Circulating SARS-CoV-2 spike N439K variants maintain antibody-mediated immunity

Cell 184, 1171-1187.e20 DOI: 10.1016/j.cell.2021.01.037

Citation Report

#	Article	IF	CITATIONS
3	The Ensembl COVID-19 resource: ongoing integration of public SARS-CoV-2 data. Nucleic Acids Research, 2022, 50, D765-D770.	6.5	10
4	Binding affinity and mechanisms of SARS-CoV-2 variants. Computational and Structural Biotechnology Journal, 2021, 19, 4184-4191.	1.9	20
5	Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clinical Hematology International, 2021, 3, 47.	0.7	4
6	Genes of SARS-CoV-2 and emerging variants. Microbiology Australia, 2021, 42, 10.	0.1	2
7	The evolutionary dynamics of endemic human coronaviruses. Virus Evolution, 2021, 7, veab020.	2.2	40
8	Endemic SARS-CoV-2 will maintain post-pandemic immunity. Nature Reviews Immunology, 2021, 21, 131-132.	10.6	60
9	SARS-CoV-2 spike protein N501Y mutation causes differential species transmissibility and antibody sensitivity: a molecular dynamics and alchemical free energy study. Molecular Systems Design and Engineering, 2021, 6, 964-974.	1.7	8
12	Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science, 2021, 371, 850-854.	6.0	700
14	The challenge of emerging SARS-CoV-2 mutants to vaccine development. Journal of Genetics and Genomics, 2021, 48, 102-106.	1.7	19
15	mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 2021, 592, 616-622.	13.7	1,232
16	Immune system response during viral Infections: Immunomodulators, cytokine storm (CS) and Immunotherapeutics in COVID-19. Saudi Pharmaceutical Journal, 2021, 29, 173-187.	1.2	23
17	SARS-CoV-2 variant evades antibodies whilst maintaining fitness. Nature Reviews Immunology, 2021, 21, 136-136.	10.6	2
19	Zooanthroponotic potential of SARS-CoV-2 and implications of reintroduction into human populations. Cell Host and Microbe, 2021, 29, 160-164.	5.1	41
23	Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 2021, 184, 861-880.	13.5	1,364
24	First Report of a SARS-CoV-2 Genome Sequence with a Spike His69-Val70 Deletion and an Asn439Lys Mutation in Morocco. Microbiology Resource Announcements, 2021, 10, .	0.3	0
29	Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host and Microbe, 2021, 29, 463-476.e6.	5.1	1,054
33	mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science, 2021, 372, 1413-1418.	6.0	468
35	Comparison of Clinical Features and Outcomes of Medically Attended COVID-19 and Influenza Patients in a Defined Population in the 2020 Respiratory Virus Season. Frontiers in Public Health, 2021, 9, 587425	1.3	8

#	Article	IF	CITATIONS
36	An Overview of Current Knowledge of Deadly CoVs and Their Interface with Innate Immunity. Viruses, 2021, 13, 560.	1.5	15
37	Neutralising antibody escape of SARSâ€CoVâ€2 spike protein: Risk assessment for antibodyâ€based Covidâ€19 therapeutics and vaccines. Reviews in Medical Virology, 2021, 31, e2231.	3.9	128
39	The great escape? SARS-CoV-2 variants evading neutralizing responses. Cell Host and Microbe, 2021, 29, 322-324.	5.1	78
42	Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 2021, 593, 136-141.	13.7	648
43	Ad26.COV2.S protects Syrian hamsters against G614 spike variant SARS-CoV-2 and does not enhance respiratory disease. Npj Vaccines, 2021, 6, 39.	2.9	38
44	Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nature Medicine, 2021, 27, 917-924.	15.2	617
46	SARS-CoV-2 Entry Related Viral and Host Genetic Variations: Implications on COVID-19 Severity, Immune Escape, and Infectivity. International Journal of Molecular Sciences, 2021, 22, 3060.	1.8	32
48	Neutralizing monoclonal antibodies for treatment of COVID-19. Nature Reviews Immunology, 2021, 21, 382-393.	10.6	568
49	SARS-CoV-2 variants: a new challenge to convalescent serum and mRNA vaccine neutralization efficiency. Signal Transduction and Targeted Therapy, 2021, 6, 151.	7.1	17
50	Risk of rapid evolutionary escape from biomedical interventions targeting SARS-CoV-2 spike protein. PLoS ONE, 2021, 16, e0250780.	1.1	66
51	SARS-CoV-2 within-host diversity and transmission. Science, 2021, 372, .	6.0	278
52	SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell, 2021, 184, 2362-2371.e9.	13.5	332
57	Genetic Diversity of SARS-CoV-2 over a One-Year Period of the COVID-19 Pandemic: A Global Perspective. Biomedicines, 2021, 9, 412.	1.4	22
59	Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science, 2021, 372, .	6.0	2,103
63	SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host and Microbe, 2021, 29, 529-539.e3.	5.1	324
64	Immunogenicity and efficacy of one and two doses of Ad26.COV2.S COVID vaccine in adult and aged NHP. Journal of Experimental Medicine, 2021, 218, .	4.2	55
66	Status Report on COVID-19 Vaccines Development. Current Infectious Disease Reports, 2021, 23, 9.	1.3	56
67	Effects of SARS-CoV-2 variants on vaccine efficacy and response strategies. Expert Review of Vaccines, 2021, 20, 365-373.	2.0	139

#	Article	IF	CITATIONS
72	SARS-CoV-2 one year on: evidence for ongoing viral adaptation. Journal of General Virology, 2021, 102, .	1.3	137
74	Comparative Perturbation-Based Modeling of the SARS-CoV-2 Spike Protein Binding with Host Receptor and Neutralizing Antibodies: Structurally Adaptable Allosteric Communication Hotspots Define Spike Sites Targeted by Global Circulating Mutations. Biochemistry, 2021, 60, 1459-1484.	1.2	62
75	Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
78	Polyclonal hyper immunoglobulin: A proven treatment and prophylaxis platform for passive immunization to address existing and emerging diseases. Human Vaccines and Immunotherapeutics, 2022, 18, 1-20.	1.4	18
79	SARS-CoV-2 evolution in an immunocompromised host reveals shared neutralization escape mechanisms. Cell, 2021, 184, 2605-2617.e18.	13.5	151
80	Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Science Advances, 2021, 7, .	4.7	113
83	A combination of cross-neutralizing antibodies synergizes to prevent SARS-CoV-2 and SARS-CoV pseudovirus infection. Cell Host and Microbe, 2021, 29, 806-818.e6.	5.1	49
86	Testing at scale during the COVID-19 pandemic. Nature Reviews Genetics, 2021, 22, 415-426.	7.7	261
91	Prediction and Evolution of the Molecular Fitness of SARS-CoV-2 Variants: Introducing SpikePro. Viruses, 2021, 13, 935.	1.5	22
92	The Spike of Concern—The Novel Variants of SARS-CoV-2. Viruses, 2021, 13, 1002.	1.5	92
93	Hospital mortality in COVID-19 patients in Belgium treated with statins, ACE inhibitors and/or ARBs. Human Vaccines and Immunotherapeutics, 2021, 17, 2841-2850.	1.4	15
94	Computational methods to predict the mutational landscape of the spike protein Biophysical Journal, 2021, 120, 2763-2765.	0.2	0
95	A core-shell structured COVID-19 mRNA vaccine with favorable biodistribution pattern and promising immunity. Signal Transduction and Targeted Therapy, 2021, 6, 213.	7.1	76
96	Highly conserved, non-human-like, and cross-reactive SARS-CoV-2 T cell epitopes for COVID-19 vaccine design and validation. Npj Vaccines, 2021, 6, 71.	2.9	23
97	Detecting Rapid Spread of SARS-CoV-2 Variants, France, January 26–February 16, 2021. Emerging Infectious Diseases, 2021, 27, 1496-1499.	2.0	32
100	A Peptide Vaccine Candidate Tailored to Individuals' Genetics Mimics the Multi-Targeted T Cell Immunity of COVID-19 Convalescent Subjects. Frontiers in Genetics, 2021, 12, 684152.	1.1	10
102	Development of potent and selective inhibitors targeting the papain-like protease of SARS-CoV-2. Cell Chemical Biology, 2021, 28, 855-865.e9.	2.5	67
103	Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers. Nature Communications, 2021, 12, 3661.	5.8	48

#	Article	IF	Citations
104	Role of SARS-CoV-2 and ACE2 variations in COVID-19. Biomedical Journal, 2021, 44, 235-244.	1.4	20
105	SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 2021, 19, 409-424.	13.6	2,650
107	Natural variants in SARS-CoV-2 Spike protein pinpoint structural and functional hotspots with implications for prophylaxis and therapeutic strategies. Scientific Reports, 2021, 11, 13120.	1.6	11
109	Notable and Emerging Variants of SARS-CoV-2 Virus: A Quick Glance. Indian Journal of Clinical Biochemistry, 2021, 36, 451-458.	0.9	9
110	SARS-CoV-2 Variants: A Synopsis of In Vitro Efficacy Data of Convalescent Plasma, Currently Marketed Vaccines, and Monoclonal Antibodies. Viruses, 2021, 13, 1211.	1.5	35
111	Full-Length Computational Model of the SARS-CoV-2 Spike Protein and Its Implications for a Viral Membrane Fusion Mechanism. Viruses, 2021, 13, 1126.	1.5	9
112	Co-mutation modules capture the evolution and transmission patterns of SARS-CoV-2. Briefings in Bioinformatics, 2021, 22, .	3.2	18
113	The Antigenicity of Epidemic SARS-CoV-2 Variants in the United Kingdom. Frontiers in Immunology, 2021, 12, 687869.	2.2	23
114	A Comprehensive Molecular Epidemiological Analysis of SARS-CoV-2 Infection in Cyprus from April 2020 to January 2021: Evidence of a Highly Polyphyletic and Evolving Epidemic. Viruses, 2021, 13, 1098.	1.5	11
115	Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Reports, 2021, 35, 109292.	2.9	375
116	Tackling COVID-19 with neutralizing monoclonal antibodies. Cell, 2021, 184, 3086-3108.	13.5	309
117	Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature, 2021, 595, 707-712.	13.7	363
118	Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. Nature, 2021, 595, 718-723.	13.7	128
119	Kinetics and correlates of the neutralizing antibody response to SARS-CoV-2 infection in humans. Cell Host and Microbe, 2021, 29, 917-929.e4.	5.1	132
121	Machine Learning Reveals the Critical Interactions for SARS-CoV-2 Spike Protein Binding to ACE2. Journal of Physical Chemistry Letters, 2021, 12, 5494-5502.	2.1	44
122	Fast-spreading SARS-CoV-2 variants: challenges to and new design strategies of COVID-19 vaccines. Signal Transduction and Targeted Therapy, 2021, 6, 226.	7.1	103
123	Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science, 2021, 373,	6.0	174
126	SARS-CoV-2 human TÂcell epitopes: Adaptive immune response against COVID-19. Cell Host and Microbe, 2021, 29, 1076-1092.	5.1	242

	CITATION	CITATION REPORT	
#	Article	IF	Citations
127	SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science, 2021, 373, 648-654.	6.0	385
128	Epitope-specific antibody responses differentiate COVID-19 outcomes and variants of concern. JCI Insight, 2021, 6, .	2.3	32
129	Structural O-Glycoform Heterogeneity of the SARS-CoV-2 Spike Protein Receptor-Binding Domain Revealed by Top-Down Mass Spectrometry. Journal of the American Chemical Society, 2021, 143, 12014-12024.	6.6	48
130	Structural basis for accommodation of emerging B.1.351 and B.1.1.7 variants by two potent SARS-CoV-2 neutralizing antibodies. Structure, 2021, 29, 655-663.e4.	1.6	52
131	Neutralizing Activity of Sera from Sputnik V-Vaccinated People against Variants of Concern (VOC:) Tj ETQq0 0	0 rgBT ₁ /Ove	erlock 10 Tf 50
132	Genomic epidemiological analysis of SARS-CoV-2 household transmission. Access Microbiology, 2021, 3, 000252.	0.2	4
134	Intranasal gene therapy to prevent infection by SARS-CoV-2 variants. PLoS Pathogens, 2021, 17, e1009544.	2.1	36
136	Molecular epidemiology of SARS-CoV-2 in Cyprus. PLoS ONE, 2021, 16, e0248792.	1.1	7
137	Hypothesis: Possible influence of antivector immunity and SARSâ€CoVâ€2 variants on efficacy of ChAdOx1 nCoVâ€19 vaccine. British Journal of Pharmacology, 2022, 179, 218-226.	2.7	11
138	Impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variant-Associated Receptor Binding Domain (RBD) Mutations on the Susceptibility to Serum Antibodies Elicited by Coronavirus Disease 2019 (COVID-19) Infection or Vaccination. Clinical Infectious Diseases, 2022, 74, 1623-1630.	2.9	42
141	A Possible Role of Remdesivir and Plasma Therapy in the Selective Sweep and Emergence of New SARS-CoV-2 Variants. Journal of Clinical Medicine, 2021, 10, 3276.	1.0	18
142	Antibody Cocktail Exhibits Broad Neutralization Activity Against SARS-CoV-2 and SARS-CoV-2 Variants. Virologica Sinica, 2021, 36, 934-947.	1.2	12
143	Molecular Evolution and Epidemiological Characteristics of SARS COV-2 in (Northwestern) Poland. Viruses, 2021, 13, 1295.	1.5	9
144	After the pandemic: perspectives on the future trajectory of COVID-19. Nature, 2021, 596, 495-504.	13.7	260
145	Broad sarbecovirus neutralization by a human monoclonal antibody. Nature, 2021, 597, 103-108.	13.7	220
146	SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2. Cell, 2021, 184, 3936-3948.e10.	13.5	241
148	SARS-CoV-2: Cross-scale Insights from Ecology and Evolution. Trends in Microbiology, 2021, 29, 593-605.	3.5	12

149	A Vaccine Based on the Receptor-Binding Domain of the Spike Protein Expressed in Glycoengineered Pichia pastoris Targeting SARS-CoV-2 Stimulates Neutralizing and Protective Antibody Responses. Engineering, 2022, 13, 107-115.	3.2	13
-----	--	-----	----

#	Article	IF	CITATIONS
150	Design and proof of concept for targeted phage-based COVID-19 vaccination strategies with a streamlined cold-free supply chain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
152	Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants. Journal of Molecular Biology, 2021, 433, 167058.	2.0	190
153	SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 2021, 597, 97-102.	13.7	385
154	Catching SARS-CoV-2 by Sequence Hybridization: a Comparative Analysis. MSystems, 2021, 6, e0039221.	1.7	11
155	Rapid SARS-CoV-2 variant monitoring using PCR confirmed by whole genome sequencing in a high-volume diagnostic laboratory. Journal of Clinical Virology, 2021, 141, 104906.	1.6	21
157	Crossâ€neutralization of RBD mutant strains of SARS oVâ€2 by convalescent patient derived antibodies. Biotechnology Journal, 2021, 16, e2100207.	1.8	8
158	Sex Differences in Lung Imaging and SARS-CoV-2 Antibody Responses in a COVID-19 Golden Syrian Hamster Model. MBio, 2021, 12, e0097421.	1.8	69
160	Probing the Increased Virulence of Severe Acute Respiratory Syndrome Coronavirus 2 B.1.617 (Indian) Tj ETQq1 1	0,784314	l rgBT /Overi
161	Simultaneous evaluation of antibodies that inhibit SARS-CoV-2 variants via multiplex assay. JCI Insight, 2021, 6, .	2.3	33
162	SARS-CoV-2 Genome Sequencing Methods Differ in Their Abilities To Detect Variants from Low-Viral-Load Samples. Journal of Clinical Microbiology, 2021, 59, e0104621.	1.8	33
163	A SARS-CoV-2 mutant from B.1.258 lineage with â^†H69/â^†V70 deletion in the Spike protein circulating in Central Europe in the fall 2020. Virus Genes, 2021, 57, 556-560.	0.7	27
164	One year into the pandemic: Short-term evolution of SARS-CoV-2 and emergence of new lineages. Infection, Genetics and Evolution, 2021, 92, 104869.	1.0	49
166	Which ones, when and why should renin-angiotensin system inhibitors work against COVID-19?. Advances in Biological Regulation, 2021, 81, 100820.	1.4	15
167	Inflammasome activation at the crux of severe COVID-19. Nature Reviews Immunology, 2021, 21, 694-703.	10.6	210
169	N439K Variant in Spike Protein Alter the Infection Efficiency and Antigenicity of SARS-CoV-2 Based on Molecular Dynamics Simulation. Frontiers in Cell and Developmental Biology, 2021, 9, 697035.	1.8	19
170	Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virology Journal, 2021, 18, 166.	1.4	105
171	Mutations of SARS-CoV-2 RBD May Alter Its Molecular Structure to Improve Its Infection Efficiency. Biomolecules, 2021, 11, 1273.	1.8	30
173	Plant-Produced Glycosylated and In Vivo Deglycosylated Receptor Binding Domain Proteins of SARS-CoV-2 Induce Potent Neutralizing Responses in Mice. Viruses, 2021, 13, 1595.	1.5	23

#	Article	IF	CITATIONS
174	Signatures in SARS-CoV-2 spike protein conferring escape to neutralizing antibodies. PLoS Pathogens, 2021, 17, e1009772.	2.1	74
175	A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity, 2021, 54, 2399-2416.e6.	6.6	79
176	Monitoring Emergence of the SARS-CoV-2 B.1.1.7 Variant through the Spanish National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19). Environmental Science & Technology, 2021, 55, 11756-11766.	4.6	39
177	S19W, T27W, and N330Y mutations in ACE2 enhance SARS-CoV-2 S-RBD binding toward both wild-type and antibody-resistant viruses and its molecular basis. Signal Transduction and Targeted Therapy, 2021, 6, 343.	7.1	24
178	A highly potent antibody effective against SARS-CoV-2 variants of concern. Cell Reports, 2021, 37, 109814.	2.9	39
179	Application of omics technology to combat the COVIDâ€19 pandemic. MedComm, 2021, 2, 381-401.	3.1	11
180	Molecular evolutionary characteristics of SARS oVâ€2 emerging in the United States. Journal of Medical Virology, 2022, 94, 310-317.	2.5	59
181	SARS-CoV-2 Spike Protein Mutations and Escape from Antibodies: A Computational Model of Epitope Loss in Variants of Concern. Journal of Chemical Information and Modeling, 2021, 61, 4687-4700.	2.5	26
182	An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope. Protein and Cell, 2022, 13, 655-675.	4.8	25
183	Potent neutralization of SARS-CoV-2 variants of concern by an antibody with an uncommon genetic signature and structural mode of spike recognition. Cell Reports, 2021, 37, 109784.	2.9	20
184	Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature Microbiology, 2021, 6, 1233-1244.	5.9	237
185	Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science, 2021, 374, 472-478.	6.0	228
186	Assessment of the binding interactions of SARS-CoV-2 spike glycoprotein variants. Journal of Pharmaceutical Analysis, 2022, 12, 58-64.	2.4	7
188	Shooting at a Moving Target—Effectiveness and Emerging Challenges for SARS-CoV-2 Vaccine Development. Vaccines, 2021, 9, 1052.	2.1	22
189	SARS-CoV-2 Variants Are Selecting for Spike Protein Mutations That Increase Protein Stability. Journal of Chemical Information and Modeling, 2021, 61, 4152-4155.	2.5	14
190	The biological and clinical significance of emerging SARS-CoV-2 variants. Nature Reviews Genetics, 2021, 22, 757-773.	7.7	778
191	TMPRSS2 and RNA-Dependent RNA Polymerase Are Effective Targets of Therapeutic Intervention for Treatment of COVID-19 Caused by SARS-CoV-2 Variants (B.1.1.7 and B.1.351). Microbiology Spectrum, 2021, 9, e0047221.	1.2	21
192	Genomic and Epidemiological Analysis of SARS-CoV-2 Viruses in Sri Lanka. Frontiers in Microbiology, 2021, 12, 722838.	1.5	9

ARTICLE IF CITATIONS Impact of mutations in SARS-COV-2 spike on viral infectivity and antigenicity. Briefings in 193 3.2 16 Bioinformatics, 2022, 23, . SARS-CoV-2 Subgenomic RNAs: Characterization, Utility, and Perspectives. Viruses, 2021, 13, 1923. 194 1.5 38 Recent progress on the mutations of SARS-CoV-2 spike protein and suggestions for prevention and 195 1.0 19 controlling of the pandemic. Infection, Genetics and Evolution, 2021, 93, 104971. Multiplex Biosensing for Simultaneous Detection of Mutations in SARS-CoV-2. ACS Omega, 2021, 6, 196 25846-25859. Large-scale analysis of SARS-CoV-2 spike-glycoprotein mutants demonstrates the need for continuous 197 1.1 31 screening of virús isolates. PLoS ONE, 2021, 16, e0249254. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16. 198 13.5 Broad betacoronavirus neutralization by a stem helix–specific human antibody. Science, 2021, 373, 199 6.0 262 1109-1116. The neutralization potency of anti-SARS-CoV-2 therapeutic human monoclonal antibodies is retained 2.9 against viral variants. Cell Reports, 2021, 36, 109679. Potential therapeutic approaches for the early entry of SARS-CoV-2 by interrupting the interaction 202 between the spike protein on SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2). Biochemical 2.0 8 Pharmacology, 2021, 192, 114724. COVID-19, the first pandemic in the post-genomic era. Current Opinion in Virology, 2021, 50, 40-48. 2.6 The Emergence of the New P.4 Lineage of SARS-CoV-2 With Spike L452R Mutation in Brazil. Frontiers in 204 8 1.3 Public Health, 2021, 9, 745310. Facile and rapid detection of SARS-CoV-2 antibody based on a noncompetitive fluorescence 5.3 polarization immunoassay in human serum samples. Biosensors and Bioelectronics, 2021, 190, 113414. Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: an immunological study. Lancet Microbe, The, 206 3.4 92 2021, 2, e527-e535. No association between the SARS-CoV-2 variants and mortality rates in the Eastern Mediterranean 1.0 Region. Gene, 2021, 801, 145843. Impact of temperature on the affinity of SARS-CoV-2 Spike glycoprotein for host ACE2. Journal of 208 42 1.6 Biological Chemistry, 2021, 297, 101151. Evaluation of a surrogate virus neutralization test for high-throughput serosurveillance of 209 1.0 SARS-CoV-2. Journal of Virological Methods, 2021, 297, 114228. Forecasting fully vaccinated people against COVID-19 and examining future vaccination rate for herd 210 immunity in the US, Asia, Europe, Africa, South America, and the World. Applied Soft Computing 4.1 47 Journal, 2021, 111, 107708. Animal models of SARS-CoV-2 and COVID-19 for the development of prophylactic and therapeutic interventions., 2021, 228, 107931.

#	Article	IF	CITATIONS
215	Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Briefings in Bioinformatics, 2021, 22, .	3.2	53
216	Emerging SARS-CoV-2 Variants Can Potentially Break Set Epidemiological Barriers in COVID-19. SSRN Electronic Journal, 0, , .	0.4	5
217	The emerging SARS-CoV-2 variants of concern. Therapeutic Advances in Infectious Disease, 2021, 8, 204993612110243.	1.1	82
222	SARS-CoV-2 mechanisms of action and impact on human organism, risk factors and potential treatments. An exhaustive survey. International Journal of Transgender Health, 2021, 14, 894-947.	1.1	0
223	Risk Group Determination in Case of COVID-19 Infection. Lecture Notes in Computer Science, 2021, , 419-430.	1.0	0
224	A comprehensive review of the analysis and integration of omics data for SARS-CoV-2 and COVID-19. Briefings in Bioinformatics, 2022, 23, .	3.2	9
225	Global Prevalence of Adaptive and Prolonged Infections' Mutations in the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein. Viruses, 2021, 13, 1974.	1.5	9
226	Comprehensive mapping of binding hot spots of SARS-CoV-2 RBD-specific neutralizing antibodies for tracking immune escape variants. Genome Medicine, 2021, 13, 164.	3.6	42
227	Genomic surveillance of SARS-CoV-2 tracks early interstate transmission of P.1 lineage and diversification within P.2 clade in Brazil. PLoS Neglected Tropical Diseases, 2021, 15, e0009835.	1.3	23
228	An affinity-enhanced, broadly neutralizing heavy chain–only antibody protects against SARS-CoV-2 infection in animal models. Science Translational Medicine, 2021, 13, eabi7826.	5.8	41
229	Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through Analysis of Viral Genomics and Structure. MSystems, 2021, 6, e0009521.	1.7	26
230	Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 2022, 23, 3-20.	16.1	1,532
231	The global epidemic of SARS oVâ€2 variants and their mutational immune escape. Journal of Medical Virology, 2022, 94, 847-857.	2.5	80
232	Surveillance of SARS-CoV-2 lineage B.1.1.7 in Slovakia using a novel, multiplexed RT-qPCR assay. Scientific Reports, 2021, 11, 20494.	1.6	24
233	Uncovering a conserved vulnerability site in SARS oVâ€2 by a human antibody. EMBO Molecular Medicine, 2021, 13, e14544.	3.3	17
234	Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implications and Vaccine Efficacy. Vaccines, 2021, 9, 1195.	2.1	90
235	Structural Basis of a Human Neutralizing Antibody Specific to the SARS-CoV-2 Spike Protein Receptor-Binding Domain. Microbiology Spectrum, 2021, 9, e0135221.	1.2	13
236	The COVID-19 pandemic: viral variants and vaccine efficacy. Critical Reviews in Clinical Laboratory Sciences, 2022, 59, 66-75.	2.7	61

#	Article	IF	CITATIONS
238	Predicting Mutational Effects on Receptor Binding of the Spike Protein of SARS-CoV-2 Variants. Journal of the American Chemical Society, 2021, 143, 17646-17654.	6.6	39
239	Temporal-Geographical Dispersion of SARS-CoV-2 Spike Glycoprotein Variant Lineages and Their Functional Prediction Using in Silico Approach. MBio, 2021, 12, e0268721.	1.8	3
241	Bioinformatics analysis of the differences in the binding profile of the wild-type and mutants of the SARS-CoV-2 spike protein variants with the ACE2 receptor. Computers in Biology and Medicine, 2021, 138, 104936.	3.9	23
242	Understanding mutation hotspots for the SARS-CoV-2 spike protein using Shannon Entropy and K-means clustering. Computers in Biology and Medicine, 2021, 138, 104915.	3.9	31
243	Evidence for retained spike-binding and neutralizing activity against emerging SARS-CoV-2 variants in serum of COVID-19 mRNA vaccine recipients. EBioMedicine, 2021, 73, 103626.	2.7	43
244	SARS-CoV-2 whole-genome sequencing using reverse complement PCR: For easy, fast and accurate outbreak and variant analysis Journal of Clinical Virology, 2021, 144, 104993.	1.6	18
245	Nanopore sequencing of SARS-CoV-2: Comparison of short and long PCR-tiling amplicon protocols. PLoS ONE, 2021, 16, e0259277.	1.1	16
246	RT-qPCR assays for SARS-CoV-2 variants of concern in wastewater reveals compromised vaccination-induced immunity. Water Research, 2021, 207, 117808.	5.3	39
247	Neutralizing Antibodies to SARSâ€CoVâ€2 Selected from a Human Antibody Library Constructed Decades Ago. Advanced Science, 2022, 9, e2102181.	5.6	14
248	Immunology and controlling of coronaviruses; the current enemy for humanity: A review. International Journal of Biological Macromolecules, 2021, , .	3.6	3
249	The nano delivery systems and applications of mRNA. European Journal of Medicinal Chemistry, 2022, 227, 113910.	2.6	52
250	Analysis of SARS-COV2 spike protein variants among Iraqi isolates. Gene Reports, 2022, 26, 101420.	0.4	12
251	The way of SARS-CoV-2 vaccine development: success and challenges. Signal Transduction and Targeted Therapy, 2021, 6, 387.	7.1	42
253	Structural and functional insights into the spike protein mutations of emerging SARS-CoV-2 variants. Cellular and Molecular Life Sciences, 2021, 78, 7967-7989.	2.4	40
254	Understanding the Secret of SARS-CoV-2 Variants of Concern/Interest and Immune Escape. Frontiers in Immunology, 2021, 12, 744242.	2.2	44
255	Circulation and Evolution of SARS-CoV-2 in India: Let the Data Speak. Viruses, 2021, 13, 2238.	1.5	8
258	Longitudinal analysis of SARS-CoV-2 spike and RNA-dependent RNA polymerase protein sequences reveals the emergence and geographic distribution of diverse mutations. Infection, Genetics and Evolution, 2022, 97, 105153.	1.0	16
259	Insights into the evolutionary and prophylactic analysis of SARS-CoV-2: A review. Journal of Virological Methods, 2022, 300, 114375.	1.0	2

#	Article	IF	CITATIONS
260	Alterations in the Composition of Intestinal DNA Virome in Patients With COVID-19. Frontiers in Cellular and Infection Microbiology, 2021, 11, 790422.	1.8	14
261	Effective Prophylaxis of COVID-19 in Rhesus Macaques Using a Combination of Two Parenterally-Administered SARS-CoV-2 Neutralizing Antibodies. Frontiers in Cellular and Infection Microbiology, 2021, 11, 753444.	1.8	13
262	Multifactorial seroprofiling dissects the contribution of pre-existing human coronaviruses responses to SARS-CoV-2 immunity. Nature Communications, 2021, 12, 6703.	5.8	36
264	Nanovesicles derived from bispecific CAR-T cells targeting the spike protein of SARS-CoV-2 for treating COVID-19. Journal of Nanobiotechnology, 2021, 19, 391.	4.2	17
265	EpiCurator: an immunoinformatic workflow to predict and prioritize SARS-CoV-2 epitopes. PeerJ, 2021, 9, e12548.	0.9	4
266	The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduction and Targeted Therapy, 2021, 6, 396.	7.1	111
267	Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Seminars in Immunology, 2021, 55, 101533.	2.7	72
268	SARS-CoV-2 Variants and Their Relevant Mutational Profiles: Update Summer 2021. Microbiology Spectrum, 2021, 9, e0109621.	1.2	39
269	Mutation-Induced Long-Range Allosteric Interactions in the Spike Protein Determine the Infectivity of SARS-CoV-2 Emerging Variants. ACS Omega, 2021, 6, 31305-31320.	1.6	8
270	Emerging SARS oVâ€2 variants can potentially break set epidemiological barriers in COVIDâ€19. Journal of Medical Virology, 2022, 94, 1300-1314.	2.5	32
271	Cross-Neutralization of Emerging SARS-CoV-2 Variants of Concern by Antibodies Targeting Distinct Epitopes on Spike. MBio, 2021, 12, e0297521.	1.8	24
274	E484K and N501Y SARS-CoV 2 spike mutants Increase ACE2 recognition but reduce affinity for neutralizing antibody. International Immunopharmacology, 2022, 102, 108424.	1.7	31
275	Structure and Mutations of SARS-CoV-2 Spike Protein: A Focused Overview. ACS Infectious Diseases, 2022, 8, 29-58.	1.8	32
276	A point-of-care lateral flow assay for neutralising antibodies against SARS-CoV-2. EBioMedicine, 2021, 74, 103729.	2.7	29
277	Emergence of two distinct variants of SARS-CoV-2 and an explosive second wave of COVID-19: the experience of a tertiary care hospital in Pune, India. Archives of Virology, 2022, 167, 393-403.	0.9	5
278	A novel ensemble fuzzy classification model in SARS-CoV-2 B-cell epitope identification for development of protein-based vaccine. Applied Soft Computing Journal, 2022, 116, 108280.	4.1	3
279	Structural and functional insights into the major mutations of SARS-CoV-2 Spike RBD and its interaction with human ACE2 receptor. Journal of King Saud University - Science, 2022, 34, 101773.	1.6	9
280	Screening of potential spike glycoprotein / ACE2 dual antagonists against COVID-19 in silico molecular docking. Journal of Virological Methods, 2022, 301, 114424.	1.0	6

	Cr	tation Report	
# 281	ARTICLE Predictive Profiling of SARS-CoV-2 Variants by Deep Mutational Learning. SSRN Electronic Journal, 0, ,	IF . 0.4	Citations
282	Fast forward evolution in real time: the rapid spread of SARS-CoV-2 variant of concern lineage B.1.1.7 in Saxony-Anhalt over a period of 5Âmonths. Laboratoriums Medizin, 2022, 46, 71-75.	0.1	3
284	Infectivity and antigenicity of pseudoviruses with high-frequency mutations of SARS-CoV-2 identified in Portugal. Archives of Virology, 2022, 167, 459-470.	0.9	2
285	The fatty acid site is coupled to functional motifs in the SARS-CoV-2 spike protein and modulates spik allosteric behaviour. Computational and Structural Biotechnology Journal, 2022, 20, 139-147.	e 1.9	19
286	The ins and outs of SARS-CoV-2 variants of concern (VOCs). Archives of Virology, 2022, 167, 327-344	ł. 0.9	35
287	An encodable multiplex microsphere-phase amplification sensing platform detects SARS-CoV-2 mutations. Biosensors and Bioelectronics, 2022, 203, 114032.	5.3	7
289	Modeling SARS-CoV-2 spike/ACE2 protein–protein interactions for predicting the binding affinity of new spike variants for ACE2, and novel ACE2 structurally related human protein targets, for COVID-19 handling in the 3PM context. EPMA Journal, 2022, 13, 149-175.		28
290	Targeting the Fusion Process of SARS-CoV-2 Infection by Small Molecule Inhibitors. MBio, 2022, 13, e0323821.	1.8	11
291	Applied Bioinformatics and Public Health Microbiology: challenges, discoveries and innovations during a pandemic. Microbial Genomics, 2022, 8, .	1.0	2
292	Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science, 2022, 375, .	6.0	68
293	Implications of the Immune Polymorphisms of the Host and the Genetic Variability of SARS-CoV-2 in the Development of COVID-19. Viruses, 2022, 14, 94.	he 1.5	7
294	The Variation of SARS-CoV-2 and Advanced Research on Current Vaccines. Frontiers in Medicine, 2021 8, 806641.	l, 1.2	22
296	Spatio-temporal dynamics of intra-host variability in SARS-CoV-2 genomes. Nucleic Acids Research, 2022, 50, 1551-1561.	6.5	18
297	Local Emergence of a del HV69-70 SARS-CoV-2 Variant in Burgundy, France. Pathogens, 2022, 11, 124	4. 1.2	1
298	SARS-CoV-2 Variants and Clinical Outcomes: A Systematic Review. Life, 2022, 12, 170.	1.1	39
299	Mutational landscape and in silico structure models of SARS-CoV-2 spike receptor binding domain reveal key molecular determinants for virus-host interaction. BMC Molecular and Cell Biology, 2022, 23, 2.	1.0	10
300	Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. Journal of Biomedical Scienc 2022, 29, 1.	e, 2.6	144
301	Computational Analysis of Mutations in the Receptor-Binding Domain of SARS-CoV-2 Spike and Their Effects on Antibody Binding. Viruses, 2022, 14, 295.	1.5	12

#	Article	IF	CITATIONS
302	CoVac501, a self-adjuvanting peptide vaccine conjugated with TLR7 agonists, against SARS-CoV-2 induces protective immunity. Cell Discovery, 2022, 8, 9.	3.1	12
303	Monoclonal antibodies targeting two immunodominant epitopes on the Spike protein neutralize emerging SARS-CoV-2 variants of concern. EBioMedicine, 2022, 76, 103818.	2.7	14
304	Immune response to SARS-CoV-2 variants: A focus on severity, susceptibility, and preexisting immunity. Journal of Infection and Public Health, 2022, 15, 277-288.	1.9	21
305	Engineered extracellular vesicles directed to the spike protein inhibit SARS-CoV-2. Molecular Therapy - Methods and Clinical Development, 2022, 24, 355-366.	1.8	19
306	Phylogenetic analysis of SARS-CoV-2 viruses circulating in the South American region: Genetic relations and vaccine strain match. Virus Research, 2022, 311, 198688.	1.1	1
307	Longitudinal analysis of antibody dynamics in COVID-19 convalescents reveals neutralizing responses up to 16 months after infection. Nature Microbiology, 2022, 7, 423-433.	5.9	78
309	Characterization of Two Heterogeneous Lethal Mouse-Adapted SARS-CoV-2 Variants Recapitulating Representative Aspects of Human COVID-19. Frontiers in Immunology, 2022, 13, 821664.	2.2	22
310	SARS-CoV-2 Variants and Vaccination. Zoonoses, 2022, 2, .	0.5	16
311	A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations. Frontiers in Immunology, 2022, 13, 801522.	2.2	73
312	Emerging SARS-CoV-2 Variants: Genetic Variability and Clinical Implications. Current Microbiology, 2022, 79, 20.	1.0	48
313	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 0, , .	13.7	101
314	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 2022, 602, 664-670.	13.7	917
315	Deep dissection of the antiviral immune profile of patients with COVID-19. Communications Biology, 2021, 4, 1389.	2.0	9
316	Elucidating the role of N440K mutation in SARS-CoV-2 spike – ACE-2 binding affinity and COVID-19 severity by virtual screening, molecular docking and dynamics approach. Journal of Biomolecular Structure and Dynamics, 2021, , 1-18.	2.0	11
320	Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. Science, 2021, 374, 1621-1626.	6.0	232
321	Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science, 2022, 375, 864-868.	6.0	394
322	Epitope profiling using computational structural modelling demonstrated on coronavirus-binding antibodies. PLoS Computational Biology, 2021, 17, e1009675.	1.5	33
323	SARS-CoV-2 Delta Variant Displays Moderate Resistance to Neutralizing Antibodies and Spike Protein Properties of Higher Soluble ACE2 Sensitivity, Enhanced Cleavage and Fusogenic Activity. Viruses, 2021, 13, 2485.	1.5	23

#	Article	IF	CITATIONS
325	Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science, 2021, , eabl6251.	6.0	12
327	Assessment of Mutations Associated With Genomic Variants of SARS-CoV-2: RT-qPCR as a Rapid and Affordable Tool to Monitoring Known Circulating Variants in Chile, 2021. Frontiers in Medicine, 2022, 9, 841073.	1.2	2
328	Phage Display-Derived Compounds Displace hACE2 from Its Complex with SARS-CoV-2 Spike Protein. Biomedicines, 2022, 10, 441.	1.4	4
329	Neutralization of SARS-CoV-2 Variants by rVSV-ΔG-Spike-Elicited Human Sera. Vaccines, 2022, 10, 291.	2.1	19
330	Whole genome sequence analysis showing unique SARS-CoV-2 lineages of B.1.524 and AU.2 in Malaysia. PLoS ONE, 2022, 17, e0263678.	1.1	8
331	An engineered bispecific human monoclonal antibody against SARS-CoV-2. Nature Immunology, 2022, 23, 423-430.	7.0	38
333	Molecular variants of SARS-CoV-2: antigenic properties and current vaccine efficacy. Medical Microbiology and Immunology, 2022, 211, 79-103.	2.6	9
334	The dynamics of circulating SARS-CoV-2 lineages in Bogor and surrounding areas reflect variant shifting during the first and second waves of COVID-19 in Indonesia. PeerJ, 2022, 10, e13132.	0.9	9
335	Identifying SARS-CoV-2 Lineage Mutation Hallmarks and Correlating Them With Clinical Outcomes in Egypt: A Pilot Study. Frontiers in Molecular Biosciences, 2022, 9, 817735.	1.6	1
336	"ls Omicron mild� Testing this narrative with the mutational landscape of its three lineages and response to existing vaccines and therapeutic antibodies. Journal of Medical Virology, 2022, 94, 3521-3539.	2.5	20
337	Immunogenicity of the Xcl1-SARS-CoV-2 Spike Fusion DNA Vaccine for COVID-19. Vaccines, 2022, 10, 407.	2.1	5
338	How Is Mass Spectrometry Tackling the COVID-19 Pandemic?. Frontiers in Analytical Science, 2022, 2, .	1.1	3
339	A Sanger sequencing-based method for a rapid and economic generation of SARS-CoV-2 epidemiological data: A proof of concept study to assess the prevalence of the A23403G SNP (D614G) mutation in Quito, Ecuador F1000Research, 0, 11, 383.	0.8	0
340	The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines. MBio, 2022, 13, e0297921.	1.8	117
342	Distinct spatial arrangements of ACE2 and TMPRSS2 expression in Syrian hamster lung lobes dictates SARS-CoV-2 infection patterns. PLoS Pathogens, 2022, 18, e1010340.	2.1	13
344	A large-scale systematic survey reveals recurring molecular features of public antibody responses to SARS-CoV-2. Immunity, 2022, 55, 1105-1117.e4.	6.6	44
345	Circulation of SARS-CoV-2 Variants among Children from November 2020 to January 2022 in Trieste (Italy). Microorganisms, 2022, 10, 612.	1.6	8
346	Immunotherapy and CRISPR Cas Systems: Potential Cure of COVID-19?. Drug Design, Development and Therapy, 2022, Volume 16, 951-972.	2.0	4

#	Article	lF	CITATIONS
347	Comparative Analysis of SARS-CoV-2 Variants of Concern, Including Omicron, Highlights Their Common and Distinctive Amino Acid Substitution Patterns, Especially at the Spike ORF. Viruses, 2022, 14, 707.	1.5	30
349	SMYD2 Inhibition Downregulates TMPRSS2 and Decreases SARS-CoV-2 Infection in Human Intestinal and Airway Epithelial Cells. Cells, 2022, 11, 1262.	1.8	5
350	Spike protein of SARS-CoV-2 variants: a brief review and practical implications. Brazilian Journal of Microbiology, 2022, 53, 1133-1157.	0.8	22
351	The basis of mink susceptibility to SARS-CoV-2 infection. Journal of Applied Genetics, 2022, 63, 543-555.	1.0	5
352	MutCov: A pipeline for evaluating the effect of mutations in spike protein on infectivity and antigenicity of SARS-CoV-2. Computers in Biology and Medicine, 2022, 145, 105509.	3.9	2
353	SARS-CoV-2 Pandemic Tracing in Italy Highlights Lineages with Mutational Burden in Growing Subsets. International Journal of Molecular Sciences, 2022, 23, 4155.	1.8	3
354	Tracking of SARS-CoV-2 Alpha variant (B.1.1.7) in Palestine. Infection, Genetics and Evolution, 2022, , 105279.	1.0	0
356	Saliva for COVID-19 Testing: Simple but Useless or an Undervalued Resource?. Frontiers in Virology, 2021, 1, .	0.7	9
358	The Development of SARS-CoV-2 Variants: The Gene Makes the Disease. Journal of Developmental Biology, 2021, 9, 58.	0.9	27
360	Vaccination with SARS-CoV-2 variants of concern protects mice from challenge with wild-type virus. PLoS Biology, 2021, 19, e3001384.	2.6	15
361	Glycan Masking of Epitopes in the NTD and RBD of the Spike Protein Elicits Broadly Neutralizing Antibodies Against SARS-CoV-2 Variants. Frontiers in Immunology, 2021, 12, 795741.	2.2	13
363	SARS-CoV-2 mutations acquired during serial passage in human cell lines are consistent with several of those found in recent natural SARS-CoV-2 variants. Computational and Structural Biotechnology Journal, 2022, 20, 1925-1934.	1.9	16
364	Genome Profiling of SARS-CoV-2 in Indonesia, ASEAN and the Neighbouring East Asian Countries: Features, Challenges and Achievements. Viruses, 2022, 14, 778.	1.5	14
365	How Do Point Mutations Enhancing the Basic Character of the RBDs of SARS-CoV-2 Variants Affect Their Transmissibility and Infectivity Capacities?. Viruses, 2022, 14, 783.	1.5	9
366	The Evolution and Biology of SARS-CoV-2 Variants. Cold Spring Harbor Perspectives in Medicine, 2022, 12, a041390.	2.9	110
367	SARS-CoV-2 Variants of Concern Increased Transmission and Decrease Vaccine Efficacy in the COVID-19 Pandemic in Palembang Indonesia Acta Biomedica, 2022, 93, e2022018.	0.2	0
368	Broadly neutralizing antibodies against SARS-CoV-2 variants. , 2022, 1, 20220005.		3
369	Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs, 2022, 36, 231-323.	2.2	24

#	Article	IF	CITATIONS
370	High-resolution profiling of MHC II peptide presentation capacity reveals SARS-CoV-2 CD4 T cell targets and mechanisms of immune escape. Science Advances, 2022, 8, eabl5394.	4.7	13
371	LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Reports, 2022, 39, 110812.	2.9	287
372	Pseudotyped Bat Coronavirus RaTG13 is efficiently neutralised by convalescent sera from SARS-CoV-2 infected patients. Communications Biology, 2022, 5, 409.	2.0	5
373	Antiviral Drug Discovery for the Treatment of COVID-19 Infections. Viruses, 2022, 14, 961.	1.5	44
374	The Emergence of SARS-CoV-2 Variants With a Lower Antibody Response: A Genomic and Clinical Perspective. Frontiers in Medicine, 2022, 9, .	1.2	4
375	Massively multiplexed affinity characterization of therapeutic antibodies against SARS-CoV-2 variants. Antibody Therapeutics, 2022, 5, 130-137.	1.2	5
376	COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduction and Targeted Therapy, 2022, 7, 146.	7.1	153
377	The Evolutionary Dance between Innate Host Antiviral Pathways and SARS-CoV-2. Pathogens, 2022, 11, 538.	1.2	4
378	Imported SARS-CoV-2 Variants of Concern Drove Spread of Infections across Kenya during the Second Year of the Pandemic. Covid, 2022, 2, 586-598.	0.7	9
379	The effect of various compounds on the COVID mechanisms, from chemical to molecular aspects. Biophysical Chemistry, 2022, 288, 106824.	1.5	5
380	A new approach for determining SARS-CoV-2 epitopes using machine learning-based in silico methods. Computational Biology and Chemistry, 2022, 98, 107688.	1.1	10
381	Antibodies from convalescent plasma promote SARS-CoV-2 clearance in individuals with and without endogenous antibody response. Journal of Clinical Investigation, 2022, 132, .	3.9	26
382	An Electrostatically-steered Conformational Selection Mechanism Promotes SARS-CoV-2 Spike Protein Variation. Journal of Molecular Biology, 2022, 434, 167637.	2.0	1
383	Bioinformatics for the Origin and Evolution of Viruses. Advances in Experimental Medicine and Biology, 2022, 1368, 53-71.	0.8	2
384	The Evidence of SARS-CoV-2 Human-to-Pets Transmission in Household Settings in Bosnia and Herzegovina. Frontiers in Genetics, 2022, 13, 839205.	1.1	12
386	The chimera of S1 and N proteins of SARS-CoV-2: can it be a potential vaccine candidate for COVID-19?. Expert Review of Vaccines, 2022, 21, 1071-1086.	2.0	3
387	Detecting Potentially Adaptive Mutations from the Parallel and Fixed Patterns in SARS-CoV-2 Evolution. Viruses, 2022, 14, 1087.	1.5	4
388	The Biological Functions and Clinical Significance of SARS-CoV-2 Variants of Corcern. Frontiers in Medicine, 2022, 9, .	1.2	43

#	Article	IF	CITATIONS
390	Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein. Cell, 2022, 185, 2279-2291.e17.	13.5	25
392	Competition for dominance within replicating quasispecies during prolonged SARS-CoV-2 infection in an immunocompromised host. Virus Evolution, 2022, 8, .	2.2	21
394	Leveraging South African <scp>HIV</scp> research to define <scp>SARS oV</scp> â€2 immunity triggered by sequential variants of concern. Immunological Reviews, 2022, 310, 61-75.	2.8	6
395	Mapping of SARS-CoV-2 spike protein evolution during the first and second waves of COVID-19 infections in India. Future Virology, 2022, 17, 557-575.	0.9	2
396	Variant-driven early warning via unsupervised machine learning analysis of spike protein mutations for COVID-19. Scientific Reports, 2022, 12, .	1.6	17
397	SARS-CoV-2 Spike mutations modify the interaction between virus Spike and human ACE2 receptors. Biochemical and Biophysical Research Communications, 2022, 620, 8-14.	1.0	3
398	Epidemiological Monitoring of COVID-19 in a Brazilian City: The Interface between the Economic Policies, Commercial Behavior, and Pandemic Control. World, 2022, 3, 344-356.	1.0	1
399	Tracking the molecular evolution and transmission patterns of SARS-CoV-2 lineage B.1.466.2 in Indonesia based on genomic surveillance data. Virology Journal, 2022, 19, .	1.4	4
400	Jigsaw puzzle of SARS-CoV-2 RBD evolution and immune escape. , 2022, 19, 848-851.		9
401	Full-genome sequencing and mutation analysis of SARS-CoV-2 isolated from Makassar, South Sulawesi, Indonesia. PeerJ, 0, 10, e13522.	0.9	3
402	Molecular simulations of complex carbohydrates and glycoconjugates. Current Opinion in Chemical Biology, 2022, 69, 102175.	2.8	17
403	Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	59
404	Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain during viral evolution. Science, 2022, 377, 420-424.	6.0	140
405	A panel of nanobodies recognizing conserved hidden clefts of all SARS-CoV-2 spike variants including Omicron. Communications Biology, 2022, 5, .	2.0	26
406	Multifaceted Computational Modeling in Glycoscience. Chemical Reviews, 2022, 122, 15914-15970.	23.0	30
407	Plasma and memory antibody responses to Gamma SARS-CoV-2 provide limited cross-protection to other variants. Journal of Experimental Medicine, 2022, 219, .	4.2	6
408	Molecular dynamics simulations of the SARS-CoV-2 Spike protein and variants of concern: structural evidence for convergent adaptive evolution. Journal of Biomolecular Structure and Dynamics, 2023, 41, 5789-5801.	2.0	7
409	The Role of Cellular Immunity in the Protective Efficacy of the SARS-CoV-2 Vaccines. Vaccines, 2022, 10, 1103.	2.1	11

#	Article	IF	CITATIONS
410	Potent neutralizing anti-SARS-CoV-2 human antibodies cure infection with SARS-CoV-2 variants in hamster model. IScience, 2022, 25, 104705.	1.9	8
411	The trispecific DARPin ensovibep inhibits diverse SARS-CoV-2 variants. Nature Biotechnology, 2022, 40, 1845-1854.	9.4	25
412	Genomic epidemiology of SARS-CoV-2 in a university outbreak setting and implications for public health planning. Scientific Reports, 2022, 12, .	1.6	5
413	SARS-CoV-2 Intermittent Virulence as a Result of Natural Selection. Covid, 2022, 2, 1089-1101.	0.7	1
415	Dynamics of Viral Infection and Evolution of SARS-CoV-2 Variants in the Calabria Area of Southern Italy. Frontiers in Microbiology, 0, 13, .	1.5	10
416	Appraisal of SARS-CoV-2 mutations and their impact on vaccination efficacy: an overview. Journal of Diabetes and Metabolic Disorders, 2022, 21, 1763-1783.	0.8	4
417	Analysis of Factors Affecting Neutralizing Antibody Production after COVID-19 Vaccination Using Newly Developed Rapid Point-of-Care Test. Diagnostics, 2022, 12, 1924.	1.3	6
419	Conformational flexibility in neutralization of SARS-CoV-2 by naturally elicited anti-SARS-CoV-2 antibodies. Communications Biology, 2022, 5, .	2.0	5
420	A ribavirin-induced ORF2 single-nucleotide variant produces defective hepatitis E virus particles with immune decoy function. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
421	STArS (STrain-Amplicon-Seq), a targeted Nanopore sequencing workflow for SARS-CoV-2 diagnostics and genotyping. Biology Methods and Protocols, 0, , .	1.0	0
422	Acriflavine, an Acridine Derivative for Biomedical Application: Current State of the Art. Journal of Medicinal Chemistry, 2022, 65, 11415-11432.	2.9	12
423	Celastrol: A lead compound that inhibits SARS oVâ€2 replication, the activity of viral and human cysteine proteases, and virusâ€induced ILâ€6 secretion. Drug Development Research, 2022, 83, 1623-1640.	1.4	6
424	Promotion of neutralizing antibody-independent immunity to wild-type and SARS-CoV-2 variants of concern using an RBD-Nucleocapsid fusion protein. Nature Communications, 2022, 13, .	5.8	12
425	Scope of repurposed drugs against the potential targets of the latest variants of SARS-CoV-2. Structural Chemistry, 2022, 33, 1585-1608.	1.0	6
426	Highly Divergent SARS-CoV-2 Alpha Variant in Chronically Infected Immunocompromised Person. Emerging Infectious Diseases, 2022, 28, 1920-1923.	2.0	4
428	Identification of hACE2-interacting sites in SARS-CoV-2 spike receptor binding domain for antiviral drugs screening. Virus Research, 2022, 321, 198915.	1.1	2
429	Single domain antibodies derived from ancient animals as broadly neutralizing agents for SARS-CoV-2 and other coronaviruses. Biomedical Engineering Advances, 2022, 4, 100054.	2.2	3
430	Computational investigation of the increased virulence and pathogenesis of SARS-CoV-2 lineage B.1.1.7. Physical Chemistry Chemical Physics, 2022, 24, 20371-20380.	1.3	3

#	Article	IF	CITATIONS
431	Genetics and Biological Characteristics of SARS-CoV-2. , 2022, , 49-66.		0
432	An Ultrasensitive, One-Pot RNA Detection Method Based on Rationally Engineered Cas9 Nickase-Assisted Isothermal Amplification Reaction. Analytical Chemistry, 2022, 94, 12461-12471.	3.2	7
433	Deep mutational learning predicts ACE2 binding and antibody escape to combinatorial mutations in the SARS-CoV-2 receptor-binding domain. Cell, 2022, 185, 4008-4022.e14.	13.5	55
434	Whole genome sequencing analysis of SARS-CoV-2 from Malaysia: From alpha to Omicron. Frontiers in Medicine, 0, 9, .	1.2	5
435	Immunological study of COVID-19 vaccine candidate based on recombinant spike trimer protein from different SARS-CoV-2 variants of concern. Frontiers in Immunology, 0, 13, .	2.2	6
436	Potential of conserved antigenic sites in development of universal SARS-like coronavirus vaccines. Frontiers in Immunology, 0, 13, .	2.2	0
437	Probing the mutational landscape of the SARS-CoV-2 spike protein via quantum mechanical modeling of crystallographic structures. , 2022, 1, .		3
438	Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Frontiers in Immunology, 0, 13, .	2.2	4
440	Key mutations on spike protein altering ACE2 receptor utilization and potentially expanding host range of emerging SARSâ€CoVâ€2 variants. Journal of Medical Virology, 2023, 95, .	2.5	11
441	Structural heterogeneity and precision of implications drawn from cryo-electron microscopy structures: SARS-CoV-2 spike-protein mutations as a test case. European Biophysics Journal, 2022, 51, 555-568.	1.2	4
442	Role for <i>N</i> -glycans and calnexin-calreticulin chaperones in SARS-CoV-2 Spike maturation and viral infectivity. Science Advances, 2022, 8, .	4.7	10
443	Adaptationâ€Proof SARSâ€CoVâ€2 Vaccine Design. Advanced Functional Materials, 2022, 32, .	7.8	7
444	Milder outcomes of SARS-CoV-2 genetically confirmed reinfections compared to primary infections with the delta variant: A retrospective case-control study. Frontiers in Medicine, 0, 9, .	1.2	0
446	Evaluation of immunoprotection against coronavirus disease 2019: Novel variants, vaccine inoculation, and complications. Journal of Pharmaceutical Analysis, 2023, 13, 1-10.	2.4	1
447	SARS-CoV-2 Variant-Specific Infectivity and Immune Profiles Are Detectable in a Humanized Lung Mouse Model. Viruses, 2022, 14, 2272.	1.5	3
448	Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science, 2022, 378, 619-627.	6.0	117
449	Neutralizing antibodies from the rare convalescent donors elicited antibody-dependent enhancement of SARS-CoV-2 variants infection. Frontiers in Medicine, 0, 9, .	1.2	5
450	Evolutionary Pattern Comparisons of the SARS-CoV-2 Delta Variant in Countries/Regions with High and Low Vaccine Coverage. Viruses, 2022, 14, 2296.	1.5	4

ARTICLE IF CITATIONS # Naturally occurring spike mutations influence the infectivity and immunogenicity of SARS-CoV-2., 451 17 2022, 19, 1302-1310. Bioinformatic Analysis of B- and T-cell Epitopes from SARS-CoV-2 Structural Proteins and their Potential Cross-reactivity with Emerging Variants and other Human Coronaviruses. Archives of 1.5 Medical Research, 2022, 53, 694-710. The Concomitant Use of Melatonin and Bebtelovimab as a Treatment Strategy for Omicron and Future Variants of Concern. International Journal of Pharmaceutical Research and Allied Sciences, 2022, 11, 454 0.1 1 33-40. SARS-CoV-2 Variants of Concern and Variations within Their Genome Architecture: Does Nucleotide Distribution and Mutation Rate Alter the Functionality and Evolution of the Virus?. Viruses, 2022, 14, 2499. ACE2 N-glycosylation modulates interactions with SARS-CoV-2 spike protein in a site-specific manner. 456 2.0 13 Communications Biology, 2022, 5, . Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains. PLoS Pathogens, 2022, 18, e1010951. 2.1 458 Conformational stability of SARS-CoV-2 glycoprotein spike variants. IScience, 2023, 26, 105696. 1.9 5 TEMPO: A transformer-based mutation prediction framework for SARS-CoV-2 evolution. Computers in 459 3.9 Biology and Medicine, 2023, 152, 106264. 460 Circulating microRNAs as emerging regulators of COVID-19. Theranostics, 2023, 13, 125-147. 4.6 11 Endemicity Is Not a Victory: The Unmitigated Downside Risks of Widespread SARS-CoV-2 Transmission. Covid, 2022, 2, 1689-1709. Immune evasion of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2); molecular 463 3 1.0 approaches. Molecular Immunology, 2023, 156, 10-19. Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of 464 1.8 Current COVID-19. Plasmonics, 2023, 18, 311-347. Genomic Tracking of SARS-CoV-2 Variants in Myanmar. Vaccines, 2023, 11, 6. 465 2.1 0 Willingness of college students to receive COVID-19 heterologous vaccination in Taizhou, China. 1.4 Human Vaccines and Immunotherapeutics, 2023, 19, . SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nature Reviews Microbiology, 0, , 467 13.6 160 A Review of the Currently Available Antibody Therapy for the Treatment of Coronavirus Disease 2019 (COVID-19). Antibodies, 2023, 12, 5. On the Evolutionary Trajectory of SARS-CoV-2: Host Immunity as a Driver of Adaptation in RNA Viruses. 469 1.52 Viruses, 2023, 15, 70. Genomic Epidemiology of the SARS-CoV-2 Epidemic in Cyprus from November 2020 to October 2021: The 470 1.5 Passage of Waves of Alpha and Delta Variants of Concern. Viruses, 2023, 15, 108.

#	Article	IF	Citations
471	An inactivated recombinant rabies virus chimerically expressed RBD induces humoral and cellular immunity against SARS-CoV-2 and RABV. Virologica Sinica, 2023, 38, 244-256.	1.2	3
473	Human neutralizing antibodies to cold linear epitopes and subdomain 1 of the SARS-CoV-2 spike glycoprotein. Science Immunology, 2023, 8, .	5.6	33
474	Origin, Genetic Variation and Molecular Epidemiology of SARS-CoV-2 Strains Circulating in Sardinia (Italy) during the First and Second COVID-19 Epidemic Waves. Viruses, 2023, 15, 277.	1.5	0
475	Minimal Antigenic Evolution after a Decade of Norovirus GII.4 Sydney_2012 Circulation in Humans. Journal of Virology, 2023, 97, .	1.5	8
476	Modeling the spread dynamics of multiple-variant coronavirus disease under public health interventions: A general framework. Information Sciences, 2023, 628, 469-487.	4.0	4
477	Morphological aspect of the angiotensin-converting enzyme 2. , 2023, , 389-417.		0
478	Different configurations of SARS-CoV-2 spike protein delivered by integrase-defective lentiviral vectors induce persistent functional immune responses, characterized by distinct immunogenicity profiles. Frontiers in Immunology, 0, 14, .	2.2	1
479	Modeling identifies variability in SARS-CoV-2 uptake and eclipse phase by infected cells as principal drivers of extreme variability in nasal viral load in the 48Âh post infection. Journal of Theoretical Biology, 2023, 565, 111470.	0.8	5
480	Sequence analysis of SARS-CoV-2 Delta variant isolated from Makassar, South Sulawesi, Indonesia. Heliyon, 2023, 9, e13382.	1.4	3
481	Molecular Evolution of SARS-CoV-2 during the COVID-19 Pandemic. Genes, 2023, 14, 407.	1.0	10
482	Profiling Humoral Immunity After Mixing and Matching COVID-19 Vaccines Using SARS-CoV-2 Variant Protein Microarrays. Molecular and Cellular Proteomics, 2023, 22, 100507.	2.5	4
483	Host–Pathogen Interactions Influencing Zoonotic Spillover Potential and Transmission in Humans. Viruses, 2023, 15, 599.	1.5	6
485	SARS-CoV-2 molecular epidemiology in Slovenia, January to September 2021. Eurosurveillance, 2023, 28, .	3.9	1
486	Significance of Conserved Regions in Coronavirus Spike Protein for Developing a Novel Vaccine against SARS-CoV-2 Infection. Vaccines, 2023, 11, 545.	2.1	3
487	Immune evasion of neutralizing antibodies by SARS-CoV-2 Omicron. Cytokine and Growth Factor Reviews, 2023, 70, 13-25.	3.2	17
488	Effectiveness of mRNA and viralâ€vector vaccines in epidemic period led by different SARS oVâ€2 variants: A systematic review and metaâ€analysis. Journal of Medical Virology, 2023, 95, .	2.5	3
490	Understanding Mutations in Human SARS-CoV-2 Spike Glycoprotein: A Systematic Review & Meta-Analysis. Viruses, 2023, 15, 856.	1.5	10
491	Different Variants of SARS-CoV-2: A Comprehensive Review on Mutation Patterns and Pathogenicity. Coronaviruses, 2023, 4, .	0.2	1

#	Article	IF	CITATIONS
492	The SARS-CoV-2 Alpha variant was associated with increased clinical severity of COVID-19 in Scotland: A genomics-based retrospective cohort analysis. PLoS ONE, 2023, 18, e0284187.	1.1	1
493	Analysis of SARS-CoV-2 variants from patient specimens in Nevada from October 2020 to August 2021. Infection, Genetics and Evolution, 2023, 111, 105434.	1.0	1
519	Metabolites profiling of ethyl acetate extract of sponge Halichondriidae sp from Kangean Islands and their in silico activity as coronavirus drugs. AIP Conference Proceedings, 2023, , .	0.3	0
527	Targets of SARS-CoV-2: therapeutic implications for COVID-19. , 2024, , 3-14.		0