Review: Tissue Engineering of Small-Diameter Vascular in Large Animals and Humans

Cells 10, 713 DOI: 10.3390/cells10030713

Citation Report

#	Article	IF	CITATIONS
1	Potential of Autologous Progenitor Cells and Decellularized Porcine Artery Matrix in Construction of Tissue-engineered Vascular Grafts. Organogenesis, 2021, , 1-13.	0.4	4
2	Animal studies for the evaluation of in situ tissue-engineered vascular grafts — a systematic review, evidence map, and meta-analysis. Npj Regenerative Medicine, 2022, 7, 17.	2.5	10
3	Advantages of Fibrin Polymerization Method without the Use of Exogenous Thrombin for Vascular Tissue Engineering Applications. Biomedicines, 2022, 10, 789.	1.4	5
4	Mitomycin-Treated Endothelial and Smooth Muscle Cells Suitable for Safe Tissue Engineering Approaches. Frontiers in Bioengineering and Biotechnology, 2022, 10, 772981.	2.0	3
5	Differential sensitivity of assays for determining vein endothelial cell senescence. Clinical Hemorheology and Microcirculation, 2022, 81, 191-203.	0.9	2
6	Tri-Layered Vascular Grafts Guide Vascular Cells' Native-like Arrangement. Polymers, 2022, 14, 1370.	2.0	10
7	Preâ€implantation evaluation of a smallâ€diameter, long vascular graft (Biotube®) for belowâ€knee bypass surgery in goats. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2387-2398.	1.6	4
8	Marker-Independent Monitoring of in vitro and in vivo Degradation of Supramolecular Polymers Applied in Cardiovascular in situ Tissue Engineering. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	5
9	Results of preclinical trials in a sheep model of biodegradable small-diameter vascular grafts. Vestnik Transplantologii I Iskusstvennykh Organov, 2022, 24, 80-93.	0.1	2
10	Development of L-arginine-based poly(ester urethane)urea for enhanced vascular adaptability. Science China Technological Sciences, 2022, 65, 2751-2762.	2.0	4
11	Luminal endothelialization of small caliber silk tubular graft for vascular constructs engineering. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	2
12	1-Year Patency of Biorestorative Polymeric Coronary Artery Bypass Grafts in an Ovine Model. JACC Basic To Translational Science, 2023, 8, 19-34.	1.9	1
13	Controlled and Synchronised Vascular Regeneration upon the Implantation of Iloprost- and Cationic Amphiphilic Drugs-Conjugated Tissue-Engineered Vascular Grafts into the Ovine Carotid Artery: A Proteomics-Empowered Study. Polymers, 2022, 14, 5149.	2.0	4
14	Evaluation of Biointegration and Inflammatory Response to Blood Vessels Produced by Tissue Engineering—Experimental Model in Rabbits. Biomolecules, 2022, 12, 1776.	1.8	0
15	Vascular endothelial growth factor attenuates neointimal hyperplasia of decellularized small-diameter vascular grafts by modulating the local inflammatory response. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
16	Electrospun membranes of carboxylated poly(ester urethane)urea/gelatin encapsulating pterostilbene for adaptive and antioxidative purposes. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 1171-1194.	1.9	1
17	Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
18	The Pursuit of a Perfect Conduit. JACC Basic To Translational Science, 2023, 8, 35-36.	1.9	0

CITATION REPORT

#	Article	IF	CITATIONS
19	Promoting Angiogenesis Using Immune Cells for Tissue-Engineered Vascular Grafts. Annals of Biomedical Engineering, 2023, 51, 660-678.	1.3	2
20	Mechanical characterization of human umbilical arteries by thick-walled models: Enhanced vascular compliance by removing an abluminal lining. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142, 105811.	1.5	1
21	Influence of the polymerization method on the properties of fibrin matrices. Complex Issues of Cardiovascular Diseases, 2023, 11, 134-145.	0.3	1
22	Biomimetic Bilayered Scaffolds for Tissue Engineering: From Current Design Strategies to MedicalÂApplications. Advanced Healthcare Materials, 2023, 12, .	3.9	13
23	Clinical implications of inflammation in atheroma formation and novel therapies in cardiovascular diseases. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	1
24	Anti-Inflammatory and Anti-Thrombogenic Properties of Arterial Elastic Laminae. Bioengineering, 2023, 10, 424.	1.6	1
25	Features of remodeling of newly formed vascular tissue based on biodegradable vascular prostheses implanted in the carotid artery of sheep: morphogenetic analysis. Sibirskij žurnal KliniÄeskoj I Ôksperimentalʹnoj Mediciny, 2023, 38, 151-159.	0.1	0
31	Nanomaterials for small diameter vascular grafts: overview and outlook. Nanoscale Advances, 2023, 5, 6751-6767.	2.2	0