Changes in soil properties and salt tolerance of safflower metal oxide nanocomposites of magnesium and mangar

Ecotoxicology and Environmental Safety 211, 111904 DOI: 10.1016/j.ecoenv.2021.111904

Citation Report

#	Article	IF	CITATIONS
1	Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. Plants, 2021, 10, 1221.	3.5	112
2	Biochar-based metal oxide nanocomposites of magnesium and manganese improved root development and productivity of safflower (Carthamus tinctorius L.) under salt stress. Rhizosphere, 2021, 19, 100416.	3.0	28
3	Pig manure digestateâ€derived biochar for soil management and crop cultivation in heavy metals contaminated soil. Soil Use and Management, 2022, 38, 1307-1321.	4.9	14
4	Improving plant available water holding capacity of soil by solid and chemically modified biochars. Rhizosphere, 2022, 21, 100469.	3.0	30
5	Use of biochar to manage soil salts and water: Effects and mechanisms. Catena, 2022, 211, 106018.	5.0	15
6	Addition of walnut shells biochar to alkaline arable soil caused contradictory effects on CO2 and N2O emissions, nutrients availability, and enzymes activity. Chemosphere, 2022, 293, 133476.	8.2	12
7	Revamping highly weathered soils in the tropics with biochar application: What we know and what is needed. Science of the Total Environment, 2022, 822, 153461.	8.0	22
8	A meta-analysis to estimate the potential of biochar in improving nitrogen fixation and plant biomass of legumes. Biomass Conversion and Biorefinery, 2024, 14, 3293-3303.	4.6	6
9	Use of magnesium nanomaterials in plants and crop pathogens. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	5
10	Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense. Plants, 2022, 11, 1301.	3.5	12
11	Remediation of organic amendments on soil salinization: Focusing on the relationship between soil salts and microbial communities. Ecotoxicology and Environmental Safety, 2022, 239, 113616.	6.0	28
12	Biochar-Based Nutritional Nanocomposites Altered Nutrient Uptake and Vacuolar H+-Pump Activities of Dill Under Salinity. Journal of Soil Science and Plant Nutrition, 2022, 22, 3568-3581.	3.4	11
13	Irrigation Water Quality in Selected Water Bodies of East Mediterranean Basin of Turkey. Bilecik Åžeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 2022, 9, 1-8.	0.6	0
14	Growth, Gas Exchange, and Mineral Nutrients of Albizia julibrissin and Sophora japonica Irrigated with Saline Water. Hortscience: A Publication of the American Society for Hortcultural Science, 2022, 57, 841-850.	1.0	0
15	Red mud-biochar composites (co-pyrolyzed red mud-plant materials): Characteristics and improved efficacy on the treatment of acidic mine water and trace element-contaminated soils. Science of the Total Environment, 2022, 844, 157062.	8.0	16
16	Biochar derived carbonaceous material for various environmental applications: Systematic review. Environmental Research, 2022, 214, 113857.	7.5	36
17	Alleviation of salt stress in rapeseed (<i>Brassica napus</i> L.) plants by biochar-based rhizobacteria: new insights into the mechanisms regulating nutrient uptake, antioxidant activity, root growth and productivity. Archives of Agronomy and Soil Science, 2023, 69, 1548-1565.	2.6	8
18	Comparative efficiency of silica gel, biochar, and plant growth promoting bacteria on Cr and Pb availability to Solanum melongena L. in contaminated soil irrigated with wastewater. Frontiers in Plant Science, 0, 13, .	3.6	2

CITATION REPORT

#	Article	IF	CITATIONS
19	Combined treatment of heavy metals in water and soil by biochar and manganese-oxidizing bacteria. Journal of Soils and Sediments, 2023, 23, 145-155.	3.0	4
20	Nutritional status, Na+ and Cl- concentrations, and yield of sugarcane irrigated with brackish waters. Revista Brasileira De Engenharia Agricola E Ambiental, 2022, 26, 863-874.	1.1	2
21	Improvement of Salinity Tolerance in Rice Seedlings by Exogenous Magnesium Sulfate Application. Soil Systems, 2022, 6, 69.	2.6	7
22	Silica modified biochar mitigates the adverse effects of salt and drought stress and improves safflower (Carthamus tinctorius L.) growth. Journal of Soils and Sediments, 2023, 23, 172-192.	3.0	3
23	Microbial-assisted soil chromium immobilization through zinc and iron-enriched rice husk biochar. Frontiers in Microbiology, 0, 13, .	3.5	4
24	Biochar-based nutritional nanocomposites: a superior treatment for alleviating salt toxicity and improving physiological performance of dill (Anethum graveolens). Environmental Geochemistry and Health, 0, , .	3.4	9
25	Improving electrochemical characteristics of plant roots by biochar is an efficient mechanism in in in increasing cations uptake by plants. Chemosphere, 2023, 313, 137365.	8.2	2
26	Biochar modification and application to improve soil fertility and crop productivity. Agriculture, 2022, 68, 45-61.	0.4	4
27	The biochar-based nanocomposites influence the quantity, quality and antioxidant activity of essential oil in dill seeds under salt stress. Scientific Reports, 2022, 12, .	3.3	5
28	Application of Magnesium and Calcium Sulfate on Growth and Physiology of Forage Crops under Long-Term Salinity Stress. Plants, 2022, 11, 3576.	3.5	2
29	The modified biochars influence nutrient and osmotic statuses and hormonal signaling of mint plants under fluoride and cadmium toxicities. Frontiers in Plant Science, 0, 13, .	3.6	0
30	Mitigation of salinity stress effects on kochia (<i>Bassia scoparia</i> L.) biomass productivity using biochar application. International Journal of Phytoremediation, 2023, 25, 1463-1473.	3.1	2
31	Synthesis, characterization, safety design, and application of NPs@BC for contaminated soil remediation and sustainable agriculture. Biochar, 2023, 5, .	12.6	12
32	Bibliometric analysis of biochar research in 2021: a critical review for development, hotspots and trend directions. Biochar, 2023, 5, .	12.6	10
33	Biochar related treatments improved physiological performance, growth and productivity of Mentha crispa L. plants under fluoride and cadmium toxicities. Industrial Crops and Products, 2023, 194, 116287.	5.2	5
34	Nanoâ€biochar: Properties and prospects for sustainable agriculture. Land Degradation and Development, 2023, 34, 2445-2463.	3.9	10
35	Trichoderma asperellum L. Coupled the Effects of Biochar to Enhance the Growth and Physiology of Contrasting Maize Cultivars under Copper and Nickel Stresses. Plants, 2023, 12, 958.	3.5	6
37	Nanomaterials and Nanocomposites Exposures to Plants: An Overview. , 2023, , 19-41.		0

#	Article	IF	CITATIONS
38	Proline doped ZnO nanocomposite alleviates NaCl induced adverse effects on morpho-biochemical response in Coriandrum sativum. Plant Stress, 2023, 9, 100173.	5.5	2
39	The biochar-based nanocomposites improve seedling emergence and growth of dill by changing phytohormones and sugar signaling under salinity. Environmental Science and Pollution Research, 2023, 30, 67458-67471.	5.3	3
40	Solid and modified biochars mitigate root cell lignification and improve nutrients uptake in mint plants under fluoride and cadmium stresses. Plant Physiology and Biochemistry, 2023, 200, 107757.	5.8	3
42	Emerging Roles of Nanomaterials in Plant-Salinity Interaction. Environmental Science and Engineering, 2023, , 93-119.	0.2	0
43	Nano-Management Approaches for Salt Tolerance in Plants under Field and In Vitro Conditions. Agronomy, 2023, 13, 2695.	3.0	2
44	Biochar modification methods and mechanisms for saltâ€affected soil and salineâ€alkali soil improvement: A review. Soil Use and Management, 2024, 40, .	4.9	0
45	Canola inoculation with Pseudomonas baetica R27N3 under salt stress condition improved antioxidant defense and increased expression of salt resistance elements. Industrial Crops and Products, 2023, 206, 117648.	5.2	1
46	The Potential of Nanocomposite Fertilizers for Sustainable Crop Production. Nanotechnology in the Life Sciences, 2024, , 99-124.	0.6	0
47	Fog controls biological cycling of soil phosphorus in the Coastal Cordillera of the Atacama Desert. Global Change Biology, 2024, 30, .	9.5	0
48	Deciphering the Role of Nanoparticles in Stimulating Drought and Salinity Tolerance in Plants: Recent Insights and Perspective. Journal of Plant Growth Regulation, 2024, 43, 1605-1630.	5.1	0
49	Review of Crop Response to Soil Salinity Stress: Possible Approaches from Leaching to Nano-Management. Soil Systems, 2024, 8, 11.	2.6	1
50	Magnesium nanoparticles extirpate salt stress in carrots (Daucus carota L.) through metabolomics regulations. Plant Physiology and Biochemistry, 2024, 207, 108383.	5.8	0
51	Silica-based nanofertilizer for soil treatment, and improved crop productivity. , 2024, , 271-279.		0
52	Enriched biochars with silicon and calcium nanoparticles mitigated salt toxicity and improved salt lower plant performance. International Journal of Phytoremediation 0, 1-10	3.1	0