Neutralising antibody escape of SARS oVâ€2 spike p Covidâ€19 therapeutics and vaccines

Reviews in Medical Virology 31, e2231

DOI: 10.1002/rmv.2231

Citation Report

#	Article	IF	CITATIONS
1	Neutralising antibody escape of SARSâ€CoVâ€2 spike protein: Risk assessment for antibodyâ€based Covidâ€19 therapeutics and vaccines. Reviews in Medical Virology, 2021, 31, e2231.	8.3	128
8	A bivalent recombinant vaccine targeting the S1 protein induces neutralizing antibodies against both SARS oVâ€2 variants and wildâ€ŧype of the virus. MedComm, 2021, 2, 430-441.	7.2	37
9	Potential Therapeutic Targets and Vaccine Development for SARS-CoV-2/COVID-19 Pandemic Management: A Review on the Recent Update. Frontiers in Immunology, 2021, 12, 658519.	4.8	63
10	Variants of Concern Are Overrepresented Among Postvaccination Breakthrough Infections of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Washington State. Clinical Infectious Diseases, 2022, 74, 1089-1092.	5.8	38
12	Potency of BNT162b2 and mRNAâ€1273 vaccineâ€induced neutralizing antibodies against severe acute respiratory syndromeâ€CoVâ€2 variants of concern: A systematic review of in vitro studies. Reviews in Medical Virology, 2022, 32, e2277.	8.3	57
13	The impact of spike mutated variants of SARS-CoV2 [Alpha, Beta, Gamma, Delta, and Lambda] on the efficacy of subunit recombinant vaccines. Brazilian Journal of Infectious Diseases, 2021, 25, 101606.	0.6	94
14	Contemporary narrative review of treatment options for COVID â€19. Respirology, 2021, 26, 745-767.	2.3	12
16	Emergence of Q493R mutation in SARS-CoV-2 spike protein during bamlanivimab/etesevimab treatment and resistance to viral clearance. Journal of Infection, 2022, 84, 248-288.	3.3	34
17	COVID-19 infodemics: the role of mainstream and social media. Clinical Microbiology and Infection, 2021, 27, 1568-1569.	6.0	9
19	Bamlanivimab use in mildâ€toâ€moderate COVIDâ€19 disease: A matched cohort design. Pharmacotherapy, 2021, 41, 743-747.	2.6	13
20	Introduction of SARS OVâ€⊋ C.37 (WHO VOI lambda) from Peru to Italy. Journal of Medical Virology, 2021, 93, 6460-6461.	5.0	16
22	N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. ELife, 2021, 10, .	6.0	262
25	Planarian secretory cell nidovirus: The largest genome of RNA viruses. Reviews in Medical Virology, 2022, 32, e2293.	8.3	0
26	Bamlanivimab improves hospitalization and mortality rates in patients with COVID-19: A systematic review and meta-analysis. Journal of Infection, 2022, 84, 248-288.	3.3	8
27	Extracellular pH, osmolarity, temperature and humidity could discourage SARS-CoV-2 cell docking and propagation <i>via</i> intercellular signaling pathways. PeerJ, 2021, 9, e12227.	2.0	3
28	Molecular rationale for SARS-CoV-2 spike circulating mutations able to escape bamlanivimab and etesevimab monoclonal antibodies. Scientific Reports, 2021, 11, 20274.	3.3	33
30	Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. New England Journal of Medicine, 2021, 385, 1941-1950.	27.0	832
32	Structural and functional insights into the spike protein mutations of emerging SARS-CoV-2 variants. Cellular and Molecular Life Sciences, 2021, 78, 7967-7989.	5.4	40

#	Article	IF	CITATIONS
33	In silico evaluation of the interaction between ACE2 and SARS-CoV-2 Spike protein in a hyperglycemic environment. Scientific Reports, 2021, 11, 22860.	3.3	13
34	Analysis of Serological Biomarkers of SARS-CoV-2 Infection in Convalescent Samples From Severe, Moderate and Mild COVID-19 Cases. Frontiers in Immunology, 2021, 12, 748291.	4.8	29
35	N501Y and K417N Mutations in the Spike Protein of SARS-CoV-2 Alter the Interactions with Both hACE2 and Human-Derived Antibody: A Free Energy of Perturbation Retrospective Study. Journal of Chemical Information and Modeling, 2021, 61, 6079-6084.	5.4	74
36	Controlling long-term SARS-CoV-2 infections can slow viral evolution and reduce the risk of treatment failure. Scientific Reports, 2021, 11, 22630.	3.3	16
37	E484K and N501Y SARS-CoV 2 spike mutants Increase ACE2 recognition but reduce affinity for neutralizing antibody. International Immunopharmacology, 2022, 102, 108424.	3.8	31
38	Genome Characterization and Potential Risk Assessment of the Novel SARS-CoV-2 Variant Omicron (B.1.1.529). Zoonoses, 2021, 1, .	1.1	38
39	A systematic review of Vaccine Breakthrough Infections by SARS-CoV-2 Delta Variant. International Journal of Biological Sciences, 2022, 18, 889-900.	6.4	40
40	Intra-Host SARS-CoV-2 Evolution in the Gut of Mucosally-Infected Chlorocebus aethiops (African) Tj ETQq1 1 ().784 <u>31</u> 4 rgB1	[Overlock
41	The ins and outs of SARS-CoV-2 variants of concern (VOCs). Archives of Virology, 2022, 167, 327-344.	2.1	35
42	SARS-COV-2 Variants: Differences and Potential of Immune Evasion. Frontiers in Cellular and Infection Microbiology, 2021, 11, 781429.	3.9	154
43	R346K Mutation in the <i>Mu</i> Variant of SARS-CoV-2 Alters the Interactions with Monoclonal Antibodies from Class 2: A Free Energy Perturbation Study. Journal of Chemical Information and Modeling, 2022, 62, 627-631.	5.4	25
44	Bamlanivimab for the Prevention of Hospitalizations and Emergency Department Visits in SARS-CoV-2–Positive Patients in a Regional Health Care System. Infectious Diseases in Clinical Practice, 2022, 30, 1-4.	0.3	1
45	Insight into COVID-19's epidemiology, pathology, and treatment. Heliyon, 2022, 8, e08799.	3.2	19
46	Highlight of potential impact of new viral genotypes of SARS-CoV-2 on vaccines and anti-viral therapeutics. Gene Reports, 2022, 26, 101537.	0.8	3
47	A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations. Frontiers in Immunology, 2022, 13, 801522.	4.8	73
48	Emerging SARS-CoV-2 Variants: Genetic Variability and Clinical Implications. Current Microbiology, 2022, 79, 20.	2.2	48
51	Molecular dynamics simulations of the delta and omicron SARS-CoV-2 spike – ACE2 complexes reveal distinct changes between both variants. Computational and Structural Biotechnology Journal, 2022, 20, 1168-1176.	4.1	32
53	"ls Omicron mild� Testing this narrative with the mutational landscape of its three lineages and response to existing vaccines and therapeutic antibodies. Journal of Medical Virology, 2022, 94, 3521-3539.	5.0	20

#	Article	IF	CITATIONS
54	The Easy-to-Use SARS-CoV-2 Assembler for Genome Sequencing: Development Study. JMIR Bioinformatics and Biotechnology, 2022, 3, e31536.	0.9	5
55	Global trends in COVID-19. , 2022, 1, 31-39.		8
56	Effect of Sotrovimab on Hospitalization or Death Among High-risk Patients With Mild to Moderate COVID-19. JAMA - Journal of the American Medical Association, 2022, 327, 1236.	7.4	203
57	Spike protein of SARS-CoV-2 variants: a brief review and practical implications. Brazilian Journal of Microbiology, 2022, 53, 1133-1157.	2.0	22
58	Potential inhibitor for blocking binding between ACE2 and SARS-CoV-2 spike protein with mutations. Biomedicine and Pharmacotherapy, 2022, 149, 112802.	5.6	5
59	SARS-CoV-2 B.1.214.1, B.1.214.2 and B.1.620 are predominant lineages between December 2020 and July 2021 in the Republic of Congo. IJID Regions, 2022, 3, 106-113.	1.3	1
60	The vaccine equity crisis is a stress test for all future major environmental challenges. Science of the Total Environment, 2022, 825, 154073.	8.0	1
61	Sotrovimab: is it effective in early treatment of mild and moderate COVID-19 infections? A retrospective study. Egyptian Journal of Bronchology, 2021, 15, .	0.8	4
62	Discovery of Highly Potent Fusion Inhibitors with Potential Pan-Coronavirus Activity That Effectively Inhibit Major COVID-19 Variants of Concern (VOCs) in Pseudovirus-Based Assays. Viruses, 2022, 14, 69.	3.3	5
64	Monoclonal Antibodies against SARS-CoV-2: Current Scenario and Future Perspectives. Pharmaceuticals, 2021, 14, 1272.	3.8	20
65	Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs, 2022, 36, 231-323.	4.6	24
66	Human-to-dog transmission of SARS-CoV-2, Colombia. Scientific Reports, 2022, 12, 7880.	3.3	9
67	The Evolutionary Dance between Innate Host Antiviral Pathways and SARS-CoV-2. Pathogens, 2022, 11, 538.	2.8	4
68	Effects of Spike Mutations in SARS-CoV-2 Variants of Concern on Human or Animal ACE2-Mediated Virus Entry and Neutralization. Microbiology Spectrum, 2022, 10, .	3.0	24
69	Compliance with Vaccination against SARS-CoV-2; Information Transmission Based on Scientific Evidence and Its Difficulty. Yakugaku Zasshi, 2022, 142, 601-609.	0.2	O
70	Correlates of protection against <scp>SARS</scp> â€ <scp>CoV</scp> â€2 infection and COVIDâ€19 disease. Immunological Reviews, 2022, 310, 6-26.	6.0	138
71	Mapping of SARS-CoV-2 spike protein evolution during the first and second waves of COVID-19 infections in India. Future Virology, 2022, 17, 557-575.	1.8	2
72	Preparation of polyclonal antibody against phosphatidylethanolamine binding protein 1 recombinant protein and its functional verification in pulmonary hypertension syndrome in broilers. International Journal of Biological Macromolecules, 2022, 213, 19-26.	7.5	1

#	ARTICLE	IF	CITATIONS
73	Cross-Reactivity of IgG Antibodies and Virus Neutralization in mRNA-Vaccinated People Against Wild-Type SARS-CoV-2 and the Five Most Common SARS-CoV-2 Variants of Concern. Frontiers in Immunology, 0, 13 , .	4.8	7
74	A comprehensive account of SARS-CoV-2 genome structure, incurred mutations, lineages and COVID-19 vaccination program. Future Virology, 0 , , .	1.8	4
75	Identification of SARS-CoV-2 Variants of Concern Using Amplicon Next-Generation Sequencing. Microbiology Spectrum, 2022, 10, .	3.0	10
76	Genomic diversity of SARSâ€CoVâ€2 in Pakistan during the fourth wave of pandemic. Journal of Medical Virology, 2022, 94, 4869-4877.	5.0	11
77	Monoclonal antibody therapies against SARS-CoV-2. Lancet Infectious Diseases, The, 2022, 22, e311-e326.	9.1	114
78	Rapid and Affordable High Throughput Screening of SARS-CoV-2 Variants Using Denaturing High-Performance Liquid Chromatography Analysis. Frontiers in Virology, 0, 2, .	1.4	0
79	SARS-CoV-2 shedding dynamics and transmission in immunosuppressed patients. Virulence, 2022, 13, 1242-1251.	4.4	8
80	A strategy to optimize the peptide-based inhibitors against different mutants of the spike protein of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 2023, 41, 6191-6202.	3 . 5	2
82	Dynamics of Viral Infection and Evolution of SARS-CoV-2 Variants in the Calabria Area of Southern Italy. Frontiers in Microbiology, 0, 13 , .	3 . 5	10
83	Structural and Phylogenetic Analysis of SARS-CoV-2 Spike Glycoprotein from the Most Widespread Variants. Life, 2022, 12, 1245.	2.4	7
84	Decoding molecular factors shaping human angiotensin converting enzyme 2 receptor usage by spike glycoprotein in lineage B beta-coronaviruses. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166514.	3.8	2
85	Decoding the effects of spike receptor binding domain mutations on antibody escape abilities of omicron variants. Biochemical and Biophysical Research Communications, 2022, 627, 168-175.	2.1	6
86	SARS-CoV-2 Antibody Status after the BNT162b2 Vaccine in Healthcare Workers. Japanese Journal of Environmental Infections, 2022, 37, 10-17.	0.1	0
87	Perspective Chapter: Real-Time Genomic Surveillance for SARS-CoV-2 on Center Stage. Infectious Diseases, 0, , .	4.0	0
88	Genomic Analysis of SARS-CoV-2 Alpha, Beta and Delta Variants of Concern Uncovers Signatures of Neutral and Non-Neutral Evolution. Viruses, 2022, 14, 2375.	3.3	4
89	Perspective Chapter: Emerging SARS-CoV-2 Variants of Concern (VOCs) and Their Impact on Transmission Rate, Disease Severity and Breakthrough Infections. Infectious Diseases, 0, , .	4.0	0
90	Epidemiological and Clinical Features of SARS-CoV-2 Variants Circulating between April–December 2021 in Italy. Viruses, 2022, 14, 2508.	3.3	8
91	Pathogenesis and Preventive Tactics of Immune-Mediated Non-Pulmonary COVID-19 in Children and Beyond. International Journal of Molecular Sciences, 2022, 23, 14157.	4.1	3

#	Article	IF	CITATIONS
92	Molecular dynamics study on the strengthening behavior of Delta and Omicron SARS-CoV-2 spike RBD improved receptor-binding affinity. PLoS ONE, 2022, 17, e0277745.	2.5	4
93	An overview of viral mutagenesis and the impact on pathogenesis of SARS-CoV-2 variants. Frontiers in lmmunology, $0,13,1$	4.8	7
94	Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. Plasmonics, 2023, 18, 311-347.	3.4	4
95	COVID-19 Vaccines, Effectiveness, and Immune Responses. International Journal of Molecular Sciences, 2022, 23, 15415.	4.1	9
96	In-depth genetic characterization of the SARS-CoV-2 pandemic in a two-year frame in North Macedonia using second and third generation sequencing technologies. Frontiers in Virology, 0, 2, .	1.4	0
97	A Simple Epidemiologic Model for Predicting Impaired Neutralization of New SARS-CoV-2 Variants. Vaccines, 2023, 11, 128.	4.4	2
98	A novel heterologous receptor-binding domain dodecamer universal mRNA vaccine against SARS-CoV-2 variants. Acta Pharmaceutica Sinica B, 2023, 13, 4291-4304.	12.0	2
101	Potential differentiation of successive SARS-CoV-2 mutations by RNA: DNA hybrid analyses. Biophysical Chemistry, 2023, 297, 107013.	2.8	O
102	PEGylation Prolongs the Half-Life of Equine Anti-SARS-CoV-2 Specific F(ab')2. International Journal of Molecular Sciences, 2023, 24, 3387.	4.1	0
103	Dual-Domain Reporter Approach for Multiplex Identification of Major SARS-CoV-2 Variants of Concern in a Microarray-Based Assay. Biosensors, 2023, 13, 269.	4.7	1
104	A New Polymorphic Comprehensive Model for COVID-19 Transition Cycle Dynamics with Extended Feed Streams to Symptomatic and Asymptomatic Infections. Mathematics, 2023, 11, 1119.	2.2	1
105	The role of interleukin-6 and janus kinases in the pathogenesis, and treatment of SARS-CoV-2. Journal of Lung, Pulmonary & Respiratory Research, 2022, 9, 17-32.	0.3	1
106	Research progress in spike mutations of SARSâ€CoVâ€⊋ variants and vaccine development. Medicinal Research Reviews, 2023, 43, 932-971.	10.5	7
107	Abiotic Synthetic Antibody Inhibitor with Broad-Spectrum Neutralization and Antiviral Efficacy against Escaping SARS-CoV-2 Variants. ACS Nano, 2023, 17, 7017-7034.	14.6	1
108	Understanding Mutations in Human SARS-CoV-2 Spike Glycoprotein: A Systematic Review & Samp; Meta-Analysis. Viruses, 2023, 15, 856.	3.3	10
109	Discovery of Highly Potent Small Molecule Pan-Coronavirus Fusion Inhibitors. Viruses, 2023, 15, 1001.	3.3	1
110	Insilico Screening for Identification of Hits against SARS-Cov-2 Variant of Concern B.1.617 and NSP12 Mutants by Molecular Docking and Simulation Studies. The EuroBiotech Journal, 2023, 7, 132-143.	1.0	0
112	Spike substitution T813S increases Sarbecovirus fusogenicity by enhancing the usage of TMPRSS2. PLoS Pathogens, 2023, 19, e1011123.	4.7	2

#	ARTICLE	IF	CITATIONS
113	Emerging Landscape of Nanobodies and Their Neutralizing Applications against SARS-CoV-2 Virus. ACS Pharmacology and Translational Science, 2023, 6, 925-942.	4.9	3
114	Omicron variant evolved: Signs, symptoms and complications. AIP Conference Proceedings, 2023, , .	0.4	O
115	The dynamics of SARS-CoV-2 infection in unvaccinated and vaccinated populations in Mumbai, India, between 28 December 2020 and 30 August 2021. Archives of Virology, 2023, 168, .	2.1	0
116	SARSâ€CoVâ€2 variants circulating in the Fars province, southern Iran, December 2020–March 2021: A crossâ€sectional study. Health Science Reports, 2023, 6, .	1.5	1
117	Novel neutralizing mouse-human chimeric monoclonal antibodies against the SARS-CoV-2 receptor binding domain. Journal of Medical Microbiology, 2023, 72, .	1.8	0
118	Transchromosomic bovine-derived anti-SARS-CoV-2 polyclonal human antibodies protects hACE2 transgenic hamsters against multiple variants. IScience, 2023, 26, 107764.	4.1	2
119	A tool for the cheap and rapid screening of SARS-CoV-2 variants of concern (VoCs) by Sanger sequencing. Microbiology Spectrum, 2023, 11, .	3.0	2
120	In silico prediction of immune-escaping hot spots for future COVID-19 vaccine design. Scientific Reports, 2023, 13, .	3.3	0
121	The Key Site Variation and Immune Challenges in SARS-CoV-2 Evolution. Vaccines, 2023, 11, 1472.	4.4	2
122	Clinical efficacy and safety of SARS-CoV-2-neutralizing monoclonal antibody in patients with COVID-19: A living systematic review and meta-analysis. Journal of Microbiology, Immunology and Infection, 2023, 56, 909-920.	3.1	1
123	Comparative Study of the Mutations Observed in the SARS-CoV-2 RBD Variants of Concern and Their Impact on the Interaction with the ACE2 Protein. Journal of Physical Chemistry B, 2023, 127, 8586-8602.	2.6	2
124	First detection of SARS oVâ€2 BA.2.86.1 in Italy. Journal of Medical Virology, 2023, 95, .	5.0	0
126	Deciphering the rule of antigen-antibody amino acid interaction. Frontiers in Immunology, 0, 14, .	4.8	0
127	Molecular insights into the adaptive evolution of SARS-CoV-2 spike protein. Journal of Infection, 2024, 88, 106121.	3.3	0
128	Enhanced selective discrimination of point-mutated viral RNA through false amplification regulatory direct insertion in rolling circle amplification. Biosensors and Bioelectronics, 2024, 252, 116145.	10.1	O