Large-area display textiles integrated with functional sy

Nature 591, 240-245 DOI: 10.1038/s41586-021-03295-8

Citation Report

#	Article	IF	CITATIONS
1	High-performance wearable supercapacitors based on PANI/N-CNT@CNT fiber with a designed hierarchical core-sheath structure. Journal of Materials Chemistry A, 2021, 9, 20635-20644.	10.3	72
2	Display textiles: illuminating the way we live. Science China Chemistry, 2021, 64, 1115-1116.	8.2	5
3	Fabric displays in high resolution. Nature Electronics, 2021, 4, 239-240.	26.0	6
4	Single Tungsten Atom-Modified Cotton Fabrics for Visible-Light-Driven Photocatalytic Degradation and Antibacterial Activity. ACS Applied Bio Materials, 2021, 4, 4345-4353.	4.6	8
5	Autonomously Adhesive, Stretchable, and Transparent Solidâ€State Polyionic Triboelectric Patch for Wearable Power Source and Tactile Sensor. Advanced Functional Materials, 2021, 31, 2104365.	14.9	59
6	Acid and Alkaliâ€Resistant Textile Triboelectric Nanogenerator as a Smart Protective Suit for Liquid Energy Harvesting and Selfâ€Powered Monitoring in Highâ€Risk Environments. Advanced Functional Materials, 2021, 31, 2102963.	14.9	63
7	Paper-based wearable electronics. IScience, 2021, 24, 102736.	4.1	48
8	Smart materials and devices for electronic textiles. MRS Bulletin, 2021, 46, 488-490.	3.5	6
9	Printed Organic Light-Emitting Diodes on Fabric with Roll-to-Roll Sputtered ITO Anode and Poly(vinyl) Tj ETQq0 0	0 rgBT /O	verlock 10 T
10	Broadband Transparent Electrode in Visible/Near-Infrared Regions. ACS Photonics, 2021, 8, 2203-2210.	6.6	4
11	Recent Advances in Fiber-Shaped Electronic Devices for Wearable Applications. Applied Sciences (Switzerland), 2021, 11, 6131.	2.5	21
12	Abrasion and Fracture Selfâ€Healable Triboelectric Nanogenerator with Ultrahigh Stretchability and Longâ€Term Durability. Advanced Functional Materials, 2021, 31, 2105380.	14.9	65

Self-healing Ionic Liquid-based Electronics and Beyond. Chinese Journal of Polymer Science (English) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

14	Smart Fibers and Textiles for Personal Health Management. ACS Nano, 2021, 15, 12497-12508.	14.6	124
15	In Situ Formation of Ag Nanoparticles for Fiber Strain Sensors: Toward Textile-Based Wearable Applications. ACS Applied Materials & Interfaces, 2021, 13, 39868-39879.	8.0	26
16	Carbon dots confined in 3D polymer network: Producing robust room temperature phosphorescence with tunable lifetimes. Chinese Chemical Letters, 2022, 33, 783-787.	9.0	21
17	A Resonantly Driven, Electroluminescent Metal Oxide Semiconductor Capacitor with High Power Efficiency. ACS Nano, 2021, 15, 15210-15217.	14.6	10
18	Selfâ€Powered Interactive Fiber Electronics with Visual–Digital Synergies. Advanced Materials, 2021, 33, e2104681.	21.0	58

#	Article	IF	CITATIONS
19	Realizing Highâ€Energy and Stable Wireâ€Type Batteries with Flexible Lithium–Metal Composite Yarns. Advanced Energy Materials, 2021, 11, 2101809.	19.5	32
20	Crumpled MXene Electrodes for Ultrastretchable and High-Area-Capacitance Supercapacitors. Nano Letters, 2021, 21, 7561-7568.	9.1	50
21	Kirigami-processed cellulose nanofiber films for smart heat dissipation by convection. NPG Asia Materials, 2021, 13, .	7.9	13
22	Metafabric that can cool the human body. National Science Review, 2021, 8, nwab176.	9.5	1
23	Sustainable afterglow materials from lignin inspired by wood phosphorescence. Cell Reports Physical Science, 2021, 2, 100542.	5.6	21
24	Triboelectric Nanogenerators for Self-Powered Breath Monitoring. ACS Applied Energy Materials, 2022, 5, 3952-3965.	5.1	39
25	Wearable supercapacitor based on polyaniline supported by graphene coated polyester textile. International Journal of Energy Research, 2021, 45, 21403-21413.	4.5	16
26	Mechanoluminescent hybrids from a natural resource for energyâ€related applications. InformaÄnÃ- Materiály, 2021, 3, 1272-1284.	17.3	53
27	3D Printing of Hydrogels for Stretchable Ionotronic Devices. Advanced Functional Materials, 2021, 31, 2107437.	14.9	70
28	Chemical Vapor Deposition of Ionic Liquids for the Fabrication of Ionogel Films and Patterns. Angewandte Chemie, 2021, 133, 25872.	2.0	0
29	Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Storage Materials, 2021, 41, 715-737.	18.0	93
30	Chemical Vapor Deposition of Ionic Liquids for the Fabrication of Ionogel Films and Patterns. Angewandte Chemie - International Edition, 2021, 60, 25668-25673.	13.8	12
31	Roll-to-roll layer-by-layer assembly bark-shaped carbon nanotube/Ti3C2Tx MXene textiles for wearable electronics. Journal of Colloid and Interface Science, 2021, 602, 680-688.	9.4	64
32	Ultrafast-charging quasi-solid-state fiber-shaped zinc-ion hybrid supercapacitors with superior flexibility. Journal of Materials Chemistry A, 2021, 9, 17292-17299.	10.3	31
33	Mechanically and electrically durable, stretchable electronic textiles for robust wearable electronics. RSC Advances, 2021, 11, 22327-22333.	3.6	10
34	Advances in wearable textile-based micro energy storage devices: structuring, application and perspective. Nanoscale Advances, 2021, 3, 6271-6293.	4.6	27
35	Energy harvesting textiles: using wearable luminescent solar concentrators to improve the efficiency of fiber solar cells. Journal of Materials Chemistry A, 2021, 9, 25974-25981.	10.3	10
36	Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter, 2021, 4, 3725-3740.	10.0	94

#	Article	IF	CITATIONS
37	Wearable chem-biosensing devices: from basic research to commercial market. Lab on A Chip, 2021, 21, 4285-4310.	6.0	29
38	Structures and Materials in Stretchable Electroluminescent Devices. Advanced Materials, 2022, 34, e2106184.	21.0	40
39	Advanced Multifunctional Aqueous Rechargeable Batteries Design: From Materials and Devices to Systems. Advanced Materials, 2022, 34, e2104327.	21.0	78
40	Understanding Printed Hexagonal Contacts for Large Area Solar Cells through Simulation and Experiments. Solar Rrl, 2021, 5, 2100787.	5.8	3
41	All-in-One Self-Powered Human–Machine Interaction System for Wireless Remote Telemetry and Control of Intelligent Cars. Nanomaterials, 2021, 11, 2711.	4.1	16
42	Smart personal protective equipment (PPE): current PPE needs, opportunities for nanotechnology and e-textiles. Flexible and Printed Electronics, 2021, 6, 043004.	2.7	11
43	A review of mechanochromic polymers and composites: From material design strategy to advanced electronics application. Composites Part B: Engineering, 2021, 227, 109434.	12.0	35
44	Permeable Conductors for Wearable and Onâ€Skin Electronics. Small Structures, 2022, 3, 2100135.	12.0	46
45	Preparation of Tungstenâ€Based Polyvinyl Alcohol Waterborne Coating and Development of Photochromic Composite Fabric. Macromolecular Materials and Engineering, 2021, 306, 2100540.	3.6	3
46	Wearable E-Textiles Using a Textile-Centric Design Approach. Accounts of Chemical Research, 2021, 54, 4051-4064.	15.6	43
47	Skin-friendly corrugated multilayer microspherical sensor fabricated with silk fibroin, poly (lactic-co-glycolic acid), polyaniline, and kappa-carrageenan for wide range pressure detection. International Journal of Biological Macromolecules, 2022, 194, 755-762.	7.5	7
48	Carbon nanomaterials for highly stable Zn anode: Recent progress and future outlook. Journal of Electroanalytical Chemistry, 2022, 904, 115883.	3.8	19
49	Textile-Based Humidity-Driven Wearable Electroluminescent for Visual Sensing. Journal of the Electrochemical Society, 2021, 168, 117515.	2.9	0
50	Display illumination with modulated directional backlight. Journal of the Society for Information Display, 0, , .	2.1	0
51	Electro-Thermochromic Luminescent Fibers Controlled by Self-Crystallinity Phase Change for Advanced Smart Textiles. ACS Applied Materials & amp; Interfaces, 2021, 13, 57943-57951.	8.0	20
52	Fiber Electrodes Mesostructured on Carbon Fibers for Energy Storage. ACS Applied Energy Materials, 2021, 4, 13716-13724.	5.1	5
53	Multifunctional Displays and Sensing Platforms for the Future: A Review on Flexible Alternating Current Electroluminescence Devices. ACS Applied Electronic Materials, 2021, 3, 5188-5210.	4.3	16
54	From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics. Advanced Science, 2022, 9, e2103981.	11.2	40

#	Article	IF	CITATIONS
55	Operating Mechanism of Quantum-Dot Light-Emitting Diodes Under Alternating Current-Drive. IEEE Electron Device Letters, 2022, 43, 256-259.	3.9	4
56	Design of an Interactive Device Based on e-Textile Material. Lecture Notes in Computer Science, 2021, , 68-81.	1.3	0
57	Mycena Chlorophos-Inspired Autoluminescent Triboelectric Fiber for Wearable Energy Harvesting, Self-Powered Sensing, and as Human-Device Interfaces. SSRN Electronic Journal, 0, , .	0.4	0
58	Emerging washable textronics for imminent e-waste mitigation: strategies, reliability, and perspectives. Journal of Materials Chemistry A, 2022, 10, 2697-2735.	10.3	14
59	Stress Dissipation Encoded Silk Fibroin Electrode for the Athleteâ€Beneficial Silk Bioelectronics. Advanced Science, 2022, 9, e2105420.	11.2	11
60	Challenges and emerging opportunities in transistor-based ultrathin electronics: design and fabrication for healthcare applications. Journal of Materials Chemistry C, 2022, 10, 2450-2474.	5.5	6
61	A washable and breathable metallized fabric designed by silane bionic. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128232.	4.7	11
62	Stable, reusable, and rapid response smart pH-responsive cotton fabric based on covalently immobilized with naphthalimide-rhodamine probe. Sensors and Actuators B: Chemical, 2022, 355, 131310.	7.8	17
63	Holocellulose Nanofibrils Assisted Exfoliation of Boron Nitride Nanosheets for Fabricating High-Performance Thermal Management Nanocomposite Paper. SSRN Electronic Journal, 0, , .	0.4	0
64	Smart textiles and the indoor environment of buildings. Indoor and Built Environment, 2022, 31, 1443-1446.	2.8	7
65	Triboelectric Leakage-Field-Induced Electroluminescence Based on ZnS:Cu. ACS Applied Materials & Interfaces, 2022, 14, 4775-4782.	8.0	15
66	Freestanding and Sandwich MXene-Based Cathode with Suppressed Lithium Polysulfides Shuttle for Flexible Lithium–Sulfur Batteries. Nano Letters, 2022, 22, 1207-1216.	9.1	49
67	Highâ€Performance and Reliable White Organic Lightâ€Emitting Fibers for Truly Wearable Textile Displays. Advanced Science, 2022, 9, e2104855.	11.2	24
68	Iron anodeâ€based aqueous electrochemical energy storage devices: Recent advances and future perspectives. , 2022, 1, 116-139.		73
69	Designing wearable microgrids: towards autonomous sustainable on-body energy management. Energy and Environmental Science, 2022, 15, 82-101.	30.8	48
70	A Weavable and Scalable Cotton‥arnâ€Based Battery Activated by Human Sweat for Textile Electronics. Advanced Science, 2022, 9, e2103822.	11.2	20
71	Adhesive Ionohydrogels Based on Ionic Liquid/Water Binary Solvents with Freezing Tolerance for Flexible Ionotronic Devices. Chemistry of Materials, 2022, 34, 1065-1077.	6.7	66
72	Lowâ€ŧemperature elevatedâ€metal metalâ€oxide thinâ€film transistors and circuit building blocks on a flexible substrate. Journal of the Society for Information Display, 2022, 30, 505-513.	2.1	5

#	Article	IF	CITATIONS
73	High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Research, 2022, 15, 4590-4598.	10.4	26
74	Advances in Highâ€Performance Autonomous Energy and Selfâ€Powered Sensing Textiles with Novel 3D Fabric Structures. Advanced Materials, 2022, 34, e2109355.	21.0	118
75	A Flexible Triboelectric Nanogenerator Based on Celluloseâ€Reinforced MXene Composite Film. Advanced Materials Interfaces, 2022, 9, 2102124.	3.7	24
76	Vanadium metalâ€organic frameworkâ€derived multifunctional fibers for asymmetric supercapacitor, piezoresistive sensor, and electrochemical water splitting. SmartMat, 2022, 3, 608-618.	10.7	29
77	Mycena chlorophos-inspired autoluminescent triboelectric fiber for wearable energy harvesting, self-powered sensing, and as human–device interfaces. Nano Energy, 2022, 94, 106944.	16.0	21
78	Direct functionalization of natural silks through continuous force-reeling technique. Chemical Engineering Journal, 2022, 435, 134901.	12.7	7
79	Flexible alternating current electroluminescent devices integrated with high voltage triboelectric nanogenerators. Nanoscale, 2022, 14, 4244-4253.	5.6	20
80	Crocodile skin inspired rigid-supple integrated flexible lithium ion batteries with high energy density and bidirectional deformability. Energy Storage Materials, 2022, 47, 149-157.	18.0	28
81	Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nature Communications, 2022, 13, 814.	12.8	80
82	Fully Printed Stretchable and Multifunctional Eâ€Textiles for Aesthetic Wearable Electronic Systems. Small, 2022, 18, e2107298.	10.0	50
83	Stretchable Organic Lightâ€Emitting Devices with Invisible Orderly Wrinkles by using a Transferâ€Free Technique. Advanced Materials Technologies, 2022, 7, .	5.8	5
84	A universal construction of robust interface between 2D conductive polymer and cellulose for textile supercapacitor. Carbohydrate Polymers, 2022, 284, 119230.	10.2	14
85	Highly sensitive, direction-aware, and transparent strain sensor based on oriented electrospun nanofibers for wearable electronic applications. Chemical Engineering Journal, 2022, 435, 135004.	12.7	42
86	Electronic Textiles for Wearable Point-of-Care Systems. Chemical Reviews, 2022, 122, 3259-3291.	47.7	316
87	An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Science Advances, 2021, 7, eabl3742.	10.3	145
88	Biological Chemicals as Sustainable Materials to Synthesize Metal and Metal Oxide Nanoparticles for Textile Surface Functionalization. SSRN Electronic Journal, 0, , .	0.4	0
89	High-Performance Triboelectric Nanogenerator Powered Flexible Electroluminescence Devices Based on Patterned Laser-Induced Copper Electrodes for Visualized Information Interaction. SSRN Electronic Journal, 0, , .	0.4	0
90	Designing Biomass-Derived Carbon Quantum Dots@Polyvinyl Alcohol Film with Excellent Fluorescent Performance and Ph-Responsiveness for Intelligent Detection. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
91	Applications and Future Developments of Flexible Organic Light-emitting Diode. Journal of Physics: Conference Series, 2022, 2194, 012021.	0.4	2
92	Interface synergistic effects induced multi-mode luminescence. Nano Research, 2022, 15, 4457-4465.	10.4	21
93	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	21.0	211
94	<scp>Twoâ€dimensional MXenes</scp> : New frontier of wearable and flexible electronics. InformaÄnÃ- Materiály, 2022, 4, .	17.3	102
95	Recent Progress in Bioâ€integrated Intelligent Sensing System. Advanced Intelligent Systems, 2022, 4, .	6.1	12
96	Advanced Electronics and Artificial Intelligence: Mustâ€Have Technologies Toward Human Body Digital Twins. Advanced Intelligent Systems, 2022, 4, .	6.1	11
97	Smart textiles for personalized healthcare. Nature Electronics, 2022, 5, 142-156.	26.0	307
98	Flexible Metamaterial Electronics. Advanced Materials, 2022, 34, e2200070.	21.0	87
99	Application of conductive polymer hydrogels in flexible electronics. Journal of Polymer Science, 2022, 60, 2635-2662.	3.8	25
100	Ultraâ€Robust and Extensible Fibrous Mechanical Sensors for Wearable Smart Healthcare. Advanced Materials, 2022, 34, e2107511.	21.0	83
101	Flexible Sensory Systems: Structural Approaches. Polymers, 2022, 14, 1232.	4.5	5
102	Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature, 2022, 603, 616-623.	27.8	147
103	Metal–organic cycle-based multistage assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122398119.	7.1	8
104	Bright and uniform light emission from stretchable, dual-channel energy conversion systems: Simultaneous harnessing of electrical and mechanical excitations. Applied Physics Reviews, 2022, 9, .	11.3	14
105	MXene-Based Textile Sensors for Wearable Applications. ACS Sensors, 2022, 7, 929-950.	7.8	42
106	Electroassisted Core-Spun Triboelectric Nanogenerator Fabrics for IntelliSense and Artificial Intelligence Perception. ACS Nano, 2022, 16, 4415-4425.	14.6	54
107	Microwave Flexible Electronics Directly Transformed from Foundryâ€Produced, Multilayered Monolithic Integrated Circuits. Advanced Electronic Materials, 2022, 8, .	5.1	0
108	Recent Advances in Silver Nanowires Electrodes for Flexible Organic/Perovskite Light-Emitting Diodes. Frontiers in Chemistry, 2022, 10, 864186.	3.6	8

#	Article	IF	CITATIONS
109	Achieving Record Efficiency and Luminance for TADF Light-Emitting Electrochemical Cells by Dopant Engineering. ACS Applied Materials & 2012, 14, 17698-17708.	8.0	10
110	Stretchable conductive yarn with extreme electrical stability pushes fabrication of versatile textile stretchable electronics. Composites Communications, 2022, 31, 101131.	6.3	2
111	Live Production System to Handle Video Signals With Various Aspect Ratios. Smpte Motion Imaging Journal, 2022, 131, 51-59.	0.2	0
112	Sustainable Afterglow Roomâ€Temperature Phosphorescence Emission Materials Generated Using Natural Phenolics. Angewandte Chemie, 2022, 134, .	2.0	7
113	Water Washable and Flexible Light-Emitting Fibers Based on Electrochemiluminescent Gels. ACS Applied Materials & Interfaces, 2022, 14, 17709-17718.	8.0	6
114	Smart Electronic Textiles for Wearable Sensing and Display. Biosensors, 2022, 12, 222.	4.7	26
115	Three-layer core–shell Ag/AgCl/PEDOT: PSS composite fibers via a one-step single-nozzle technique enabled skin-inspired tactile sensors. Chemical Engineering Journal, 2022, 442, 136270.	12.7	26
116	Sustainable Afterglow Roomâ€Temperature Phosphorescence Emission Materials Generated Using Natural Phenolics. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
117	Cross-Links–Entanglements Integrated Networks Contributing to Highly Resilient, Soft, and Self-Adhesive Elastomers with Low Hysteresis for Green Wearable Electronics. ACS Applied Materials & Interfaces, 2022, 14, 16631-16640.	8.0	14
118	High-performance triboelectric nanogenerator powered flexible electroluminescence devices based on patterned laser-induced copper electrodes for visualized information interaction. Nano Energy, 2022, 96, 107116.	16.0	27
119	All-textile sensors for boxing punch force and velocity detection. Nano Energy, 2022, 97, 107114.	16.0	45
120	Kinetically boosted potassium ion storage capability of 1D K2Ti6O13 nanobelts by 3D porous carbon framework for fiber-shaped potassium ion capacitors. Journal of Power Sources, 2022, 533, 231419.	7.8	5
121	Flexible andWater-proof nylon mesh with ultralow silver content for effective electromagnetic interference shielding effectiveness. Chemical Engineering Journal, 2022, 439, 135662.	12.7	8
122	Multifunctional flexible sensors based on ionogel composed entirely of ionic liquid with long alkyl chains for enhancing mechanical properties. Chemical Engineering Journal, 2022, 439, 135644.	12.7	33
123	Piezoresistive fibers with record high sensitivity via the synergic optimization of porous microstructure and elastic modulus. Chemical Engineering Journal, 2022, 441, 136046.	12.7	13
124	A novel breathable flexible metallized fabric for wearable heating device with flame-retardant and antibacterial properties. Journal of Materials Science and Technology, 2022, 122, 200-210.	10.7	17
125	Particle Flow Spinning Mass-Manufactured Stretchable Magnetic Yarn for Self-Powered Mechanical Sensing. ACS Applied Materials & amp; Interfaces, 2022, 14, 2113-2121.	8.0	8
126	A review of connectors and joining technologies for electronic textiles. Engineering Reports, 2022, 4,	1.7	21

#	Article	IF	CITATIONS
127	A Printable and Conductive Yield-Stress Fluid as an Ultrastretchable Transparent Conductor. Research, 2021, 2021, 9874939.	5.7	9
128	In Situ Anchoring Co–N–C Nanoparticles on Co ₄ N Nanosheets toward Ultrastable Flexible Selfâ€6upported Bifunctional Oxygen Electrocatalyst Enables Recyclable Zn–Air Batteries Over 10 000 Cycles and Fast Charging. Small, 2022, 18, e2105887.	10.0	22
129	Bright Stretchable White Alternatingâ€Current Electroluminescent Devices Enabled by Photoluminescent Phosphor. Advanced Materials Technologies, 2022, 7, .	5.8	4
130	Stretchable and Dynamically Tunable Attenuator Based on Graphene. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 2999-3008.	4.6	4
131	Perovskite fiber-shaped optoelectronic devices for wearable applications. Journal of Materials Chemistry C, 2022, 10, 6957-6991.	5.5	18
132	Compressible Zn–Air Batteries Based on Metal–Organic Frameworks Nanoflakeâ€Assembled Carbon Frameworks for Portable Motion and Temperature Monitors. Advanced Energy and Sustainability Research, 0, , 2200014.	5.8	10
133	Interfacial Electrochemical Polymerization for Spinning Liquid Metals into Core–Shell Wires. ACS Applied Materials & Interfaces, 2022, 14, 18690-18696.	8.0	7
134	Merkel receptor-inspired integratable and biocompatible pressure sensor with linear and ultrahigh sensitive response for versatile applications. Chemical Engineering Journal, 2022, 444, 136481.	12.7	14
135	Robust Memristive Fiber for Woven Textile Memristor. Advanced Functional Materials, 2022, 32, .	14.9	23
136	Stiffness Engineering of Ti ₃ C ₂ T <i>_X</i> MXeneâ€Based Skinâ€Inspired Pressure Sensor with Broadâ€Range Ultrasensitivity, Low Detection Limit, and Gas Permeability. Advanced Materials Interfaces, 2022, 9, .	3.7	15
137	Study on the microstructure, electrical properties, and electric-heating performance of MWCNT/AgNW/cellulose hybrid fibers. Journal of the Textile Institute, 2023, 114, 613-621.	1.9	2
138	Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nature Communications, 2022, 13, 2190.	12.8	87
139	Designing of biomass-derived carbon quantum dots@polyvinyl alcohol film with excellent fluorescent performance and pH-responsiveness for intelligent detection. Chemical Engineering Journal, 2022, 443, 136442.	12.7	33
140	Hierarchically Anisotropic Networks to Decouple Mechanical and Ionic Properties for High-Performance Quasi-Solid Thermocells. ACS Nano, 2022, 16, 8347-8357.	14.6	29
141	In-situ sugar-templated porous elastomer sensor with high sensitivity for wearables. Frontiers of Materials Science, 2022, 16, .	2.2	2
142	<i>In Situ</i> Loading of Polypyrrole onto Aramid Nanofiber and Carbon Nanotube Aerogel Fibers as Physiology and Motion Sensors. ACS Nano, 2022, 16, 8161-8171.	14.6	63
143	Fiber Electronics Bring a New Generation of Acoustic Fabrics. Advanced Fiber Materials, 2022, 4, 321-323.	16.1	4
144	Holocellulose nanofibrils assisted exfoliation of boron nitride nanosheets for thermal management nanocomposite films. Carbohydrate Polymers, 2022, 291, 119578.	10.2	11

#	Article	IF	CITATIONS
145	Materials and design strategies for stretchable electroluminescent devices. Nanoscale Horizons, 2022, 7, 801-821.	8.0	22
146	Optical Micro/Nano Fibers Enabled Smart Textiles for Human–Machine Interface. Advanced Fiber Materials, 2022, 4, 1108-1117.	16.1	30
147	Oneâ€step hydrothermal method produced all graphene fiber electrode for highâ€performance supercapacitor. International Journal of Energy Research, 2022, 46, 14105-14115.	4.5	3
148	Micro/nanoarrays and their applications in flexible sensors: A review. Materials Today Nano, 2022, 19, 100224.	4.6	9
149	Interconnecting embroidered hybrid conductive yarns by ultrasonic plastic welding for e-textiles. Textile Reseach Journal, 0, , 004051752211010.	2.2	4
150	Dual-Sensing, Stretchable, Fatigue-Resistant, Adhesive, and Conductive Hydrogels Used as Flexible Sensors for Human Motion Monitoring. Langmuir, 2022, 38, 7013-7023.	3.5	29
151	Ionofibers: Ionically Conductive Textile Fibers for Conformal iâ€Textiles. Advanced Materials Technologies, 2022, 7, .	5.8	6
152	Enhanced Electron Transfer and Spin Flip through Spin–Orbital Couplings in Organic/Inorganic Heterojunctions: A Nonadiabatic Surface Hopping Simulation. Journal of Physical Chemistry Letters, 0, , 4840-4848.	4.6	5
153	Fabrication of a Flexible Aqueous Textile Zinc-Ion Battery in a Single Fabric Layer. Frontiers in Electronics, 0, 3, .	3.2	3
154	Rechargeable Microâ€Batteries for Wearable and Implantable Applications. Small Structures, 2022, 3, .	12.0	16
155	Smart Textiles for Human-machine Interface Fabricated via Facile on-site Vapor Phase Polymerization. Journal of Materials Chemistry C, 0, , .	5.5	4
156	PEDOTS:PSS@KNF Wireâ€Shaped Electrodes for Textile Symmetrical Capacitor. Advanced Materials Interfaces, 2022, 9, .	3.7	2
157	Water-retentive, 3D knitted textile electrode for long-term and motion state bioelectrical signal acquisition. Composites Science and Technology, 2022, 227, 109606.	7.8	11
158	Ultrastretchable and wearable conductive multifilament enabled by buckled polypyrrole structure in parallel. Npj Flexible Electronics, 2022, 6, .	10.7	20
159	Alternating current electroluminescent fibers for textile displays. National Science Review, 2023, 10, .	9.5	5
160	Highly efficient fiber-shaped organic solar cells toward wearable flexible electronics. Npj Flexible Electronics, 2022, 6, .	10.7	26
161	Enhanced Output of Onâ€Body Direct urrent Power Textiles by Efficient Energy Management for Sustainable Working of Mobile Electronics. Advanced Energy Materials, 2022, 12, .	19.5	23
162	A Snakeskinâ€Inspired, Softâ€Hinge Kirigami Metamaterial for Selfâ€Adaptive Conformal Electronic Armor. Advanced Materials, 2022, 34,	21.0	29

#	Article	IF	CITATIONS
163	Recyclable photoluminescent composites via incorporating <scp>ZnS</scp> â€based phosphors into dynamic crosslinking elastomeric matrixes. Polymer Engineering and Science, 2022, 62, 2704-2715.	3.1	3
164	Hybrid Lithiumâ€ion/Metal Electrodes Enable Long Cycle Stability and High Energy Density of Flexible Batteries. Advanced Functional Materials, 2022, 32, .	14.9	18
165	Durability Study of Thermal Transfer Printed Textile Electrodes for Wearable Electronic Applications. ACS Applied Materials & Interfaces, 2022, 14, 29144-29155.	8.0	17
166	Advances in the Robustness of Wearable Electronic Textiles: Strategies, Stability, Washability and Perspective. Nanomaterials, 2022, 12, 2039.	4.1	18
167	Organic lightâ€emitting fibers and fabrics for truly wearable smart displays: Recent progress and future opportunities. Journal of the Society for Information Display, 2022, 30, 727-747.	2.1	8
168	Wireless-Controlled, Self-Powered, and Patterned Information Encryption Display System Based on Flexible Electroluminescence Devices. SSRN Electronic Journal, 0, , .	0.4	0
169	Electronic Modeling for Resistive Textile Matrices. IEEE Sensors Journal, 2022, 22, 16081-16088.	4.7	0
170	All-Nanofibrous Ionic Capacitive Pressure Sensor for Wearable Applications. ACS Applied Materials & Interfaces, 2022, 14, 31385-31395.	8.0	41
171	Mixedâ€Dimensional van der Waals Engineering for Charge Transfer Enables Waferâ€Level Flexible Electronics. Advanced Functional Materials, 2022, 32, .	14.9	6
172	Industrial Fabrication of 3D Braided Stretchable Hierarchical Interlocked Fancy‥arn Triboelectric Nanogenerator for Selfâ€Powered Smart Fitness System. Advanced Energy Materials, 2022, 12, .	19.5	31
173	Customizable solid-state batteries toward shape-conformal and structural power supplies. Materials Today, 2022, 58, 297-312.	14.2	11
174	Manipulating Hierarchical Orientation of Wet‣pun Hybrid Fibers via Rheological Engineering for Zn″on Fiber Batteries. Advanced Materials, 2022, 34, .	21.0	25
175	Entropyâ€Mediated Polymer–Cluster Interactions Enable Dramatic Thermal Stiffening Hydrogels for Mechanoadaptive Smart Fabrics. Angewandte Chemie, 0, , .	2.0	0
176	Superdurable and fire-retardant structural coloration of carbon nanotubes. Science Advances, 2022, 8, .	10.3	16
177	Scalable Fabrication of Highly Breathable Cotton Textiles with Stable Fluorescent, Antibacterial, Hydrophobic, and UV-Blocking Performance. ACS Applied Materials & Interfaces, 2022, 14, 34049-34058.	8.0	22
178	Multifunctional Fiberâ€Enabled Intelligent Health Agents. Advanced Materials, 2022, 34, .	21.0	36
179	Two-Dimensional Hybrid Nanosheet-Based Supercapacitors: From Building Block Architecture, Fiber Assembly, and Fabric Construction to Wearable Applications. ACS Nano, 2022, 16, 10130-10155.	14.6	47
180	Entropyâ€Mediated Polymer–Cluster Interactions Enable Dramatic Thermal Stiffening Hydrogels for Mechanoadaptive Smart Fabrics. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25

#	Article	IF	CITATIONS
181	Fibrous aggregates: Amplifying aggregation-induced emission to boost health protection. Biomaterials, 2022, 287, 121666.	11.4	5
182	Brush drawing multifunctional electronic textiles for human-machine interfaces. Current Applied Physics, 2022, 41, 131-138.	2.4	3
183	Recent advances of micro-nanofiber materials for rechargeable zinc-air batteries. Energy Storage Materials, 2022, 51, 181-211.	18.0	19
184	Simultaneous light and thermal emission of waterproof core-multishell fibers for woven textile electronics. Materials Letters, 2022, 325, 132832.	2.6	1
185	Recent progress in fibrous high-entropy energy harvesting devices for wearable applications. Nano Energy, 2022, 101, 107600.	16.0	16
186	Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chemical Engineering Journal, 2022, 450, 137937.	12.7	82
187	A Selfâ€Packageable and Tailorable Electrochromic Device based on the "Blood oagulation―Mechanism. Advanced Functional Materials, 2022, 32, .	14.9	4
188	Stretchable Ionic Conductors for Soft Electronics. Macromolecular Rapid Communications, 2022, 43, .	3.9	16
189	Biological Chemicals as Sustainable Materials to Synthesize Metal and Metal Oxide Nanoparticles for Textile Surface Functionalization. ACS Sustainable Chemistry and Engineering, 2022, 10, 10084-10104.	6.7	3
190	Surface/interface engineering strategy modulated electrode structure for a flexible quasi-solid-state fiber-shaped NiCo//Bi battery. Materials Today Chemistry, 2022, 26, 101055.	3.5	0
191	Hydrochromic CsPbBr3-KBr Microcrystals for Flexible Anti-Counterfeiting and Wearable Self-Powered Biomechanical Monitoring. Chemical Engineering Journal, 2022, 450, 138279.	12.7	14
192	Whispering-gallery-mode full-color laser textiles and their anticounterfeiting applications. NPG Asia Materials, 2022, 14, .	7.9	5
193	Electronic Fibers/Textiles for Healthâ€Monitoring: Fabrication and Application. Advanced Materials Technologies, 2023, 8, .	5.8	25
194	All-nanofiber self-powered PTFE/PA66 device for real-time breathing monitor by scalable solution blow spinning technology. Nano Research, 2022, 15, 8458-8464.	10.4	3
195	Graphene-Based Fiber Supercapacitors. Accounts of Materials Research, 2022, 3, 922-934.	11.7	6
196	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	47.7	69
197	Emerging Electrochromic Materials and Devices for Future Displays. Chemical Reviews, 2022, 122, 14679-14721.	47.7	175
198	Fiber Solar Cells from High Performances Towards Real Applications. Advanced Fiber Materials, 2022, 4, 1293-1303.	16.1	17

#	Article	IF	CITATIONS
199	The stretched AMOLED display technology based on island–bridge structure. Scientia Sinica Chimica, 2022, , .	0.4	0
200	Smart Textiles for Healthcare and Sustainability. ACS Nano, 2022, 16, 13301-13313.	14.6	61
201	A single-layer less-wires stretchable wearable keyboard based on pressure switch conductive textile. Smart Materials and Structures, 2022, 31, 105008.	3.5	0
202	Water stable and matrix addressable OLED fiber textiles for wearable displays with large emission area. Npj Flexible Electronics, 2022, 6, .	10.7	14
203	Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nature Communications, 2022, 13, .	12.8	55
204	Integrated 3D printing of flexible electroluminescent devices and soft robots. Nature Communications, 2022, 13, .	12.8	46
205	Scalable and Reconfigurable Green Electronic Textiles with Personalized Comfort Management. ACS Nano, 2022, 16, 12635-12644.	14.6	15
206	Breathable Electronic Skins for Daily Physiological Signal Monitoring. Nano-Micro Letters, 2022, 14, .	27.0	54
207	Wireless-controlled, self-powered, and patterned information encryption display system based on flexible electroluminescence devices. Nano Energy, 2022, 102, 107653.	16.0	15
208	Recent progress of Ti3C2Tx-based MXenes for fabrication of multifunctional smart textiles. Applied Materials Today, 2022, 29, 101612.	4.3	13
209	Knitted structural design of MXene/Cu2O based strain sensor for smart wear. Cellulose, 2022, 29, 9453-9467.	4.9	5
210	Revisable and high-strength wheel-spun alginate/graphene oxide based fibrous rods towards a flexible and biodegradable rib internal fixation system. International Journal of Biological Macromolecules, 2022, 219, 1308-1318.	7.5	0
211	Efficient catalytic-activity-driven extremely low-voltage operatable multicolor electrochemiluminescence displays using Pt nanoparticles anchored on CuO nanorod electrodes. Applied Surface Science, 2022, 605, 154835.	6.1	2
212	Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics. Journal of Materials Chemistry A, 2022, 10, 21379-21389.	10.3	6
213	A multicolor tunable fiber with core–multishell structure by electroluminescence-thermochromic mixing. Journal of Materials Chemistry C, 2022, 10, 12582-12587.	5.5	5
214	Efficient Catalytic-Activity-Driven Extremely Low-Voltage Operatable Multicolor Electrochemiluminescence Displays Using Pt Nanoparticles Anchored on Cuo Nanorod Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
215	Semantic-driven Efficient Service Network towards Smart Healthcare System in Intelligent Fabric. IEEE Transactions on Network Science and Engineering, 2022, , 1-10.	6.4	0
216	Weaving a magnificent world: 1D fibrous electrodes and devices for stretchable and wearable electronics. Journal of Materials Chemistry C, 2022, 10, 14027-14052.	5.5	16

#	Article	IF	CITATIONS
217	Digital medical education empowered by intelligent fabric space. , 2022, 1, 20220011.		13
218	Visual pressure interactive display of alternating current electroluminescent devices based on hydrogel microcapsules. Journal of Materials Chemistry C, 2022, 10, 12221-12231.	5.5	5
219	Crack engineering boosts the performance of flexible sensors. View, 2022, 3, .	5.3	10
220	Perspiration-Wicking and Luminescent On-Skin Electronics Based on Ultrastretchable Janus E-Textiles. Nano Letters, 2022, 22, 7597-7605.	9.1	28
221	A largeâ€scalable sprayingâ€spinning process for multifunctional electronic yarns. SmartMat, 2023, 4, .	10.7	11
222	MXene-Reinforced Liquid Metal/Polymer Fibers via Interface Engineering for Wearable Multifunctional Textiles. ACS Nano, 2022, 16, 14490-14502.	14.6	66
223	A â€~Moore's law' for fibers enables intelligent fabrics. National Science Review, 2023, 10, .	9.5	19
224	Seamlessly-integrated Textile Electric Circuit Enabled by Self-connecting Interwoven Points. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1323-1330.	3.8	3
225	High-Strength and Extensible Electrospun Yarn for Wearable Electronics. ACS Applied Materials & Interfaces, 2022, 14, 46068-46076.	8.0	14
226	Flexible thermochromic fabrics enabling dynamic colored display. Frontiers of Optoelectronics, 2022, 15, .	3.7	8
227	Magnetized Microcilia Arrayâ€Based Selfâ€Powered Electronic Skin for Microâ€Scaled 3D Morphology Recognition and Highâ€capacity Communication. Advanced Functional Materials, 2022, 32, .	14.9	21
228	Flexible radio-frequency micro electro-mechanical switch towards the applications of satellite communications. Npj Flexible Electronics, 2022, 6, .	10.7	4
229	Pathway to Developing Permeable Electronics. ACS Nano, 2022, 16, 15537-15544.	14.6	38
230	Stretchable Heterogeneous Polymer Networks of High Adhesion and Low Hysteresis. ACS Applied Materials & Interfaces, 2022, 14, 49264-49273.	8.0	4
231	Smart Electronic Textileâ \in Based Wearable Supercapacitors. Advanced Science, 2022, 9, .	11.2	59
232	A Perspective on Rhythmic Gymnastics Performance Analysis Powered by Intelligent Fabric. Advanced Fiber Materials, 2023, 5, 1-11.	16.1	8
233	Electricalâ€Triggered Multicolor Reversible Colorâ€Changing Ag Nanoparticles/Reduced Graphene Oxide/Polyurethane Conductive Fibers. Macromolecular Materials and Engineering, 2023, 308, .	3.6	2
234	A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nature Electronics, 2022, 5, 694-705.	26.0	105

#	Article	IF	CITATIONS
235	Opportunities for biocompatible and safe zinc-based batteries. Energy and Environmental Science, 2022, 15, 4911-4927.	30.8	39
236	Recent progress of fiber-shaped batteries towards wearable application. Journal of Central South University, 2022, 29, 2837-2856.	3.0	6
237	Ionâ€in onjugation: A Promising Concept for Multifunctional Organic Semiconductors. Small, 2022, 18,	10.0	9
238	Bottom-up reconstruction of smart textiles with hierarchical structures to assemble versatile wearable devices for multiple signals monitoring. Nano Energy, 2022, 104, 107963.	16.0	16
239	Robust, Breathable and Flexible Smart Textiles as Multifunctional Sensor and Heater for Personal Health Management. Advanced Fiber Materials, 2023, 5, 282-295.	16.1	48
240	High-Speed Sirospun Conductive Yarn for Stretchable Embedded Knitted Circuit and Self-Powered Wearable Device. Advanced Fiber Materials, 2023, 5, 154-167.	16.1	18
241	Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chemical Reviews, 2022, 122, 17155-17239.	47.7	67
242	SenSequins: Smart Textile Using 3D Printed Conductive Sequins. , 2022, , .		2
243	IUPAC Top Ten Emerging Technologies in Chemistry 2022. Chemistry International, 2022, 44, 4-13.	0.3	27
244	Elastic Fibers/Fabrics for Wearables and Bioelectronics. Advanced Science, 2022, 9, .	11.2	19
245	Engineering the Comfortâ€ofâ€Wear for Next Generation Wearables. Advanced Electronic Materials, 2023, 9, .	5.1	14
246	Recent advances in carbon materials for flexible zinc ion batteries. New Carbon Materials, 2022, 37, 827-851.	6.1	13
247	Hierarchically Assembled Counter Electrode for Fiber Solar Cell Showing Record Power Conversion Efficiency. Advanced Functional Materials, 2022, 32, .	14.9	17
248	Nonprinted IC Textiles for Wearable Electronics. Accounts of Materials Research, 2022, 3, 1201-1205.	11.7	5
249	Fabric computing: Concepts, opportunities, and challenges. Innovation(China), 2022, 3, 100340.	9.1	12
250	Low hysteresis, anti-freezing and conductive organohydrogel prepared by thiol-ene click chemistry for human-machine interaction. Polymer, 2022, 262, 125464.	3.8	8
251	A sensing and display system on wearable fabric based on patterned silver nanowires. Nano Energy, 2022, 104, 107965.	16.0	16
252	Interface-engineered molybdenum disulfide/porous graphene microfiber for high electrochemical energy storage. Energy Storage Materials, 2023, 54, 30-39.	18.0	16

#	ARTICLE	IF	CITATIONS
253	Metal Based Conductor. Advanced Materials, 2023, 35, .	21.0	26
254	Smart Mechanoluminescent Phosphors: A Review of Strontiumâ€Aluminateâ€Based Materials, Properties, and Their Advanced Application Technologies. Advanced Science, 2023, 10, .	11.2	51
255	Recent achievements of freeâ€standing material and interface optimization in highâ€energyâ€density flexible lithium batteries. , 2022, 1, 316-345.		8
256	A Universal Tandem Device of DCâ€Driven Electrochromism and ACâ€Driven Electroluminescence for Multiâ€Functional Smart Windows. Advanced Materials Technologies, 2023, 8, .	5.8	2
257	3D stretchable and self-encapsulated multimaterial triboelectric fibers. Science Advances, 2022, 8, .	10.3	8
258	Low-temperature-processable amorphous-oxide-semiconductor-based phosphors for durable light-emitting diodes. Applied Physics Letters, 2022, 121, 192108.	3.3	0
259	MXene fibers for electronic textiles: Progress and perspectives. Chinese Chemical Letters, 2023, 34, 107996.	9.0	1
260	Highly conductive and flexible porous carbon nanofibers cloth for high-performance supercapacitor. Journal of Energy Storage, 2022, 56, 106108.	8.1	7
261	Deformable lithium-ion batteries for wearable and implantable electronics. Applied Physics Reviews, 2022, 9, .	11.3	22
262	Facile fabrication of novel europium doped strontium yttrate (SrY2O4:Eu3+) electrospun nanofibers for flexible display applications. Materials Today Communications, 2022, 33, 104950.	1.9	2
263	Advances in solid-state fiber batteries for wearable bioelectronics. Current Opinion in Solid State and Materials Science, 2022, 26, 101042.	11.5	18
264	Stretchable Composite Conductive Fibers for Wearables. Advanced Materials Technologies, 2023, 8, .	5.8	6
265	Dispersed VO ₂ phases in a flexible sensor for recognizing tensile and compressive stress. Journal of Materials Chemistry C, 2023, 11, 513-519.	5.5	4
266	Continuous fabrication of robust ionogel fibers for ultrastable sensors via dynamic reactive spinning. Chemical Engineering Journal, 2023, 455, 140796.	12.7	6
267	Mild construction of an Fe-B-O based flexible electrode toward highly efficient alkaline simulated seawater splitting. Journal of Colloid and Interface Science, 2023, 634, 804-816.	9.4	5
268	Three woven structures of reduced graphene oxide conductive silk fabrics prepared by two different methods for electrical setting and sensing. Journal of Industrial Textiles, 2022, 52, 152808372211444.	2.4	0
269	One-step electrodeposition to fabricate robust superhydrophobic silver/graphene coatings with excellent stability. Transactions of Nonferrous Metals Society of China, 2022, 32, 3321-3333.	4.2	2
270	Stretchable One-Dimensional Conductors for Wearable Applications. ACS Nano, 2022, 16, 19810-19839.	14.6	21

#	Article	IF	CITATIONS
271	Transparent, Stretchable, and Recyclable Triboelectric Nanogenerator Based on an Acid- and Alkali-Resistant Hydrogel. ACS Applied Electronic Materials, 2023, 5, 216-226.	4.3	4
272	RGBâ€Color Textileâ€Based Flexible and Transparent OLEDs Considering Aesthetics. Advanced Materials Interfaces, 2023, 10, .	3.7	5
273	Toward Waterâ€Immersion Programmable Metaâ€Display. Advanced Science, 2023, 10, .	11.2	12
274	Constructing Carbon Nanotube Hybrid Fiber Electrodes with Unique Hierarchical Microcrack Structure for Highâ€Voltage, Ultrahighâ€Rate, and Ultralongâ€Life Flexible Aqueous Zinc Batteries. Small, 0, , 2206338.	10.0	1
275	Stabilized Preparation of Fiber-Shaped Perovskite Solar Cells with Ti and Graphene Substrates. ACS Applied Nano Materials, 2022, 5, 18811-18820.	5.0	3
276	Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nature Communications, 2022, 13, .	12.8	58
277	Fiber-shaped artificial optoelectronic synapses for wearable visual-memory systems. Matter, 2023, 6, 925-939.	10.0	18
278	Conductance-stable and integrated helical fiber electrodes toward stretchy energy storage and self-powered sensing utilization. Chemical Engineering Journal, 2023, 457, 141164.	12.7	18
279	Large-area waterproof and durable perovskite luminescent textiles. Nature Communications, 2023, 14, .	12.8	20
280	Systematic study on size and temporal dependence of micro-LED arrays for display applications. Photonics Research, 2023, 11, 549.	7.0	3
281	An Overview of Flexible Sensors: Development, Application, and Challenges. Sensors, 2023, 23, 817.	3.8	13
282	Multicolored structural coloration of carbon nanotube fibers. SusMat, 0, , .	14.9	1
283	Achieving Lowâ€Voltage Operation of Intrinsicallyâ€Stretchable Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2023, 33, .	14.9	3
284	Ultrafast materials synthesis and manufacturing techniques for emerging energy and environmental applications. Chemical Society Reviews, 2023, 52, 1103-1128.	38.1	30
285	Scalable spinning, winding, and knittingÂgraphene textile TENG for energy harvesting and human motion recognition. Nano Energy, 2023, 107, 108137.	16.0	37
286	Highly permeable and ultrastretchable E-textiles with EGaln-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy, 2023, 108, 108194.	16.0	35
287	Ultra-fine self-powered interactive fiber electronics for smart clothing. Nano Energy, 2023, 107, 108171.	16.0	5
288	Extremely Robust and Multifunctional Nanocomposite Fibers for Strainâ€Unperturbed Textile Electronics. Advanced Materials, 2023, 35, .	21.0	21

#	Article	IF	CITATIONS
289	Ultrastretchable Triboelectric Nanogenerators Based on Ecoflex/Porous Carbon for Selfâ€Powered Gesture Recognition. Advanced Materials Technologies, 2023, 8, .	5.8	7
290	Thermally Laminated Lighting Textile for Wearable Displays with High Durability. ACS Applied Materials & Interfaces, 2023, 15, 5931-5941.	8.0	7
291	Self-Healing Multimodal Flexible Optoelectronic Fiber Sensors. Chemistry of Materials, 2023, 35, 1345-1354.	6.7	7
292	Intrinsically Synchronized Flexible Visuoâ€Haptic Device Operated by Single External Electric Field. Advanced Optical Materials, 2023, 11, .	7.3	1
293	Flexible Zinc–Air Batteries with Ampereâ€Hour Capacities and Wideâ€Temperature Adaptabilities. Advanced Materials, 2023, 35, .	21.0	40
294	Conformal Integration of an Inkjetâ€Printed PbS QDsâ€Graphene IR Photodetector on a Polymer Optical Fiber. Advanced Materials Technologies, 2023, 8, .	5.8	3
295	Hydrogelâ€Based Multifunctional Soft Electronics with Distributed Sensing Units: A Review. , 2023, 2, .		3
296	Elasto-Plastic Design of Ultrathin Interlayer for Enhancing Strain Tolerance of Flexible Electronics. ACS Nano, 2023, 17, 3921-3930.	14.6	12
297	Flexible Triboelectric Tactile Sensor Based on a Robust MXene/Leather Film for Human–Machine Interaction. ACS Applied Materials & Interfaces, 2023, 15, 13802-13812.	8.0	20
298	Flexible Quasiâ€&olidâ€&tate Aqueous Zincâ€Ion Batteries: Design Principles, Functionalization Strategies, and Applications. Advanced Energy Materials, 2023, 13, .	19.5	24
299	Synergetic Lithium and Hydrogen Bonds Endow Liquidâ€Free Photonic Ionic Elastomer with Mechanical Robustness and Electrical/Optical Dualâ€Output. Advanced Materials, 2023, 35, .	21.0	22
300	Anodeâ€Patterned Monorailâ€Structure Fiberâ€Based Organic Lightâ€Emitting Diodes with Long Lifetime and High Performance for Truly Wearable Displays. Advanced Optical Materials, 2023, 11, .	7.3	1
301	Flexible photo-charging power sources for wearable electronics. Materials Today Energy, 2023, 33, 101276.	4.7	5
302	Threadlike Piezoelectric Sensors Based on Ferroelectrets and Their Application in Washable and Breathable Smart Clothing. Advanced Materials Technologies, 2023, 8, .	5.8	2
303	High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nature Materials, 2023, 22, 737-745.	27.5	28
304	Hierarchically interlocked helical conductive yarn enables ultra-stretchable electronics and smart fabrics. Chemical Engineering Journal, 2023, 462, 142279.	12.7	19
305	Cellulosic all-solid-state electrolyte for lithium batteries fabricated via bio-synthetic avenue. Composites Part B: Engineering, 2023, 254, 110566.	12.0	5
306	Thermally driven carbon nanotube@polycaprolactone coaxial artificial muscle fibers working in subzero environments. International Journal of Smart and Nano Materials, 2023, 14, 216-229.	4.2	1

#	Article	IF	CITATIONS
307	Ultrastretchable alternating current electroluminescent panels for arbitrary luminous patterns. Applied Materials Today, 2023, 31, 101764.	4.3	1
308	Scalable, high-performance, yarn-shaped batteries activated by an ultralow volume of sweat for self-powered sensing textiles. Nano Energy, 2023, 109, 108304.	16.0	6
309	Electron transport engineering of carbon hybrid network towards physiological signal monitoring and efficient heat management. Chemical Engineering Journal, 2023, 465, 142734.	12.7	3
310	Photoactive materials and devices for energy-efficient soft wearable optoelectronic systems. Nano Energy, 2023, 110, 108379.	16.0	7
311	Structural Engineering of Flexible Electronics. , 2022, , 1-26.		0
312	Electronic textiles: New age of wearable technology for healthcare and fitness solutions. Materials Today Bio, 2023, 19, 100565.	5.5	22
313	Use of Rotary Ultrasonic Plastic Welding as a Continuous Interconnection Technology for Large-Area e-Textiles. Textiles, 2023, 3, 66-87.	4.1	2
314	Multimodal-Responsive Circularly Polarized Luminescence Security Materials. Journal of the American Chemical Society, 2023, 145, 4246-4253.	13.7	25
315	Fibre batteries embracing wearable electronics. Science Bulletin, 2023, 68, 353-355.	9.0	0
316	Advancements in Electronic Materials and Devices for Stretchable Displays. Advanced Materials Technologies, 2023, 8, .	5.8	13
317	Bioinspired Selfâ€healing Soft Electronics. Advanced Functional Materials, 2023, 33, .	14.9	25
318	Introductory Chapter: An Overview to the Internet of Things. , 0, , .		2
319	Soft Fiber Electronics Based on Semiconducting Polymer. Chemical Reviews, 2023, 123, 4693-4763.	47.7	40
320	Recent Progress in Artificial Structural Colors and their Applications in Fibers and Textiles. Chemistry Methods, 2023, 3, .	3.8	5
321	Selfâ€Powered Smart Textile Based on Dynamic Schottky Diode for Humanâ€Machine Interactions. Advanced Science, 2023, 10, .	11.2	7
322	Flexible optoelectronic sensors: status and prospects. Materials Chemistry Frontiers, 2023, 7, 1496-1519.	5.9	4
323	Flexible electronics based on one-dimensional inorganic semiconductor nanowires and two-dimensional transition metal dichalcogenides. Chinese Chemical Letters, 2023, 34, 108226.	9.0	7
324	Recent Advances in Wearable Aqueous Metalâ€Air Batteries: From Configuration Design to Materials Fabrication. Advanced Materials Technologies, 2023, 8,	5.8	10

#	Article	IF	CITATIONS
325	Fiber- and Textile-Based Triboelectric Nanogenerators. , 2023, , 1-39.		0
326	"Water-in-Deep Eutectic Solvent―Gel Electrolytes Synergistically Controlled by Solvation Regulation and Gelation Strategies for Flexible Electronic Devices. ACS Applied Materials & Interfaces, 2023, 15, 12088-12098.	8.0	1
327	Wearable sweat biosensors on textiles for health monitoring. Journal of Semiconductors, 2023, 44, 021601.	3.7	10
328	Ingenious integration of electroluminescent devices with natural triboelectrification for wearable display by using epidermal potential as stimulation bridge. Optical Materials, 2023, 137, 113627.	3.6	2
329	Unlocking the Potential of Blue Perovskite Lightâ€Emitting Diodes for Activeâ€Matrix Displays. Advanced Optical Materials, 2023, 11, .	7.3	2
330	Ionic skin: from imitating natural skin to beyond. , 2023, 1, 224-239.		10
331	Highly Flexible Electroluminescent Devices Based on Super Durable AlNâ€Dispersed Ag Ultrathin Films. Advanced Materials Interfaces, 2023, 10, .	3.7	0
332	Afterglow OLEDs incorporating bright closely stacked molecular dimers with ultra-long thermally activated delayed fluorescence. Matter, 2023, 6, 1231-1248.	10.0	10
333	Fabrication of practical deformable displays: advances and challenges. Light: Science and Applications, 2023, 12, .	16.6	11
334	Fibriform Organic Electrochemical Diodes with Rectifying, Complementary Logic and Transient Voltage Suppression Functions for Wearable E-Textile Embedded Circuits. ACS Nano, 2023, 17, 5821-5833.	14.6	6
335	Polymerized Thermally Activated Delayedâ€Fluorescence Small Molecules: Longâ€Axis Polymerization Leads to a Nearly Concentrationâ€Independent Luminescence. Angewandte Chemie, 2023, 135, .	2.0	0
336	Polymerized Thermally Activated Delayedâ€Fluorescence Small Molecules: Longâ€Axis Polymerization Leads to a Nearly Concentrationâ€Independent Luminescence. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
337	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	14.6	238
338	3D Shapeâ€Morphing Display Enabled by Electrothermally Responsive, Stiffnessâ€Tunable Liquid Metal Platform with Stretchable Electroluminescent Device. Advanced Functional Materials, 2023, 33, .	14.9	9
339	Soft Electronics for Health Monitoring Assisted by Machine Learning. Nano-Micro Letters, 2023, 15, .	27.0	23
340	Engineering PEDOT:PSS/PEC Fibers with a Textured Surface toward Comprehensive Personal Thermal Management. ACS Applied Materials & Interfaces, 2023, 15, 17175-17187.	8.0	9
341	Advances in bismuth-telluride-based thermoelectric devices: Progress and challenges. EScience, 2023, 3, 100122.	41.6	25
342	Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chemical Reviews, 2023, 123, 5049-5138.	47.7	85

# 343	ARTICLE Contact Electrification Induced Multicolor Selfâ€Recoverable Mechanoluminescent Elastomer for Wearable Smart Lightâ€Emitting Devices. Advanced Optical Materials, 2023, 11, .	IF 7.3	CITATIONS
344	Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile. Nano Research, 2023, 16, 9379-9386.	10.4	8
345	Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose. NPG Asia Materials, 2023, 15, .	7.9	1
346	Highly Air-Stable, Flexible, and Water-Resistive 2D Titanium Carbide MXene-Based RGB Organic Light-Emitting Diode Displays for Transparent Free-Form Electronics. ACS Nano, 2023, 17, 10353-10364.	14.6	4
347	Exploring Multiple Strategies towards Luminescent Fibers and Applications. Journal of Physics: Conference Series, 2023, 2470, 012031.	0.4	0
348	Fibers/Textiles-Based Flexible Sweat Sensors: A Review. , 2023, 5, 1420-1440.		8
349	Fiber Crossbars: An Emerging Architecture of Smart Electronic Textiles. Advanced Materials, 2023, 35, .	21.0	5
350	Soft and lightweight fabric enables powerful and high-range pneumatic actuation. Science Advances, 2023, 9, .	10.3	13
351	Allâ€Organic Smart Textile Sensor for Deepâ€Learningâ€Assisted Multimodal Sensing. Advanced Functional Materials, 2023, 33, .	14.9	12
352	Microstructured Anisotropic Elastomer Composite-Based Vertical Interconnect Access (VIA) for Multilayered Stretchable Electronics. ACS Applied Electronic Materials, 0, , .	4.3	0
353	Intrinsically Healable Fabrics. Advanced Materials Technologies, 0, , .	5.8	0
354	Biomimetic spinning of soft functional fibres via spontaneous phase separation. Nature Electronics, 2023, 6, 338-348.	26.0	44
355	Highly Reliable Textileâ€Type Memristor by Designing Aligned Nanochannels. Advanced Materials, 2023, 35, .	21.0	3
356	Response Regulation for Epidermal Fabric Strain Sensors via Mechanical Strategy. Advanced Functional Materials, 2023, 33, .	14.9	9
357	Smart batteries enabled by implanted flexible sensors. Energy and Environmental Science, 2023, 16, 2448-2463.	30.8	11
358	Intrinsically Stretchable Fiberâ€5haped Organic Solar Cells. Solar Rrl, 2023, 7, .	5.8	4
359	Ultrathin Crystalline Silicon Nano and Micro Membranes with High Areal Density for Low ost Flexible Electronics. Small, 2023, 19, .	10.0	3
360	Fabricating 1D stretchable fiber-shaped electronics based on inkjet printing technology for wearable applications. Nano Energy, 2023, 113, 108574.	16.0	7

#	Article	IF	CITATIONS
361	Joint Sensing Adaptation and Model Placement in 6G Fabric Computing. IEEE Journal on Selected Areas in Communications, 2023, 41, 2013-2024.	14.0	6
362	Ambient-conditions spinning of functional soft fibers via engineering molecular chain networks and phase separation. Nature Communications, 2023, 14, .	12.8	15
363	Ultra-thin self-powered sensor integration system with multiple charging modes in smart home applications. Materials Today Nano, 2023, 23, 100358.	4.6	4
364	Developing a highly-conductive and strength cotton yarn through dual shell architecture of graphene for smart wearable devices. Chemical Engineering Journal, 2023, 470, 143912.	12.7	7
365	Fabricâ€Based Ultrasonic Sensor with Integrated Piezoelectric Composite for Blood Pressure Monitoring. Advanced Materials Technologies, 2023, 8, .	5.8	1
366	Progress and challenges in wearable electrochromic devices: a review. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	6
367	Design, fabrication and assembly considerations for electronic systems made of fibre devices. Nature Reviews Materials, 2023, 8, 552-561.	48.7	10
368	Interfaceâ€Anchored Covalent Organic Frameworks@Aminoâ€Modified Ti ₃ C ₂ T _x MXene on Nylon 6 Film for Highâ€Performance Deformable Supercapacitors. Angewandte Chemie - International Edition, 2023, 62, .	13.8	13
369	Interfaceâ€Anchored Covalent Organic Frameworks@Aminoâ€Modified Ti ₃ C ₂ T _x MXene on Nylon 6 Film for Highâ€Performance Deformable Supercapacitors. Angewandte Chemie, 2023, 135, .	2.0	0
370	Flexible strain sensor based on PU film with three-dimensional porous network. Sensors and Actuators A: Physical, 2023, 359, 114508.	4.1	3
371	Polymers for flexible energy storage devices. Progress in Polymer Science, 2023, 143, 101714.	24.7	11
372	Environmentally-friendly foam-coating synthetic strategy for fabrics with robust superhydrophobicity, self-cleaning capability and flame retardance properties. Chemical Engineering Journal, 2023, 470, 144376.	12.7	7
373	Recent progress in fiber-based soft electronics enabled by liquid metal. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	0
374	Self-powered, flexible, and instantly dynamic multi-color electroluminescence device with bi-emissive layers for optical communication. Nano Energy, 2023, 112, 108488.	16.0	5
375	Functional Textiles with Smart Properties: Their Fabrications and Sustainable Applications. Advanced Functional Materials, 2023, 33, .	14.9	13
376	Understanding the evolution of mechanical and electrical properties of wet-spun PEDOT:PSS fibers with increasing carbon nanotube loading. Composites Communications, 2023, 40, 101612.	6.3	3
377	Truly form-factor–free industrially scalable system integration for electronic textile architectures with multifunctional fiber devices. Science Advances, 2023, 9, .	10.3	6
378	Wearable electrochromic materials and devices: from visible to infrared modulation. Journal of Materials Chemistry C, 2023, 11, 7183-7210.	5.5	19

CITATI	0.11	DEDO	DT
	()N	1 K F P ()	ואו
			- N - I

#	ARTICLE	IF	CITATIONS
379	Wearable energy harvesting-storage hybrid textiles as on-body self-charging power systems. , 2023, 2, e9120079.		13
380	Fatigue-Resistant and Hysteresis-Free Composite Fibers with a Heterogeneous Hierarchical Structure. Advanced Fiber Materials, 2023, 5, 1643-1656.	16.1	1
381	Liquid metal-based textiles for smart clothes. Science China Technological Sciences, 2023, 66, 1511-1529.	4.0	3
382	Anisotropic ZnS Nanoclusters/Ordered Macroâ€Microporous Carbon Superstructure for Fibrous Supercapacitor toward Commercial‣evel Energy Density. Advanced Functional Materials, 2023, 33, .	14.9	9
383	Cellulose processing in ionic liquids from a materials science perspective: turning a versatile biopolymer into the cornerstone of our sustainable future. Green Chemistry, 2023, 25, 5338-5389.	9.0	8
384	Preparation and fluorescence performance of high elastic core-shell structure composite fibers based on electrospun nanofibers. Journal of Materials Research and Technology, 2023, 25, 4728-4738.	5.8	1
385	Optimizing the luminescence efficiency of an europium (Eu ³⁺) doped SrY ₂ O ₄ phosphor for flexible display and lighting applications. RSC Advances, 2023, 13, 20217-20228.	3.6	1
386	Smart fibers and textiles for emerging clothe-based wearable electronics: materials, fabrications and applications. Journal of Materials Chemistry A, 2023, 11, 17336-17372.	10.3	11
387	Hygroscopic MXene/Protein Nanocomposite Fibers Enabling Highly Stretchable, Antifreezing, Repairable, and Degradable Skin-Like Wearable Electronics. , 2023, 5, 2104-2113.		3
388	Recent Progress on Yarnâ€Based Electronics: From Material and Device Design to Multifunctional Applications. Advanced Electronic Materials, 2023, 9, .	5.1	1
389	Facile and scalable fabrication process of electroluminescent filament with high luminescent efficiency. Materials Letters, 2023, 350, 134868.	2.6	23
390	Textile electronics for wearable applications. International Journal of Extreme Manufacturing, 2023, 5, 042007.	12.7	7
391	Smart textiles for self-powered biomonitoring. , 2023, 1, .		38
393	Textile-based electrophoretic electronic paper displays with machine-washable, tailorable and thermostatic functions for truly wearable display. Journal of Materials Chemistry C, 0, , .	5.5	0
394	Surface modulus reconstruction toward robust flexible perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 17651-17660.	10.3	2
395	Sustainable electronic textiles towards scalable commercialization. Nature Materials, 2023, 22, 1294-1303.	27.5	15
396	Wearable electronic system for non-destructive assessment of stress level during cryogenic waterless live transportation. Sensors and Actuators A: Physical, 2023, 361, 114589.	4.1	4
397	Indoor Photovoltaic Fiber with an Efficiency of 25.53% under 1500 Lux Illumination. Advanced Materials, 0, , .	21.0	5

#		IF	CITATIONS
π	Handwriting of perovskite optoelectronic devices on diverse substrates. Nature Photonics, 2023, 17,		CHAHONS
398	964-971.	31.4	10
399	Simultaneous Evaporation and Foaming for Batch Coaxial Extrusion of Liquid Metal/Polydimethylsiloxane Porous Fibrous TENG. Advanced Fiber Materials, 2023, 5, 1949-1962.	16.1	2
400	Recent advances in flexible noninvasive electrodes for surface electromyography acquisition. Npj Flexible Electronics, 2023, 7, .	10.7	5
401	LEGO-like Assembly of Fibrous Modules for Display Textiles. ACS Applied Materials & Interfaces, 2023, 15, 41688-41696.	8.0	1
402	Multicolor electrochromic fabric with a simple structure of PEDOT:PSS/DMSO. Dyes and Pigments, 2023, 219, 111642.	3.7	2
403	基于å‰ç"µå技æœ⁻的智èf½å•ç©¿æ^´çººç»‡å"• Laser and Optoelectronics Progress, 2023, 60, 1316004	v. 0.6	0
404	Sequence spinning axially encoded metafibers. Matter, 2023, , .	10.0	1
405	Multimodal E-Textile Enabled by One-Step Maskless Patterning of Femtosecond-Laser-Induced Graphene on Nonwoven, Knit, and Woven Textiles. ACS Nano, 2023, 17, 18893-18904.	14.6	6
406	Recent advances in flexible alkaline zinc-based batteries: Materials, structures, and perspectives. Journal of Energy Chemistry, 2023, 87, 61-88.	12.9	6
407	Solution-processable polymeric emitters for polymer light-emitting diodes. , 2024, , 403-476.		0
408	A Stretchable and Self-Healing Dual-Functional Wearable Sensor Enabled by Wet-Spun Conductive Thermoplastic Nanocomposite Fibers. Analytica—A Journal of Analytical Chemistry and Chemical Analysis, 2023, 4, 336-346.	1.7	0
409	Thermally stable piezoelectric fiber based on perfluoroalkoxy alkane piezoelectret with a lotus root structure. Applied Physics Letters, 2023, 123, .	3.3	0
410	Designing Reflective Hybrid Counter Electrode for Fiber Dye ensitized Solar Cell with Record Efficiency. Advanced Functional Materials, 2023, 33, .	14.9	3
411	Review on carbon dots: Synthesis and application in biology field. , 2023, 1, .		4
412	Surface engineered long-lasting antibacterial Janus cotton fabrics with excellent moisture/thermal management properties. Chemical Engineering Journal, 2023, 475, 146386.	12.7	1
413	Fluorescent Fiber-Shaped Aqueous Zinc-Ion Batteries for Bifunctional Multicolor-Emission/Energy-Storage Textiles. ACS Nano, 2023, 17, 18494-18506.	14.6	4
414	Monitoring blood pressure and cardiac function without positioning via a deep learning–assisted strain sensor array. Science Advances, 2023, 9, .	10.3	19
415	Synthesis, analysis and characterization of nitrogen/sulfur co-doped activated carbon for high-performance all-printed flexible supercapacitor. Journal of Energy Storage, 2023, 73, 109004.	8.1	4

#	Article	IF	CITATIONS
416	Scalable and eco-friendly flexible loudspeakers for distributed human-machine interactions. Npj Flexible Electronics, 2023, 7, .	10.7	0
417	Stretchable Highâ€Resolution Userâ€Interactive Synesthesia Displays for Visual–Acoustic Encryption. Advanced Functional Materials, 2023, 33, .	14.9	3
418	A comprehensive review on perovskite and its functional composites in smart textiles: Progress, challenges, opportunities, and future directions. Progress in Materials Science, 2023, 140, 101206.	32.8	5
419	Plastic-Swelling Preparation of Functional Graphene Aerogel Fiber Textiles. Advanced Fiber Materials, 2023, 5, 2016-2027.	16.1	4
420	Redesigning Natural Materials for Energy, Water, Environment, and Devices. ACS Nano, 2023, 17, 18657-18668.	14.6	0
421	Wearable Integrated Selfâ€Powered Electroluminescence Display Device Based on Allâ€Inâ€One MXene Electrode for Information Encryption. Advanced Functional Materials, 2023, 33, .	14.9	6
422	High performance fully-printed strain-sensing e-textile for human posture recognition. Chemical Engineering Journal, 2023, 475, 146197.	12.7	2
423	A Review of Structure Engineering of Strainâ€Tolerant Architectures for Stretchable Electronics. Small Methods, 2023, 7, .	8.6	4
424	Humanoid Intelligent Display Platform for Audiovisual Interaction and Sound Identification. Nano-Micro Letters, 2023, 15, .	27.0	1
425	Interfacing Lanthanide Metalâ€Organic Frameworks with ZnO Nanowires for Alternating Current Electroluminescence. Small, 2024, 20, .	10.0	1
426	Building Smarter Aqueous Batteries. Small Methods, 0, , .	8.6	1
428	Fiber- and Textile-Based Triboelectric Nanogenerators. , 2023, , 851-889.		0
429	An Allâ€Stretchable, Ultraviolet Protective, and Electromagneticâ€Interferenceâ€Free Eâ€Textile. Advanced Functional Materials, 2023, 33, .	14.9	4
430	Ionogel based triboelectric nanogenerator textiles for high-precision human fall recognition. Chemical Engineering Journal, 2023, 474, 145686.	12.7	4
431	Autonomous Electroluminescent Textile for Visual Interaction and Environmental Warning. Nano Letters, 2023, 23, 8436-8444.	9.1	4
432	Alternating Current Electroluminescence for Humanâ€Interactive Sensing Displays. Advanced Materials, 2024, 36, .	21.0	4
433	Electrostatically spun nanofiber yarns for textile electronics. Colloids and Interface Science Communications, 2023, 56, 100742.	4.1	0
434	Review of textile-based wearable electronics: From the structure of the multi-level hierarchy textiles. Nano Energy, 2023, 117, 108898.	16.0	7

#	Article	IF	CITATIONS
435	Liquid Metalâ€Based Stable and Stretchable Znâ€Ion Battery for Electronic Textiles. Advanced Materials, 2024, 36, .	21.0	0
436	Preparation and characterization of Eu/ PVP/TPPO/PAN fluorescent film for LED. Optical Materials, 2023, 145, 114381.	3.6	0
437	Transferable microfiber laser arrays for high-sensitivity thermal sensing. Nanoscale, 0, , .	5.6	0
438	Intrinsically Stretchable Fiberâ€Shaped Solar Cells with Polymerâ€Based Active Layer. Solar Rrl, 2023, 7, .	5.8	2
439	电åæ~¾ç¤çººç»‡å"的设è®jä,Žé›†æ^∙Science China Materials, 2023, 66, 3782-3794.	6.3	1
441	Optical Integration in Wearable, Implantable and Swallowable Healthcare Devices. ACS Nano, 2023, 17, 19491-19501.	14.6	Ο
442	Highâ€Toughness and Highâ€Strength Solventâ€Free Linear Poly(ionic liquid) Elastomers. Advanced Materials, 2024, 36, .	21.0	2
443	Axially Encoded Mechanoâ€Metafiber Electronics by Local Strain Engineering. Advanced Materials, 0, , .	21.0	1
444	Wearable Alternating Current Electroluminescent eâ€Textiles with High Brightness Enabled by Fully Sprayed Layerâ€By‣ayer Assembly. Advanced Functional Materials, 2024, 34, .	14.9	0
445	MXene decorated 3D-printed carbon black-based electrodes for solid-state micro-supercapacitors. Journal of Materials Chemistry A, 2023, 11, 25422-25428.	10.3	2
446	Hydrogel-assisted microfluidic spinning of stretchable fibers via fluidic and interfacial self-adaptations. Science Advances, 2023, 9, .	10.3	0
447	Mechanically strong, flexible, and flame-retardant Ti3C2Tx MXene-coated aramid paper with superior electromagnetic interference shielding and electrical heating performance. Chemical Engineering Journal, 2023, 476, 146834.	12.7	25
448	Fabrication Techniques and Sensing Mechanisms of Textile-Based Strain Sensors: From Spatial 1D and 2D Perspectives. Advanced Fiber Materials, 0, , .	16.1	0
449	Processable circularly polarized luminescence material enables flexible stereoscopic 3D imaging. Science Advances, 2023, 9, .	10.3	5
450	Hetero Nucleus Growth Stabilizing Zinc Anode for High-Biosecurity Zinc-Ion Batteries. Nano-Micro Letters, 2023, 15, .	27.0	22
451	Dualâ€mode smart flipping materials and devices for thermal management. , 2023, 2, 735-760.		Ο
452	A Review of Multifunctional Nanocomposite Fibers: Design, Preparation and Applications. Advanced Fiber Materials, 0, , .	16.1	0
453	Fluorescent carbon dots from birch leaves for sustainable electroluminescent devices. Green	9.0	0

#	Article	IF	CITATIONS
454	Smart Textile Optoelectronics for Humanâ€Interfaced Logic Systems. Advanced Functional Materials, 2024, 34, .	14.9	0
455	Soft devices empowered by mechanoluminescent materials. , 0, 3, .		0
456	Intrinsically Stretchable Lightâ€Emitting Polymer Semiconductors with High Charge Mobility Through Microâ€Crystalline Aggregation‣imited Morphology. Advanced Functional Materials, 2024, 34, .	14.9	0
457	High-accuracy circuits on fibrous materials for flexible tension sensor. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
458	Pressure Regulated Printing of Semiliquid Metal on Electrospinning Film Enables Breathable and Waterproof Wearable Electronics. Advanced Fiber Materials, 0, , .	16.1	2
459	Spiderâ€Silkâ€Inspired Tough, Selfâ€Healing, and Meltâ€Spinnable Ionogels. Advanced Science, 0, , .	11.2	3
460	A Flexible and Wearable Visual Pressure Sensing System Based on Piezoresistive Sensors and Alternating Current Electroluminescence Devices. Advanced Materials Technologies, 0, , .	5.8	0
461	Hierarchical Assembly of Patternable Chiroptical Biotextiles with Extreme Environment Stability. ACS Nano, 2023, 17, 22591-22600.	14.6	0
462	Recent Trends in Supercapacitor Research: Sustainability in Energy and Materials. ChemSusChem, 0, , .	6.8	0
464	Multimode coaxial extrusion of segmented core-shell structures for soft metamechanics and biomimetic applications. Smart Materials and Structures, 2024, 33, 015003.	3.5	0
465	Electric field enhancement for triboelectrification-induced electroluminescence via micro electrode units and BaTiO3 nanoparticles. Journal of Luminescence, 2024, 267, 120333.	3.1	0
466	Bioâ€Inspired Interfacial Engineering of MXene Fibers Toward Synergistic Improvement in Mechanical Strength and Electrochemical Performance. Advanced Functional Materials, 0, , .	14.9	0
467	Color-tunable light-emitting fibers for pattern displaying textiles. Journal of Materials Chemistry C, 0, , .	5.5	0
468	Hand-drawing perovskite devices. Nature Photonics, 2023, 17, 928-930.	31.4	1
469	Multifunctional and Reconfigurable Electronic Fabrics Assisted by Artificial Intelligence for Human Augmentation. Advanced Fiber Materials, 0, , .	16.1	0
470	Artificial intelligence-powered electronic skin. Nature Machine Intelligence, 2023, 5, 1344-1355.	16.0	4
471	Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications. InformaÄnÃ-Materiály, 2024, 6, .	17.3	0
473	Continuous Melt Spinning of Adaptable Covalently Crossâ€Linked Selfâ€Healing Ionogel Fibers for Multiâ€Functional Ionotronics. Advanced Materials, 0, , .	21.0	0

IF CITATIONS ARTICLE # Crumpled graphene with graded interlayer spacing for high-rate Na<b++/b> storage. Applied Physics 3.3 476 0 Letters, 2023, 123, . A Discolorable Flexible Synaptic Transistor for Wearable Health Monitoring. ACS Nano, 0, , . 14.6 Fiberâ€Based Flexible Ionic Diode with High Robustness and Rectifying Performance: Toward Electronic 478 5.10 Textile Circuits. Advanced Electronic Materials, 2024, 10, . Technological trends in medical robotic sensing with soft electronic skin. Sensors & Diagnostics, 2024, 3, 218-237. MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating. Advanced Functional 481 14.9 1 Materials, 0, , . Body-conformable light-emitting materials and devices. Nature Photonics, 2024, 18, 114-126. 31.4 ä,€ä¼2"化啿‹‰ä¼,çš,åå功èf½ç"µåŒ–å¦ä¼æ"Ÿçºक़҉ æž,,建微釿±— æ¶²å¥åº∙监测织物. Science 6laina Matarials, 2024 483

484	ELECTRONIC APPLICATIONS IN TEXTILE DESIGN. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi,	0, _{0.4}	Ο
485	Perspective in Textile Energy Storage Integrated Textile Elements: Textile Materials, Structure, and Manufactured Methods. Advanced Energy Materials, 2024, 14, .	19.5	0
486	The Need for Smart Materials in an Expanding Smart World: MXene-Based Wearable Electronics and Their Advantageous Applications. ACS Omega, 0, , .	3.5	0
487	Intrinsically stretchable light-emitting drawing displays. Npj Flexible Electronics, 2024, 8, .	10.7	0
488	Recent Progresses of Aqueous Zincâ€lon Batteries and Their Prospects in the Field of Smart City. Advanced Sustainable Systems, 0, , .	5.3	0
489	Bionic-leaf vein inspired breathable anti-impact wearable electronics with health monitoring, electromagnetic interference shielding and thermal management. Journal of Materials Science and Technology, 2024, 188, 216-227.	10.7	0
490	Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chemical Reviews, 2024, 124, 455-553.	47.7	2
491	Rotating square tessellations enabled stretchable and adaptive curved display. Npj Flexible Electronics, 2024, 8, .	10.7	0
492	Tunable Hydrogel Electronics for Diagnosis of Peripheral Neuropathy. Advanced Materials, 0, , .	21.0	4
493	Machine embroidery of light-emitting textiles with multicolor electroluminescent threads. Science Advances, 2024, 10, .	10.3	0
494	Validating Operating Stability and Biocompatibility Toward SaferÂZincâ€Based Batteries. Advanced Materials, 2024, 36, .	21.0	1

#	Article	IF	CITATIONS
495	A dynamically stable self-healable wire based on mechanical–electrical coupling. National Science Review, 2024, 11, .	9.5	0
497	Encoded sewing soft textile robots. Science Advances, 2024, 10, .	10.3	1
498	Deepâ€Learningâ€Assisted Thermogalvanic Hydrogel Eâ€Skin for Selfâ€Powered Signature Recognition and Biometric Authentication. Advanced Functional Materials, 2024, 34, .	14.9	1
499	Integrating Light Diffusion and Conversion Layers for Highly Efficient Multicolored Fiberâ€Dyeâ€ S ensitized Solar Cells. Advanced Materials, 2024, 36, .	21.0	0
500	Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chemical Reviews, 2024, 124, 768-859.	47.7	1
501	Wearable and Regenerable Electrochemical Fabric Sensing System Based on Molecularly Imprinted Polymers for Realâ€Time Stress Management. Advanced Functional Materials, 2024, 34, .	14.9	1
502	Effect of Ag agglomeration-driven nanovoids formation on fatigue reliability of Cu–Ag alloy flexible interconnects. Journal of Materials Research and Technology, 2024, 29, 851-856.	5.8	0
503	Self-encapsulated ionic fibers based on stress-induced adaptive phase transition for non-contact depth-of-field camouflage sensing. Nature Communications, 2024, 15, .	12.8	0
504	Advances in Smart Photovoltaic Textiles. ACS Nano, 2024, 18, 3871-3915.	14.6	0
505	Opportunities for Nanomaterials in Stretchable and Freeâ€Form Displays. Small Science, 2024, 4, .	9.9	0
506	Well-defined in-textile photolithography towards permeable textile electronics. Nature Communications, 2024, 15, .	12.8	0
507	Single Channel Based Interferenceâ€Free and Selfâ€Powered Human–Machine Interactive Interface Using Eigenfrequencyâ€Dominant Mechanism. Advanced Science, 2024, 11, .	11.2	0
508	Flexible fibres take fabrics into the information age. Nature, 2024, 626, 38-39.	27.8	1
509	High-quality semiconductor fibres via mechanical design. Nature, 2024, 626, 72-78.	27.8	3
510	Producing naturally degradable room-temperature phosphorescent materials by covalently attaching lignin to natural polymers. Cell Reports Physical Science, 2024, 5, 101811.	5.6	0
511	Phase dimensions resolving of efficient and stable perovskite light-emitting diodes at high brightness. Nature Photonics, 2024, 18, 363-370.	31.4	0
512	Soft Sensors and Actuators for Wearable Human–Machine Interfaces. Chemical Reviews, 2024, 124, 1464-1534.	47.7	0
513	Highly integrated all-in-one electrochromic fabrics for unmanned environmental adaptive camouflage. Journal of Materials Chemistry A, 2024, 12, 6351-6358.	10.3	0

#	Article	IF	CITATIONS
514	Engineering Sizable and Broad-Spectrum Antibacterial Fabrics through Hydrogen Bonding Interaction and Electrostatic Interaction. ACS Applied Materials & amp; Interfaces, 2024, 16, 8321-8332.	8.0	0
515	Realizing Red Mechanoluminescence of ZnS: Mn ²⁺ Through Ferromagnetic Coupling. Advanced Functional Materials, 0, , .	14.9	0
516	3D/4D printed versatile fibreâ€based wearables for embroidery, AlE hemosensing, and unidirectional draining. Aggregate, 0, , .	9.9	0
517	Mechanoluminescence and Mechanical Quenching of Afterglow Luminescent Particles for Wearable Photonic Display. Advanced Functional Materials, 0, , .	14.9	0
518	Fully Printable and Reconfigurable <i>Hufu</i> â€ŧype Electroluminescent Devices for Visualized Encryption. Advanced Materials, 0, , .	21.0	0
519	High-Performance All-Textile Triboelectric Nanogenerator toward Intelligent Sports Sensing and Biomechanical Energy Harvesting. ACS Applied Materials & Interfaces, 2024, 16, 10746-10755.	8.0	0
520	Wearable and interactive multicolored photochromic fiber display. Light: Science and Applications, 2024, 13, .	16.6	1
521	A New Kind of Seamless Fabric Setting Machine and Its Numerical Control System. , 2023, , .		0
522	TADF polymer enables over 20% EQE in solutionâ€processed green fluorescent OLEDs. SmartMat, 0, , .	10.7	0
523	Porous Conductive Textiles for Wearable Electronics. Chemical Reviews, 2024, 124, 1535-1648.	47.7	0
524	Fabricating a smart clothing system based on strain-sensing yarn and novel stitching technology for health monitoring. Science China Technological Sciences, 2024, 67, 587-596.	4.0	0
525	Grafted MXene Assisted Bifunctional Hydrogel for Stable and Highly Sensitive Selfâ€Powered Fibrous System. Advanced Functional Materials, 0, , .	14.9	0
526	Bio-inspired carbon electrodes for metal-ion batteries. Nanoscale, 2024, 16, 5893-5902.	5.6	0
527	Disulfide bond network crosslinked flexible multifunctional chitosan coating on fabric surface prepared by the chitosan grafted with thioctic acid. International Journal of Biological Macromolecules, 2024, 263, 130431.	7.5	0
528	Liquid Metal–Polymer Conductor-Based Conformal Cyborg Devices. Chemical Reviews, 2024, 124, 2081-2137.	47.7	0
530	Development of supercapacitors with 3D porous structures. ChemElectroChem, 0, , .	3.4	0
531	Flexible Multimodal Sensing System Based on a Vertical Stacking Strategy for Efficiently Decoupling Multiple Signals. Nano Letters, 2024, 24, 3186-3195.	9.1	0
532	Integration of Supercapacitors with Sensors and Energyâ€Harvesting Devices: A Review. Advanced Materials Technologies, 0, ,	5.8	0

#	Article	IF	CITATIONS
533	Fibration of powdery materials. Nature Materials, 2024, 23, 596-603.	27.5	0
534	Aesthetic Cellulose Filaments with Water-Triggered Switchable Internal Stress and Customizable Polarized Iridescence Toward Green Fashion Innovation. ACS Nano, 2024, 18, 7496-7503.	14.6	0
535	Design and fabrication of wearable electronic textiles using twisted fiber-based threads. Nature Protocols, 0, , .	12.0	0
536	Revolutionizing Wearable: Multicolored Photochromic Fiber Opens New Frontiers in Human–Machine Interaction. Advanced Fiber Materials, 0, , .	16.1	0
537	lonic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes. Nano-Micro Letters, 2024, 16, .	27.0	0
538	Graphene oxide and carbon black synergistic coated cotton fabric for enhancing energy harvesting from water droplets. Carbon, 2024, 223, 119008.	10.3	0
539	Neural Networkâ€Inspired Polyurea lonogel with Mechanical Robustness, Low Hysteresis, and High Transparency for Soft Iontronics. Advanced Functional Materials, 0, , .	14.9	0
540	Novel Fabrication Method for Pressure-Sensing Polymeric Optical Fiber (POF) Fabric with Non-Direct-Contact Conductive System. Applied Sciences (Switzerland), 2024, 14, 2284.	2.5	0
541	Recent Progress in Wearable Selfâ€Powered Biomechanical Sensors: Mechanisms and Applications. Advanced Materials Technologies, 0, , .	5.8	0
542	Deep learning-assisted intelligent wearable precise cardiovascular monitoring system. Science Bulletin, 2024, 69, 1176-1178.	9.0	0
543	Enhanced zinc reversibility enabled by zinc–bromide complexation of a quasi-solid electrolyte for high-performance flexible zinc–air batteries. Journal of Materials Chemistry A, 2024, 12, 8815-8825.	10.3	0
544	5C NBâ€loT System Integrated with Highâ€Performance Fiber Sensor Inspired by Cirrus and Spider Structures. Advanced Science, 0, , .	11.2	0
545	Highly reliable and stretchable OLEDs based on facile patterning method: toward stretchable organic optoelectronic devices. Npj Flexible Electronics, 2024, 8, .	10.7	0
546	Naturally Crosslinked Biocompatible Carbonaceous Liquid Metal Aqueous Ink Printing Wearable Electronics for Multi-Sensing and Energy Harvesting. Nano-Micro Letters, 2024, 16, .	27.0	0
547	Largeâ€Scale, Stretchable, Selfâ€Protective, and Multifunctional Perovskite Luminescent Filament with Ultraâ€High Stability. Advanced Materials, 0, , .	21.0	0
548	Stretchable conductive fibers: Design, properties and applications. Progress in Materials Science, 2024, 144, 101288.	32.8	0
549	Pushing the thinness limit of silver films for flexible optoelectronic devices via ion-beam thinning-back process. Nature Communications, 2024, 15, .	12.8	0
550	Enhancing Interface Connectivity for Multifunctional Magnetic Carbon Aerogels: An In Situ Growth Strategy of Metalâ€Organic Frameworks on Cellulose Nanofibrils. Advanced Science, 0, , .	11.2	0