, 6, 9044-9056.	2.5	5
82	Superâ€Coordinated Nickel N ₄ Ni ₁ O ₂ Site Singleâ€Atom Catalyst for Selective H ₂ O ₂ Electrosynthesis at High Current Densities. Angewandte Chemie, O, , .	1.6	0
83	Controllable States and Porosity of Cuâ€Carbon for CO ₂ Electroreduction to Hydrocarbons. Small, 2022, 18, .	5.2	10
84	Superâ€Coordinated Nickel N ₄ Ni ₁ O ₂ Site Singleâ€Atom Catalyst for Selective H ₂ O ₂ Electrosynthesis at High Current Densities. Angewandte Chemie - International Edition, 2022, 61, .	7.2	46
85	Challenges and Opportunities in Electrocatalytic CO ₂ Reduction to Chemicals and Fuels. Angewandte Chemie - International Edition, 2022, 61, .	7.2	62
86	A special Bi-S motif catalyst for highly selective CO2 conversion to methanol. Journal of Catalysis, 2022, 413, 1077-1088.	3.1	5
87	Grain boundary and interface interaction Co-regulation promotes SnO2 quantum dots for efficient CO2 reduction. Chemical Engineering Journal, 2023, 451, 138477.	6.6	11
88	Catalyst Design for Electrolytic CO2 Reduction Toward Low-Carbon Fuels and Chemicals. Electrochemical Energy Reviews, 2022, 5, .	13.1	16
89	The synthesis and near-infrared photothermal conversion of organometallic interdigitated complex and "U―type macrocycles. Journal of Solid State Chemistry, 2022, 315, 123521.	1.4	0
90	The Synthesis and Near-Infrared Photothermal Conversion of a Interdigitated Coordination Molecule. SSRN Electronic Journal, 0, , .	0.4	O

#	Article	IF	CITATIONS
91	Restraining lattice oxygen of Cu ₂ O by enhanced Cu–O hybridization for selective and stable production of ethylene with CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 20914-20923.	5.2	16
92	Electrocatalytic Reduction of Carbon Dioxide to High-Value Multicarbon Products with Metal–Organic Frameworks and Their Derived Materials. , 2022, 4, 2058-2079.		35
93	A Stable Metalâ€azolate Framework with Cyclic Tetracopper(I) Clusters for Highly Selective Electroreduction of CO ₂ to C ₂ Products. Chemistry - an Asian Journal, 0, , .	1.7	1
94	Atomically precise copper nanoclusters as ultrasmall molecular aggregates: Appealing compositions, structures, properties, and applications. Aggregate, 2023, 4, .	5.2	10
95	$\mbox{\sc i>ln situ}\sc /i> resource utilization of lunar soil for highly efficient extraterrestrial fuel and oxygen supply. National Science Review, 2023, 10, .$	4.6	2
96	TiO2-supported Single-atom Catalysts: Synthesis, Structure, and Application. Chemical Research in Chinese Universities, 2022, 38, 1123-1138.	1.3	14
97	Electrochemical C-C coupling between CO2 and formaldehyde into ethanol. Chem Catalysis, 2022, 2, 3207-3224.	2.9	10
98	Advancing the Electrochemistry of Gasâ€Involved Reactions through Theoretical Calculations and Simulations from Microscopic to Macroscopic. Advanced Functional Materials, 2022, 32, .	7.8	29
99	Aluminum-Doped Mesoporous Copper Oxide Nanofibers Enabling High-Efficiency CO ₂ Electroreduction to Multicarbon Products. Chemistry of Materials, 2022, 34, 9023-9030.	3.2	8
100	Rational Design of Metal–Organic Frameworks for Electroreduction of CO ₂ to Hydrocarbons and Carbon Oxygenates. ACS Central Science, 2022, 8, 1506-1517.	5.3	17
101	Toward Unifying the Mechanistic Concepts in Electrochemical CO ₂ Reduction from an Integrated Material Design and Catalytic Perspective. Advanced Functional Materials, 2022, 32, .	7.8	15
102	Structures, Scaling Relations, and Selectivities of the Copper-Based Binary Catalysts for CO ₂ Reduction Reactions. Journal of Physical Chemistry C, 2022, 126, 17966-17974.	1.5	1
103	Modulating the Electronic Structures of Dualâ€Atom Catalysts via Coordination Environment Engineering for Boosting CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
104	Modulating the Electronic Structures of Dualâ€Atom Catalysts via Coordination Environment Engineering for Boosting CO2 Electroreduction. Angewandte Chemie, 0, , .	1.6	0
105	An unusual zig-zag 2D copper(<scp>i</scp>) coordination polymer as an outstanding catalyst for azide–alkyne "click―chemistry at room temperature. Dalton Transactions, 2022, 51, 17543-17546.	1.6	3
106	Metal–oxide heterointerface synergistic effects of copper–zinc systems for highly selective CO ₂ -to-CH ₄ electrochemical conversion. Inorganic Chemistry Frontiers, 2022, 10, 168-173.	3.0	5
107	Electro‧ynthesis of Organic Compounds with Heterogeneous Catalysis. Advanced Science, 2023, 10, .	5.6	25
108	Solvent-mediated precipitating synthesis and optical properties of polyhydrido Cu ₁₃ nanoclusters with four vertex-sharing tetrahedrons. Chemical Science, 2023, 14, 994-1002.	3.7	11

#	Article	IF	CITATIONS
109	A Conductive Dinuclear Cuprous Complex Mimicking the Active Edge Site of the Copper (100)/(111) Plane for Selective Electroreduction of CO $\langle sub \rangle 2 \langle sub \rangle$ to C $\langle sub \rangle 2 \langle sub \rangle$ H $\langle sub \rangle 4 \langle sub \rangle$ at Industrial Current Density. Research, 2022, 2022, .	2.8	7
110	Multivalent ruthenium immobilized by self-supported NiFe–organic frameworks for efficient electrocatalytic overall water splitting. Journal of Materials Chemistry A, 2023, 11, 2769-2779.	5.2	21
111	Self-supported electrocatalysts for the hydrogen evolution reaction. Materials Chemistry Frontiers, 2023, 7, 567-606.	3. 2	33
112	Ferric ion substitution renders cadmium metal–organic framework derivatives for modulated Li storage based on local oxidation active centers. Dalton Transactions, 2023, 52, 754-762.	1.6	1
113	Electrochemical CO2 Reduction. RSC Green Chemistry, 2022, , 362-387.	0.0	0
114	One-dimensional copper bromide based inorganic-organic hybrids as fuels for hypergolic bipropellants with hydrogen peroxide as oxidizer. Chemical Engineering Journal, 2023, 455, 140587.	6.6	2
115	Electronic Perturbation of Cu Singleâ€Atom CO2 Reduction Catalysts in a Molecular Way. Angewandte Chemie, 0, , .	1.6	1
116	Electronic Perturbation of Copper Singleâ€Atom CO ₂ Reduction Catalysts in a Molecular Way. Angewandte Chemie - International Edition, 2023, 62, .	7.2	24
117	A porous Ti-based metal–organic framework for CO ₂ photoreduction and imidazole-dependent anhydrous proton conduction. Chemical Communications, 0, , .	2.2	1
118	Facilitated Photocatalytic CO2 Reduction in Aerobic Environment on a Copperâ€Porphyrin Metalâ€Organic Framework. Angewandte Chemie, 0, , .	1.6	1
119	Facilitated Photocatalytic CO ₂ Reduction in Aerobic Environment on a Copperâ€Porphyrin Metal–Organic Framework. Angewandte Chemie - International Edition, 2023, 62, .	7.2	21
120	Advances and challenges of electrolyzers for large-scale CO2 electroreduction. Materials Reports Energy, 2023, 3, 100177.	1.7	7
121	Electrochemical CO ₂ reduction with ionic liquids: review and evaluation., 2023, 1, 410-430.		14
122	Identifying the optimal oxidation state of Cu for electrocatalytic reduction of CO ₂ to C ₂₊ products. Green Chemistry, 2023, 25, 1326-1331.	4.6	15
123	Doping and pretreatment optimized the adsorption of *OCHO on bismuth for the electrocatalytic reduction of CO ₂ to formate. Nanoscale, 2023, 15, 4477-4487.	2.8	4
124	Sulfonated covalent organic framework packed Nafion membrane with high proton conductivity for H ₂ /O ₂ fuel cell applications. Journal of Materials Chemistry A, 2023, 11, 3446-3453.	5.2	10
125	The Synergistic Promotion Effect of Inâ€situ Formed Metal Cationic Vacancies and Interstitial Metals on Photocatalytic Performance of WO ₃ in CO ₂ Reduction. ChemCatChem, 2023, 15, .	1.8	1
126	Nitrogen-doped carbon nanofibers confined bismuth oxide nanocrystals boost high single-pass CO2-to-formate conversion in large area membrane electrode assembly electrolyzers. Applied Surface Science, 2023, 620, 156867.	3.1	O

#	Article	IF	CITATIONS
127	Crystalline-amorphous heterostructures with assortative strong-weak adsorption pairs enable extremely high water oxidation capability toward multi-scenario water electrolysis. Nano Energy, 2023, 110, 108349.	8.2	26
128	Reconstructed anti-poisoning surface for enhanced electrochemical CO2 reduction on Cu-incorporated ZnO. Applied Catalysis B: Environmental, 2023, 330, 122665.	10.8	5
129	Vacuum treated amorphous MOF mixed matrix membrane for methane/nitrogen separation. Journal of Solid State Chemistry, 2023, 320, 123852.	1.4	2
130	Molecular Modulation of Sequestered Copper Sites for Efficient Electroreduction of Carbon Dioxide to Methane. Advanced Functional Materials, 2023, 33, .	7.8	10
131	Isolated Tin(IV) Active Sites for Highly Efficient Electroreduction of CO ₂ to CH ₄ in Neutral Aqueous Solution. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
132	Isolated Tin(IV) Active Sites for Highly Efficient Electroreduction of CO ₂ to CH ₄ in Neutral Aqueous Solution. Angewandte Chemie, 0, , .	1.6	1
133	Achieving High-Efficient Photoelectrocatalytic Degradation of 4-Chlorophenol via Functional Reformation of Titanium-Oxo Clusters. Journal of the American Chemical Society, 2023, 145, 6112-6122.	6.6	30
134	Highâ€rate CO ₂ â€toâ€CH ₄ Electrosynthesis by Undercoordinated Cu Sites in Alkalineâ€Earthâ€Metal Perovskites with Strong Basicity. Advanced Energy Materials, 2023, 13, .	10.2	4
135	Dinuclear metal synergistic catalysis for energy conversion. Chemical Society Reviews, 2023, 52, 3170-3214.	18.7	21
136	Heterogeneous Electrocatalysis of Carbon Dioxide to Methane. Methane, 2023, 2, 148-175.	0.8	3
137	Applications of Metal–Organic Frameworks and Their Derivatives in Electrochemical CO2 Reduction. Nano-Micro Letters, 2023, 15, .	14.4	23
155	Advances and challenges in single-site catalysts towards electrochemical CO ₂ methanation. Energy and Environmental Science, 2023, 16, 4812-4833.	15.6	3
159	Cu-based catalyst designs in CO ₂ electroreduction: precise modulation of reaction intermediates for high-value chemical generation. Chemical Science, 2023, 14, 13629-13660.	3.7	2