Boron-doped nitrogen-deficient carbon nitride-based Z photocatalytic overall water splitting

Nature Energy 6, 388-397 DOI: 10.1038/s41560-021-00795-9

Citation Report

#	Article	IF	CITATIONS
1	Simple fabrication of Z-scheme MgIn ₂ S ₄ /Bi ₂ WO ₆ hierarchical heterostructures for enhancing photocatalytic reduction of Cr(<scp>vi</scp>). Catalysis Science and Technology, 2021, 11, 6271-6280.	2.1	15
2	Integration of redox cocatalysts for artificial photosynthesis. Energy and Environmental Science, 2021, 14, 5260-5288.	15.6	105
3	Photo-accelerated Co ³⁺ /Co ²⁺ transformation on cobalt and phosphorus co-doped g-C ₃ N ₄ for Fenton-like reaction. Journal of Materials Chemistry A, 2021, 9, 22399-22409.	5.2	37
4	Efficient photocatalytic overall water splitting achieved with polymeric semiconductor-based Z-scheme heterostructures. Science China Chemistry, 2021, 64, 875-876.	4.2	4
5	Advancing Graphitic Carbon Nitride-Based Photocatalysts toward Broadband Solar Energy Harvesting. , 2021, 3, 663-697.		63
6	Photocatalytic overall water splitting by graphitic carbon nitride. InformaÄnÃ-Materiály, 2021, 3, 931-961.	8.5	74
7	Photocatalytic overall water splitting of carbon nitride by band-structure modulation. Matter, 2021, 4, 1765-1767.	5.0	17
8	Carbon nitride of five-membered rings with low optical bandgap for photoelectrochemical biosensing. CheM, 2021, 7, 2708-2721.	5.8	64
9	Significantly Raised Visibleâ€Light Photocatalytic H ₂ Evolution on a 2D/2D ReS ₂ /In ₂ ZnS ₄ van der Waals Heterostructure. Small, 2021, 17, e2100296.	5.2	38
10	Recent research progress of bimetallic phosphides-based nanomaterials as cocatalyst for photocatalytic hydrogen evolution. Chinese Chemical Letters, 2022, 33, 1141-1153.	4.8	149
11	Photodepositing CdS on the Active Cyano Groups Decorated gâ€C ₃ N ₄ in Zâ€Scheme Manner Promotes Visibleâ€Lightâ€Driven Hydrogen Evolution. Small, 2021, 17, e2102699.	5.2	51
12	MoO3/g-C3N4 heterostructure for degradation of organic pollutants under visible light irradiation: High efficiency, general degradation and Z-scheme degradation mechanism. Ceramics International, 2021, 47, 33697-33708.	2.3	19
13	Regulating Local Electron Density of Iron Single Sites by Introducing Nitrogen Vacancies for Efficient Photoâ€Fenton Process. Angewandte Chemie - International Edition, 2021, 60, 21261-21266.	7.2	158
14	Few‣ayered Mo _{<i>x</i>} W _{1â^'<i>x</i>} S ₂ â€Modified CdS Photocatalyst: Oneâ€5tep Synthesis with Bifunctional Precursors and Improved H ₂ â€Evolution Activity. Solar Rrl, 2021, 5, 2100387.	3.1	19
15	Regulating Local Electron Density of Iron Single Sites by Introducing Nitrogen Vacancies for Efficient Photoâ€Fenton Process. Angewandte Chemie, 2021, 133, 21431-21436.	1.6	12
16	Dopant and Defect Doubly Modified CeO ₂ /g-C ₃ N ₄ Nanosheets as OD/2D Z-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution: Experimental and Density Functional Theory Studies. ACS Sustainable Chemistry and Engineering, 2021, 9, 11479-11492.	3.2	36
17	Photoinduced Generation of Metastable Sulfur Vacancies Enhancing the Intrinsic Hydrogen Evolution Behavior of Semiconductors. Solar Rrl, 2021, 5, 2100580.	3.1	8
18	Ultrathin Crystalline Covalentâ€Triazineâ€Framework Nanosheets with Electron Donor Groups for Synergistically Enhanced Photocatalytic Water Splitting. Angewandte Chemie, 2021, 133, 25585-25594.	1.6	8

#	Article	IF	CITATIONS
19	3D porous BN/rGO skeleton embedded by MoS2 nanostructures for simulated-solar-light induced hydrogen production. Chemical Engineering Journal, 2022, 435, 132441.	6.6	13
20	Oxalic acid induced defect state graphitic carbon nitride with improved photocatalytic performance. Journal of Molecular Structure, 2022, 1249, 131611.	1.8	3
21	Noble-Metal-Free NixSy-C3N5 Hybrid Nanosheet with Highly Efficient Photocatalytic Performance. Catalysts, 2021, 11, 1089.	1.6	8
22	Ultrathin Crystalline Covalentâ€Triazineâ€Framework Nanosheets with Electron Donor Groups for Synergistically Enhanced Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 25381-25390.	7.2	104
23	Constructing porous channels in superhydrophilic polyethersulfone composite nanofibrous membranes for sustainably enhanced photocatalytic activities in wastewater remediation. Composites Science and Technology, 2021, 214, 108993.	3.8	17
24	Constructing oxide/sulfide in-plane heterojunctions with enlarged internal electric field for efficient CO2 photoreduction. Applied Catalysis B: Environmental, 2021, 297, 120394.	10.8	41
25	Realization of all-in-one hydrogen-evolving photocatalysts via selective atomic substitution. Applied Catalysis B: Environmental, 2021, 298, 120518.	10.8	49
26	A review on particulate photocatalytic hydrogen production system: Progress made in achieving high energy conversion efficiency and key challenges ahead. Renewable and Sustainable Energy Reviews, 2021, 152, 111694.	8.2	76
27	Material design with the concept of solid solution-type defect engineering in realizing the conversion of an electrocatalyst of NiS2 into a photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2021, 298, 120542.	10.8	31
28	Two-dimensional PtSe2/hBN vdW heterojunction as photoelectrocatalyst for the solar-driven oxygen evolution reaction: A first principles study. Applied Surface Science, 2021, 570, 151207.	3.1	24
29	Superhydrophilic and polyporous nanofibrous membrane with excellent photocatalytic activity and recyclability for wastewater remediation under visible light irradiation. Chemical Engineering Journal, 2022, 427, 131685.	6.6	33
30	Band alignment of homojunction by anchoring CN quantum dots on g-C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution. Applied Catalysis B: Environmental, 2022, 300, 120736.	10.8	70
31	Synergy of intermolecular Donor-Acceptor and ultrathin structures in crystalline carbon nitride for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 607, 1603-1612.	5.0	25
32	Efficient photocatalytic H2 evolution and $\hat{l}\pm$ -methylation of ketones from copper complex modified polymeric carbon nitride. Chemical Engineering Journal, 2022, 427, 132042.	6.6	18
33	L-Cysteine capped Mo2C/Zn0.67Cd0.33S heterojunction with intimate covalent bonds enables efficient and stable H2-Releasing photocatalysis. Chemical Engineering Journal, 2022, 428, 132628.	6.6	85
34	Construction of direct Z-scheme SnS2@ZnIn2S4@kaolinite heterostructure photocatalyst for efficient photocatalytic degradation of tetracycline hydrochloride. Chemical Engineering Journal, 2022, 429, 132105.	6.6	34
35	Fabrication of 0D/2D TiO2 Nanodots/g-C3N4 S-scheme heterojunction photocatalyst for efficient photocatalytic overall water splitting. Applied Surface Science, 2022, 571, 151287.	3.1	69
36	Highly efficient photocatalytic H2O2 production with cyano and SnO2 co-modified g-C3N4. Chemical Engineering Journal, 2022, 428, 132531.	6.6	86

#	Article	IF	CITATIONS
37	Fabrication of novel carbon species into porous g-C ₃ N ₄ nanosheet frameworks with enhanced photocatalytic performance. New Journal of Chemistry, 2021, 45, 10589-10593.	1.4	8
38	Organic materials as photocatalysts for water splitting. Journal of Materials Chemistry A, 2021, 9, 16222-16232.	5.2	50
39	Boron dopant simultaneously achieving nanostructure control and electronic structure tuning of graphitic carbon nitride with enhanced photocatalytic activity. Journal of Materials Chemistry C, 2021, 9, 14876-14884.	2.7	21
40	Photocatalytic Zâ€Scheme Overall Water Splitting: Recent Advances in Theory and Experiments. Advanced Materials, 2021, 33, e2105195.	11.1	123
41	Recent Advances and Challenges in Photoreforming of Biomassâ€Derived Feedstocks into Hydrogen, Biofuels, or Chemicals by Using Functional Carbon Nitride Photocatalysts. ChemSusChem, 2021, 14, 4903-4922.	3.6	35
42	Site-Specified Two-Dimensional Heterojunction of Pt Nanoparticles/Metal–Organic Frameworks for Enhanced Hydrogen Evolution. Journal of the American Chemical Society, 2021, 143, 16512-16518.	6.6	121
43	Enhanced photocatalytic water splitting of TiO2 by decorating with facet-controlled Au nanocrystals. Applied Physics Letters, 2021, 119, 143901.	1.5	5
44	Photocatalytic H ₂ O Overall Splitting into H ₂ Bubbles by Single Atomic Sulfur Vacancy CdS with Spin Polarization Electric Field. ACS Nano, 2021, 15, 18006-18013.	7.3	100
45	Selfâ€Supporting 3D Carbon Nitride with Tunable n → Ï€* Electronic Transition for Enhanced Solar Hydrogen Production. Advanced Materials, 2021, 33, e2104361.	11.1	105
46	Constructing a new 2D Janus black phosphorus/SMoSe heterostructure for spontaneous wide-spectral-responsive photocatalytic overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 39183-39194.	3.8	17
47	Flux-Assisted Low Temperature Synthesis of SnNb ₂ O ₆ Nanoplates with Enhanced Visible Light Driven Photocatalytic H ₂ -Production. Journal of Physical Chemistry C, 2021, 125, 23219-23225.	1.5	8
48	Sulfurâ€Deficient ZnIn ₂ S ₄ /Oxygenâ€Deficient WO ₃ Hybrids with Carbon Layer Bridges as a Novel Photothermal/Photocatalytic Integrated System for Zâ€Scheme Overall Water Splitting. Advanced Energy Materials, 2021, 11, 2102452.	10.2	81
49	Internal-electric-field induced high efficient type-I heterojunction in photocatalysis-self-Fenton reaction: Enhanced H2O2 yield, utilization efficiency and degradation performance. Journal of Colloid and Interface Science, 2022, 608, 2075-2087.	5.0	37
50	Hydrogen production versus photocatalyst dimension under concentrated solar light: A case over titanium dioxide. Solar Energy, 2021, 230, 538-548.	2.9	6
51	Direct Z-scheme hierarchical heterostructures of oxygen-doped g-C ₃ N ₄ /In ₂ S ₃ with efficient photocatalytic Cr(<scp>vi</scp>) reduction activity. Catalysis Science and Technology, 2021, 11, 7963-7972.	2.1	13
52	Construction of brown mesoporous carbon nitride with a wide spectral response for high performance photocatalytic H ₂ evolution. Inorganic Chemistry Frontiers, 2021, 9, 103-110.	3.0	17
53	A solar-to-chemical conversion efficiency up to 0.26% achieved in ambient conditions. Proceedings of the United States of America, 2021, 118, .	3.3	37
54	Faradaic junction and isoenergetic charge transfer mechanism on semiconductor/semiconductor interfaces. Nature Communications, 2021, 12, 6363.	5.8	14

#	Article	IF	CITATIONS
55	Structure-mechanism relationship for enhancing photocatalytic H2 production. International Journal of Hydrogen Energy, 2022, 47, 37517-37530.	3.8	15
56	Construction of Interfacial Electric Field via Dualâ€Porphyrin Heterostructure Boosting Photocatalytic Hydrogen Evolution. Advanced Materials, 2022, 34, e2106807.	11.1	139
57	Constructing Crystalline gâ€C ₃ N ₄ /gâ€C ₃ N _{4â^'x} S _x Isotype Heterostructure for Efficient Photocatalytic and Piezocatalytic Performances. Energy and Environmental Materials, 2023, 6, .	7.3	17
58	Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks. Angewandte Chemie, 2022, 134, e202113926.	1.6	5
59	Constructing g-C3N4/Cd1â^'xZnxS-Based Heterostructures for Efficient Hydrogen Production under Visible Light. Catalysts, 2021, 11, 1340.	1.6	9
60	Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks. Angewandte Chemie - International Edition, 2022, 61, e202113926.	7.2	54
61	Design of well-defined shell–core covalent organic frameworks/metal sulfide as an efficient Z-scheme heterojunction for photocatalytic water splitting. Chemical Science, 2021, 12, 16065-16073.	3.7	43
62	Phosphate group-mediated carriers transfer and energy band over carbon nitride for efficient photocatalytic H2 production and removal of rhodamine B. Journal of Alloys and Compounds, 2022, 895, 162772.	2.8	15
63	Nitrogen defects/boron dopants engineered tubular carbon nitride for efficient tetracycline hydrochloride photodegradation and hydrogen evolution. Applied Catalysis B: Environmental, 2022, 303, 120932.	10.8	127
64	A nano heterostructure with step-accelerated system toward optimized photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 47, 1656-1656.	3.8	4
65	Varying heterojunction thickness within space charge region for photocatalytic water splitting. Cell Reports Physical Science, 2021, 2, 100652.	2.8	8
66	Hierarchically Porous Polymeric Carbon Nitride as a Volume Photocatalyst for Efficient H ₂ Generation under Strong Irradiation. Solar Rrl, 2022, 6, 2100823.	3.1	27
67	Carbon nitride-based Z-scheme photocatalysts for non-sacrificial overall water splitting. Materials Today Energy, 2022, 23, 100915.	2.5	12
68	Accumulation of localized charge on the surface of polymeric carbon nitride boosts the photocatalytic activity. Journal of Materials Science and Technology, 2022, 111, 9-16.	5.6	4
69	Heat treatment to prepare boron doped g-C3N4 nanodots/carbon-rich g-C3N4 nanosheets heterojunction with enhanced photocatalytic performance for water splitting hydrogen evolution. Journal of Alloys and Compounds, 2022, 898, 162846.	2.8	22
70	Electron acceptor design for 2D/2D iodinene/carbon nitride heterojunction boosting charge transfer and CO2 photoreduction. Chemical Engineering Journal, 2022, 433, 133594.	6.6	11
71	S vacancies act as a bridge to promote electron injection from Z-scheme heterojunction to nitrogen molecule for photocatalytic ammonia synthesis. Chemical Engineering Journal, 2022, 433, 133670.	6.6	24
72	Engineering Nitrogen Vacancy in Polymeric Carbon Nitride for Nitrate Electroreduction to Ammonia. ACS Applied Materials & Interfaces, 2021, 13, 54967-54973.	4.0	42

#	Article	IF	CITATIONS
73	Boosting photocatalytic hydrogen production by creating isotype heterojunctions and single-atom active sites in highly-crystallized carbon nitride. Science Bulletin, 2022, 67, 520-528.	4.3	29
74	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Heterojunctions. Chemistry of Materials, 2021, 33, 9012-9092.	3.2	88
75	Microwave-assisted synthesis of RuTe2/black TiO2 photocatalyst for enhanced diclofenac degradation: Performance, mechanistic investigation and intermediates analysis. Separation and Purification Technology, 2022, 283, 120214.	3.9	19
76	Interfacial Engineering of TiO ₂ /Ti ₃ C ₂ MXene/Carbon Nitride Hybrids Boosting Charge Transfer for Efficient Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2022, 12, .	10.2	80
77	Edgeâ€Siteâ€Rich Ordered Macroporous BiOCl Triggers CO Activation for Efficient CO ₂ Photoreduction. Small, 2022, 18, e2105228.	5.2	27
78	Active-center-enriched Ni0.85Se/g-C3N4 S-scheme heterojunction for efficient photocatalytic H2 generation. International Journal of Hydrogen Energy, 2022, 47, 4601-4613.	3.8	32
79	A broom-like tube-in-tube bundle O-doped graphitic carbon nitride nanoreactor that promotes photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 431, 133898.	6.6	30
80	Pd single-atom decorated CdS nanocatalyst for highly efficient overall water splitting under simulated solar light. Applied Catalysis B: Environmental, 2022, 304, 121000.	10.8	65
81	Recent advances in photo-assisted electrocatalysts for energy conversion. Journal of Materials Chemistry A, 2021, 9, 27193-27214.	5.2	19
82	Surface modeling of photocatalytic materials for water splitting. Physical Chemistry Chemical Physics, 2021, , .	1.3	4
83	Single-atom cobalt-hydroxyl modification of polymeric carbon nitride for highly enhanced photocatalytic water oxidation: ball milling increased single atom loading. Chemical Science, 2022, 13, 754-762.	3.7	20
84	Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2022, 431, 134101.	6.6	74
85	Enhanced light harvesting and charge separation of carbon and oxygen co-doped carbon nitride as excellent photocatalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 612, 367-376.	5.0	18
86	Understanding rich oxygen vacant hollow CeO2@MoSe2 heterojunction for accelerating photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2022, 611, 644-653.	5.0	27
87	High-crystalline polymeric carbon nitride flake composed porous nanotubes with significantly improved photocatalytic water splitting activity: The optimal balance between crystallinity and surface area. Chemical Engineering Journal, 2022, 432, 134388.	6.6	27
88	Ultrafast synthesis of near-zero-cost S-doped Ni(OH) ₂ on C ₃ N ₅ under ambient conditions with enhanced photocatalytic activity. RSC Advances, 2021, 11, 36166-36173.	1.7	2
89	Visible and infrared solar radiation upconversion for water splitting <i>via</i> a surface plasmon-passivated strategy. Journal of Materials Chemistry A, 2022, 10, 3771-3781.	5.2	6
90	Highly Efficient and Sustainable ZnO/CuO/g-C3N4 Photocatalyst for Wastewater Treatment under Visible Light through Heterojunction Development. Catalysts, 2022, 12, 151.	1.6	13

#	Article	IF	CITATIONS
91	Silver nanoparticles embedded 2D g-C ₃ N ₄ nanosheets toward excellent photocatalytic hydrogen evolution under visible light. Nanotechnology, 2022, 33, 175401.	1.3	8
92	Porous Nitrogen-Defected Carbon Nitride Derived from A Precursor Pretreatment Strategy for Efficient Photocatalytic Degradation and Hydrogen Evolution. Langmuir, 2022, 38, 828-837.	1.6	19
93	Internal Electric Field and Interfacial Bonding Engineered Stepâ€Scheme Junction for a Visibleâ€Lightâ€Involved Lithium–Oxygen Battery. Angewandte Chemie - International Edition, 2022, 61, e202116699.	7.2	51
94	Precisely Tailoring Nitrogen Defects in Carbon Nitride for Efficient Photocatalytic Overall Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 3970-3979.	4.0	44
95	Engineering of SnO2/TiO2 heterojunction compact interface with efficient charge transfer pathway for photocatalytic hydrogen evolution. Chinese Chemical Letters, 2023, 34, 107125.	4.8	4
96	Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chemical Reviews, 2022, 122, 4204-4256.	23.0	180
97	UiO-66-NH ₂ Octahedral Nanocrystals Decorated with ZnFe ₂ O ₄ Nanoparticles for Photocatalytic Alcohol Oxidation. ACS Applied Nano Materials, 2022, 5, 2231-2240.	2.4	17
98	Design Principles and Strategies of Photocatalytic H ₂ O ₂ Production from O ₂ Reduction. ACS ES&T Engineering, 2022, 2, 1068-1079.	3.7	51
99	Synergistic effect of Ru-N4 sites and Cu-N3 sites in carbon nitride for highly selective photocatalytic reduction of CO2 to methane. Applied Catalysis B: Environmental, 2022, 307, 121154.	10.8	57
100	A novel CoSeO3 photocatalyst assisting g-C3N4 in enhancing hydrogen evolution through Z scheme mode. International Journal of Hydrogen Energy, 2022, 47, 5999-6010.	3.8	12
101	Halogenâ€Ðoped Carbon Dots on Amorphous Cobalt Phosphide as Robust Electrocatalysts for Overall Water Splitting. Advanced Energy Materials, 2022, 12, .	10.2	108
102	Internal Electric Field and Interfacial Bonding Engineered Stepâ€Scheme Junction for a Visibleâ€Lightâ€Involved Lithium–Oxygen Battery. Angewandte Chemie, 2022, 134, .	1.6	5
103	Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H ₂ O ₂ evolution. Energy and Environmental Science, 2022, 15, 830-842.	15.6	308
104	Enriched surface oxygen vacancies of BiOCl boosting efficient charge separation, whole visible-light absorption, and photo to thermal conversion. Applied Surface Science, 2022, 585, 152656.	3.1	26
105	Inâ€situ synthesis of the thinnest In2Se3/In2S3/In2Se3 sandwichâ€like heterojunction for photoelectrocatalytic water splitting. Chemistry - A European Journal, 2022, , .	1.7	2
106	Emerging frontiers of Z-scheme photocatalytic systems. Trends in Chemistry, 2022, 4, 111-127.	4.4	100
107	Unveiling the role of surface heterostructure in Bi0.5Y0.5VO4 solid solution for photocatalytic overall water splitting. Journal of Catalysis, 2022, 406, 193-205.	3.1	8
108	Hole utilization in solar hydrogen production. Nature Reviews Chemistry, 2022, 6, 243-258.	13.8	59

#	Article	IF	CITATIONS
109	Modulation of BiOBr-based photocatalysts for energy and environmental application: A critical review. Journal of Environmental Chemical Engineering, 2022, 10, 107226.	3.3	16
110	Enhancing the heterojunction component-interaction by in-situ hydrothermal growth toward photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 614, 367-377.	5.0	9
111	Construction of Li/K dopants and cyano defects in graphitic carbon nitride for highly efficient peroxymonosulfate activation towards organic contaminants degradation. Chemosphere, 2022, 294, 133700.	4.2	13
112	Synthesis of NiS2/polyvinylpyrrolidone/(CuIn)0·2Zn1·6S2 type II heterojunction photocatalysts for high-efficiency photocatalytic hydrogen production under visible light. International Journal of Hydrogen Energy, 2022, 47, 9934-9945.	3.8	10
113	C ₇ N ₆ /Sc ₂ CCl ₂ Weak van der Waals Heterostructure: A Promising Visible-Light-Driven <i>Z</i> -Scheme Water Splitting Photocatalyst with Interface Ultrafast Carrier Recombination. Journal of Physical Chemistry Letters, 2022, 13, 1473-1479.	2.1	16
114	In-situ interstitial zinc doping-mediated efficient charge separation for ZnIn2S4 nanosheets visible-light photocatalysts towards optimized overall water splitting. Chemical Engineering Journal, 2022, 435, 135074.	6.6	30
115	Tio2-X Mesoporous Nanospheres/Bioi Nanosheets S-Scheme Heterojunction for High Efficiency, Stable and Unbiased Photocatalytic Hydrogen Production. SSRN Electronic Journal, 0, , .	0.4	0
116	Green transformation of CO ₂ to ethanol using water and sunlight by the combined effect of naturally abundant red phosphorus and Bi ₂ MoO ₆ . Energy and Environmental Science, 2022, 15, 1967-1976.	15.6	55
117	Allochroic Platinum/Carbon Nitride with Photoactivated Ohmic Contact for Efficient Visible-Light Photocatalytic Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
118	<i>In situ</i> growth of crystalline carbon nitride on LaOCl for photocatalytic overall water splitting. Journal of Materials Chemistry A, 2022, 10, 8252-8257.	5.2	23
119	Facet-dependent CdS/Bi ₄ TaO ₈ Cl Z-scheme heterojunction for enhanced photocatalytic tetracycline hydrochloride degradation and the carrier separation mechanism study <i>via</i> single-particle spectroscopy. Inorganic Chemistry Frontiers, 2022, 9, 2252-2263.	3.0	20
120	Elemental phosphorus for recent sustainable processes: rules and strategies in preparation and applications. Green Chemistry, 2022, 24, 3475-3501.	4.6	14
121	åæ˜³èƒ½çƒåŒ—å¦å¾²çޝå^¶æ°¢ç"ç©¶èչ›å±•. Chinese Science Bulletin, 2022, , .	0.4	3
122	Recent development in electronic structure tuning of graphitic carbon nitride for highly efficient photocatalysis. Journal of Semiconductors, 2022, 43, 021701.	2.0	24
123	Recent advances of hydrogen production through particulate semiconductor photocatalytic overall water splitting. Frontiers in Energy, 2022, 16, 49-63.	1.2	16
124	Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives. ACS Energy Letters, 2022, 7, 1043-1065.	8.8	247
125	Favorable Energy Band Alignment of TiO ₂ Anatase/Rutile Heterophase Homojunctions Yields Photocatalytic Hydrogen Evolution with Quantum Efficiency Exceeding 45.6%. Advanced Energy Materials, 2022, 12, .	10.2	106
126	Selectively Lighting Up Singlet Oxygen via Aggregation-Induced Electrochemiluminescence Energy Transfer. Analytical Chemistry, 2022, 94, 3718-3726.	3.2	11

#	Article	IF	CITATIONS
127	Photocatalytic Waterâ€6plitting by Organic Conjugated Polymers: Opportunities and Challenges. Chemical Record, 2022, 22, e202100336.	2.9	24
128	H ₂ S Involved Photocatalytic System: A Novel Syngas Production Strategy by Boosting the Photoreduction of CO ₂ While Recovering Hydrogen from the Environmental Toxicant. Advanced Functional Materials, 2022, 32, .	7.8	12
129	Shining light on <scp>Znln₂S₄</scp> photocatalysts: Promotional effects of surface and heterostructure engineering toward artificial photosynthesis. EcoMat, 2022, 4, .	6.8	45
130	Spatial Separation of Cocatalysts on Zâ€Scheme Organic/Inorganic Heterostructure Hollow Spheres for Enhanced Photocatalytic H ₂ Evolution and Inâ€Depth Analysis of the Chargeâ€Transfer Mechanism. Advanced Materials, 2023, 35, e2200172.	11.1	104
131	Recent Progress on Semiconductor Heterojunctionâ€Based Photoanodes for Photoelectrochemical Water Splitting. Small Science, 2022, 2, .	5.8	60
132	Efficient Photocatalytic Conversion of Methane into Ethanol over P-Doped g-C ₃ N ₄ under Ambient Conditions. Energy & Fuels, 2022, 36, 3929-3937.	2.5	12
133	Isotype Heterojunction-Boosted CO2 Photoreduction to CO. Nano-Micro Letters, 2022, 14, 74.	14.4	56
134	Enhanced Photocatalytic Production of H ₂ O ₂ through Regulation of Spatial Charge Transfer and Light Absorption over a MnIn ₂ S ₄ /WO ₃ (Yb,) Tj ETQq1	ີ 1.2 .7843	1240rgBT /0
135	Effect of Excess B in Ni ₂ P-Coated Boron Nitride on the Photocatalytic Hydrogen Evolution from Water Splitting. ACS Applied Energy Materials, 2022, 5, 3578-3586.	2.5	17
136	S-Scheme α-Fe ₂ O ₃ /g-C ₃ N ₄ Nanocomposites as Heterojunction Photocatalysts for Antibiotic Degradation. ACS Applied Nano Materials, 2022, 5, 4506-4514.	2.4	59
137	Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: a review. Environmental Chemistry Letters, 2022, 20, 3505-3523.	8.3	22
138	Surface Modification of 2D Photocatalysts for Solar Energy Conversion. Advanced Materials, 2022, 34, e2200180.	11.1	184
139	High-crystalline/amorphous g-C3N4 S-scheme homojunction for boosted photocatalytic H2 production in water/simulated seawater: Interfacial charge transfer and mechanism insight. Applied Surface Science, 2022, 593, 153281.	3.1	106
140	In-Plane Charge Transport Dominates the Overall Charge Separation and Photocatalytic Activity in Crystalline Carbon Nitride. ACS Catalysis, 2022, 12, 4648-4658.	5.5	69
141	Ultrafine MoS ₂ /Sb ₂ S ₃ Nanorod Typeâ€II Heterojunction for Hydrogen Production under Simulated Sunlight. Advanced Materials Interfaces, 2022, 9, .	1.9	8
142	Surface modification of phosphate ion to promote photocatalytic recovery of precious metals. Chinese Chemical Letters, 2023, 34, 107394.	4.8	7
143	Few-layer carbon nitride photocatalysts for solar fuels and chemicals: Current status and prospects. Chinese Journal of Catalysis, 2022, 43, 1216-1229.	6.9	7
144	Multidimensional In2O3/In2S3 heterojunction with lattice distortion for CO2 photoconversion. Chinese Journal of Catalysis, 2022, 43, 1286-1294.	6.9	42

#	Article	IF	CITATIONS
145	Preparation of flexible photo-responsive film based on novel photo-liquefiable azobenzene derivative for solar thermal fuel application. Dyes and Pigments, 2022, 202, 110277.	2.0	12
146	Carbon and phosphorus co-doped carbon nitride hollow tube for improved photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 616, 152-162.	5.0	20
147	Morphology-dependent photocatalysis of graphitic carbon nitride for sustainable remediation of aqueous pollutants: A mini review. Journal of Environmental Chemical Engineering, 2022, 10, 107438.	3.3	13
148	Constructing Z-scheme carbon-rich carbon nitride/TiO2 photocatalyst for improved photocatalytic activity. Applied Surface Science Advances, 2022, 9, 100238.	2.9	5
149	Carbon nitride-based Z-scheme heterojunctions for solar-driven advanced oxidation processes. Journal of Hazardous Materials, 2022, 434, 128866.	6.5	36
150	Cookies-like Ag2S/Bi4NbO8Cl heterostructures for high efficient and stable photocatalytic degradation of refractory antibiotics utilizing full-spectrum solar energy. Separation and Purification Technology, 2022, 292, 120969.	3.9	12
151	Water-assisted formation of amine-bridged carbon nitride: A structural insight into the photocatalytic performance for H2 evolution under visible light. Applied Catalysis B: Environmental, 2022, 310, 121313.	10.8	37
152	Au surface plasmon resonance promoted charge transfer in Z-scheme system enables exceptional photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2022, 310, 121322.	10.8	37
153	EDTA-dominated hollow tube-like porous graphitic carbon nitride towards enhanced photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 619, 289-297.	5.0	14
154	Tunable Z-scheme and Type II heterojunction of CuxO nanoparticles on carbon nitride nanotubes for enhanced visible-light ammonia synthesis. Chemical Engineering Journal, 2022, 442, 136156.	6.6	29
155	Photocatalytic O2 activation and reactive oxygen species evolution by surface B-N bond for organic pollutants degradation. Applied Catalysis B: Environmental, 2022, 310, 121329.	10.8	90
156	Construction of oxygen vacancy on Bi12O17Cl2 nanosheets by heat-treatment in H2O vapor for photocatalytic NO oxidation. Journal of Materials Science and Technology, 2022, 123, 234-242.	5.6	12
157	"1+1>2― Highly efficient removal of organic pollutants by composite nanofibrous membrane based on the synergistic effect of adsorption and photocatalysis. Journal of Materials Science and Technology, 2022, 124, 76-85.	5.6	16
158	Noble-Metal-Free Heterojunction Photocatalyst for Selective CO ₂ Reduction to Methane upon Induced Strain Relaxation. ACS Catalysis, 2022, 12, 687-697.	5.5	56
159	Realizing Toluene Deep Mineralization by Coupling Nonthermal Plasma and Nitrogen-Enriched Hollow Hybrid Carbon. ACS Applied Materials & Interfaces, 2022, 14, 990-1001.	4.0	10
160	Interfacial defect engineering and Photocatalysis Properties of hBN/MX ₂ (M = Mo, W, and) Tj ETQq1	10,7843	14 ₀ rgBT /Ov
161	Boosting Photocatalytic Hydrogen Production via Interfacial Engineering on 2D Ultrathin Z‧cheme ZnIn ₂ S ₄ /g ₃ N ₄ Heterojunction. Advanced Functional Materials, 2022, 32, .	7.8	147
162	Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chemical Society Reviews, 2022, 51, 3561-3608.	18.7	273

		CITATION REPORT		
#	Article	IF	Сітатіс	SNC
163	Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution. Nature Communications, 2022, 13, 2067.	5.8	99	
164	Metalâ€Free Boron/Phosphorus Coâ€Doped Nanoporous Carbon for Highly Efficient Benzyl Alcohol Oxidation. Advanced Science, 2022, 9, e2200518.	5.6	16	
165	Electron Donor–Acceptor Interface of TPPS/PDI Boosting Charge Transfer for Efficient Photocatalytic Hydrogen Evolution. Advanced Science, 2022, 9, e2201134.	5.6	62	
166	Advances and Challenges in Photoelectrochemical Redox Batteries for Solar Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, .	10.2	2 27	
167	A suspension-mimicking hydrogel-based n-type polymer photocathode for solar-driven water splittin Cell Reports Physical Science, 2022, 3, 100863.	g. 2.8	2	
168	Ternary red phosphorus/CoP2/SiO2 microsphere boosts visible-light-driven photocatalytic hydrogen evolution from pure water splitting. Journal of Materials Science and Technology, 2022, 125, 59-66.		31	
169	Efficient degradation of organic pollutants by enhanced interfacial internal electric field induced via various crystallinity carbon nitride homojunction. Applied Catalysis B: Environmental, 2022, 312, 121388.	10.8	8 45	
170	Backâ€Gated van der Waals Heterojunction Manipulates Local Charges toward Fineâ€Tuning Hydro Evolution. Angewandte Chemie - International Edition, 2022, 61, .	gen 7.2	20	
171	Dual-metal Ni and Fe phthalocyanine/boron-doped g-C ₃ N ₄ <i>Z</i> schem 2D-heterojunctions for visible-light selective aerobic alcohol oxidation. Journal of Materials Chemistry A, 2022, 10, 12062-12069.	ne 5.2	8	
172	Strategies to activate inert nitrogen molecules for efficient ammonia electrosynthesis: current status, challenges, and perspectives. Energy and Environmental Science, 2022, 15, 2776-2805.	15.6	5 48	
173	Achieving Full-Spectrum-Driven Simultaneous Hydrogen Evolution and Organic Pollutants Degradation Through the Sensitization of Ag3po4 by Double Perovskite Quantum Dots. SSRN Electronic Journal, 0, , .	0.4	0	
174	Photocatalytic Conversion of Plastic Waste: From Photodegradation to Photosynthesis. Advanced Energy Materials, 2022, 12, .	10.2	2 64	
175	Backâ€Gated van der Waals Heterojunction Manipulates Local Charges toward Fineâ€Tuning Hydro Evolution. Angewandte Chemie, 2022, 134, .	gen 1.6	8	
176	Atomically Dispersed Janus Nickel Sites on Red Phosphorus for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43	
177	What Role Does the Incident Light Intensity Play in Photocatalytic Conversion of CO ₂ : Attenuation or Intensification?. ChemPhysChem, 2022, 23, e202100851.	1.0	4	
178	Hierarchical Hollow Zinc Oxide Nanocomposites Derived from Morphologyâ€Tunable Coordination Polymers for Enhanced Solar Hydrogen Production. Angewandte Chemie, 2022, 134, .	1.6	4	
179	Solar energy-driven upcycling of plastic waste on direct Z-scheme heterostructure of V-substituted phosphomolybdic acid/g-C3N4 nanosheets. Applied Catalysis B: Environmental, 2022, 315, 121496	. 10.8	8 45	
180	Atomically Dispersed Janus Nickel Sites on Red Phosphorus for Photocatalytic Overall Water Splitting. Angewandte Chemie, 0, , .	1.6	2	

#	Article	IF	CITATIONS
181	Functional Carbon Nitride Materials in Photoâ€Fenton‣ike Catalysis for Environmental Remediation. Advanced Functional Materials, 2022, 32, .	7.8	93
182	Highly soluble Ni-salen molecules enable boosted photocatalytic hydrogen evolution of polymeric carbon nitride/CdS heterojunction. Journal of Alloys and Compounds, 2022, 915, 165351.	2.8	6
183	Hierarchical Hollow Zinc Oxide Nanocomposites Derived from Morphologyâ€Tunable Coordination Polymers for Enhanced Solar Hydrogen Production. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
184	A Unique Fe–N ₄ Coordination System Enabling Transformation of Oxygen into Superoxide for Photocatalytic CH Activation with High Efficiency and Selectivity. Advanced Materials, 2022, 34, e2200612.	11.1	43
185	SnS Nanoparticles and MoS ₂ Nanosheets Co-Decorated TiO ₂ Nanorod Film with Remarkable Photocatalytic and Photoelectrochemical Properties. Journal of the Electrochemical Society, 2022, 169, 056513.	1.3	0
186	Facile construction of Fe3+/Fe2+ mediated charge transfer pathway in MIL-101 for effective tetracycline degradation. Journal of Cleaner Production, 2022, 359, 131808.	4.6	17
187	Sunlight assisted photocatalytic degradation using the RSM-CCD optimized sustainable photocatalyst synthesized from galvanic wastewater. Journal of Molecular Structure, 2022, 1263, 133194.	1.8	6
188	Phenyl-incorporated carbon nitride photocatalyst with extended visible-light-absorption for enhanced hydrogen production from water splitting. Journal of Colloid and Interface Science, 2022, 622, 494-502.	5.0	10
189	Shear-Induced Aggregation and Distribution in Photocatalysis Suspension System for Hydrogen Production. Industrial & Engineering Chemistry Research, 2022, 61, 6722-6732.	1.8	2
190	Synergistic modulation on atomic-level 2D/2D Ti3C2/Svac-ZnIn2S4 heterojunction for photocatalytic H2 production. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129229.	2.3	9
191	Facilely fabrication of the direct Z-scheme heterojunction of NH2-UiO-66 and CeCO3OH for photocatalytic reduction of CO2 to CO and CH4. Applied Surface Science, 2022, 597, 153725.	3.1	13
192	Ultrathin porous carbon nitride nanosheets with well-tuned band structures via carbon vacancies and oxygen doping for significantly boosting H2 production. Applied Catalysis B: Environmental, 2022, 314, 121521.	10.8	70
193	Photocatalysis coupling hydrogen peroxide synthesis and in-situ radical transform for tetracycline degradation. Chemical Engineering Journal, 2022, 446, 137009.	6.6	12
194	Highly efficient UV-visible-infrared light-driven photothermocatalytic steam biomass reforming to H ₂ on Ni nanoparticles loaded on mesoporous silica. Energy and Environmental Science, 2022, 15, 3041-3050.	15.6	19
195	TiO2-X mesoporous nanospheres/BiOI nanosheets S-scheme heterostructure for high efficiency, stable and unbiased photocatalytic hydrogen production. Chemical Engineering Journal, 2022, 446, 137138.	6.6	17
196	Heteroatom-induced domain electrostatic potential difference in ZnIn ₂ S ₄ nanosheets for efficient charge separation and boosted photocatalytic overall water splitting. Materials Chemistry Frontiers, 2022, 6, 1795-1802.	3.2	8
197	Design of Few-Layer Carbon Nitride/Bifeo3 Composites for Efficient Organic Pollutant Photodegradation. SSRN Electronic Journal, 0, , .	0.4	0
198	Insight of SrCl2 as an Appropriate Flux Medium in Synthesizing Al-Doped SrTiO3 Photocatalyst for Overall Water Splitting. Catalysis Letters, 2023, 153, 1083-1088.	1.4	5

#	Article	IF	CITATIONS
199	Is g-C3N4 more suitable for photocatalytic reduction or oxidation in environmental applications?. , 2022, 1, 121-125.		7
200	Porous and Few-Layer Carbon Nitride Nanosheets via Surface Steam Etching for Enhanced Photodegradation Activity. ACS Applied Nano Materials, 2022, 5, 7798-7810.	2.4	9
201	Extraordinary Promotion of Visible-Light Hydrogen Evolution for Graphitic Carbon Nitride by Introduction of Accumulated Electron Sites (BN ₂). ACS Applied Energy Materials, 2022, 5, 7479-7489.	2.5	2
202	Selective Photocatalytic CO ₂ Reduction to CH ₄ on Tri- <i>s</i> -triazine-Based Carbon Nitride via Defects and Crystal Regulation: Synergistic Effect of Thermodynamics and Kinetics. ACS Applied Materials & Interfaces, 2022, 14, 25417-25426.	4.0	11
203	Photoelectrochemical Clothianidin Detection Based on a WO ₃ /CdS Heterostructure Coated with a Molecularly Imprinted Thin Film. Analysis & Sensing, 2022, 2, .	1.1	2
204	Photodeposition of NiS Cocatalysts on gâ€C ₃ N ₄ with Edge Grafting of 4â€(1Hâ€Imidazolâ€2â€yl) Benzoic Acid for Highly Elevated Photocatalytic H ₂ Evolution. Advanced Sustainable Systems, 2023, 7, .	2.7	23
205	Singleâ€Metal Atoms and Ultra‣mall Clusters Manipulating Charge Carrier Migration in Polymeric Perylene Diimide for Efficient Photocatalytic Oxygen Production. Advanced Energy Materials, 2022, 12,	10.2	40
206	Host (CdS)-guest (single-atomic Au) electron transfer mechanism for blue-LED-induced atom transfer radical addition of alkenes. Journal of Catalysis, 2022, 411, 226-234.	3.1	6
207	Re Modulation of Metallic Ultrathin 2M-WS ₂ for Highly Efficient Hydrogen Evolution in Both Acidic and Alkaline Media. ACS Applied Energy Materials, 2022, 5, 7674-7680.	2.5	0
208	Piezoâ€Electrocatalysis for CO ₂ Reduction Driven by Vibration. Advanced Energy Materials, 2022, 12, .	10.2	55
209	Solvent-free and electron transfer-induced phosphorus and nitrogen-containing heterostructures for multifunctional epoxy resin. Composites Part B: Engineering, 2022, 240, 109999.	5.9	21
210	Vacancy defects in monolayer boron carbon nitride for enhanced adsorption of paraben compounds from aqueous stream: A quantum chemical study. Surface Science, 2022, 723, 122131.	0.8	12
211	Enhancement of visible-light photocatalytic activity of ZnO/ZnS/g-C3N4 by decreasing the bandgap and reducing the crystallite size via facile one-step fabrication. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 431, 114066.	2.0	5
212	Led White - Light - Drive N ÂPhotocatalysis for Effective Lignocellulose Reforming to Co- Produce Hydrogen and Value-Added Chemicals Via Zn 2 /O@Ip- G -Cn. SSRN Electronic Journal, 0, , .	0.4	Ο
213	Stitching Electron Localized Heptazine Units with "Carbon Patches―to Regulate Exciton Dissociation Behavior of Carbon Nitride for Photocatalytic Elimination of Petroleum Hydrocarbons. SSRN Electronic Journal, 0, , .	0.4	0
214	Improved Photocatalytic Activities of g-C ₃ N ₄ Nanosheets by B Doping and Ru-Oxo Cluster Modification for CO ₂ Conversion. Journal of Physical Chemistry C, 2022, 126, 9704-9712.	1.5	6
215	Synergistic surface oxygen defect and bulk Ti3+ defect engineering on SrTiO3 for enhancing photocatalytic overall water splitting. Journal of Colloid and Interface Science, 2022, 626, 662-673.	5.0	23
216	Enhanced photocatalytic performance and impact of annealing temperature on TiO2/Gd2O3:Fe composite. Journal of Materials Science: Materials in Electronics, 2022, 33, 15448-15459.	1.1	5

#	Article	IF	CITATIONS
217	Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering. Chemical Engineering Journal, 2022, 449, 137757.	6.6	92
218	Suppressing the Excitonic Effect in Covalent Organic Frameworks for Metal-Free Hydrogen Generation. Jacs Au, 2022, 2, 1848-1856.	3.6	9
219	Laser direct writing derived robust carbon nitride films with efficient photonâ€ŧoâ€electron conversion for multifunctional photoelectrical applications. , 2022, 4, 1228-1241.		6
220	Caged-Cation-Induced Lattice Distortion in Bronze TiO ₂ for Cohering Nanoparticulate Hydrogen Evolution Electrocatalysts. ACS Nano, 2022, 16, 9920-9928.	7.3	17
221	(Oxy)nitride heterojunction-strengthened separation of photogenerated carriers in g-C3N4 towards enhanced photocatalytic H2 evolution. Applied Catalysis A: General, 2022, 643, 118746.	2.2	13
222	Synergizing nÂ→ÂÏ€* electronic transition and plasmonic hot electron injection enhances carrier generation of S-doped carbon nitride decorated with Au nanoparticles for Cr(VI) degradation. Separation and Purification Technology, 2022, 297, 121515.	3.9	8
223	Enhanced solar-driven hydrogen evolution over ultrathin g-C3N4/ReSe2 heterojunction-like nanosheets with surface selenium vacancies. Journal of Alloys and Compounds, 2022, 918, 165786.	2.8	4
224	Two-dimensional CdO/PtSSe heterojunctions used for Z-scheme photocatalytic water-splitting. Applied Surface Science, 2022, 599, 153960.	3.1	23
225	Narrow band-gapped perovskite oxysulfide for CO2 photoreduction towards ethane. Applied Catalysis B: Environmental, 2022, 316, 121615.	10.8	15
226	Potassium-Doped Carbon Nitride: Highly Efficient Photoredox Catalyst for Selective Oxygen Reduction and Arylboronic Acid Hydroxylation. SSRN Electronic Journal, 0, , .	0.4	0
227	Fast Charge Separation and Transfer Strategy in Polymeric Carbon Nitride for Efficient Photocatalytic H2 Evolution: Coupling Surface Schottky Junctions and Interlayer Charge Transfer Channels. SSRN Electronic Journal, 0, , .	0.4	0
228	Molten Salt-Lithium Process Induced Controllable Surface Defects in Titanium Oxide for Efficient Photocatalysis. SSRN Electronic Journal, 0, , .	0.4	0
229	Visible light <i>in situ</i> driven electron accumulation at the Ti–Mn–O ₃ sites of TiO ₂ hollow spheres for photocatalytic hydrogen production. New Journal of Chemistry, 2022, 46, 15443-15450.	1.4	1
230	Achieving Simultaneous Hydrogen Evolution and Organic Pollutants Degradation Through the Modification of Ag3po4 Using Cs2agbibr6 Quantum Dots and Graphene Hydrogel. SSRN Electronic Journal, 0, , .	0.4	0
231	A copper(<scp>ii</scp>) coordination compound under water-oxidation reaction at neutral conditions: decomposition on the counter electrode. Dalton Transactions, 2022, 51, 12170-12180.	1.6	6
232	CuS nanosheet-induced local hot spots on g-C3N4 boost photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2023, 48, 6346-6357.	3.8	6
233	Monolayer Molecular Functionalization Enabled by Acid–Base Interaction for High-Performance Photochemical CO ₂ Reduction. ACS Energy Letters, 2022, 7, 2265-2272.	8.8	15
234	Selectively constructing sandwich-like heterostructure of CdS/PbTiO3/TiO2 to improve visible-light photocatalytic H2 evolution. Science China Materials, 2022, 65, 3428-3434.	3.5	8

#	Article	IF	CITATIONS
235	Development of CuO/CuS/MnO2 ternary nanocomposite for visible light-inducedÂphotocatalytic degradation of methylene blue. Nanotechnology for Environmental Engineering, 2023, 8, 63-73.	2.0	18
236	Monitoring Cr(VI) photoreduction at different depths by operando low-field NMR relaxometry. Magnetic Resonance Letters, 2022, 2, 170-176.	0.7	3
237	From Volatile Ethanolamine to Highly N, B Dual Doped Carbon Superstructures for Advanced Zn-Ion Hybrid Capacitors: Unveiling the Respective Effects Heteroatom Functionalities. Journal of the Electrochemical Society, 2022, 169, 070511.	1.3	2
238	Elucidating Orbital Delocalization Effects on Boosting Electrochemiluminescence Efficiency of Carbon Nitrides. Advanced Optical Materials, 2022, 10, .	3.6	24
239	Metal-free boron doped g-C3N5 catalyst: Efficient doping regulatory strategy for photocatalytic water splitting. Applied Surface Science, 2022, 601, 154186.	3.1	9
240	Phosphorus Tailors the <i>d</i> â€Band Center of Copper Atomic Sites for Efficient CO ₂ Photoreduction under Visible‣ight Irradiation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	73
241	Phosphorus Tailors the dâ€Band Center of Copper Atomic Sites for Efficient CO2 Photoreduction under Visibleâ€Light Irradiation. Angewandte Chemie, 0, , .	1.6	0
242	Coating Hollow Carbon Nitride Nanospheres with Porous WO ₃ Shells to Construct Zâ€Scheme Heterostructures for Efficient Photocatalytic Water Oxidation. ChemPhotoChem, 2022, 6, .	1.5	9
243	Electron enriched ternary NiMoB electrocatalyst for improved overall water splitting: Better performance as compared to the Pt/C RuO2 at high current density. Applied Materials Today, 2022, 29, 101579.	2.3	7
244	Constructing Interfacial Boronâ€Nitrogen Moieties in Turbostratic Carbon for Electrochemical Hydrogen Peroxide Production. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
245	Homojunction photocatalysts for water splitting. Nano Research, 2022, 15, 10171-10184.	5.8	34
246	Defect-rich ultrathin poly-heptazine-imide-framework nanosheets with alkali-ion doping for photocatalytic solar hydrogen and selective benzylamine oxidation. Nano Research, 2022, 15, 8760-8770.	5.8	7
247	Three Coordinate Nitrogen (N3c) Vacancies from In-Situ Hydrogen Bond Breaking Over Polymeric Carbon Nitride for Efficient Photocatalysis. SSRN Electronic Journal, 0, , .	0.4	0
248	Design of Few-Layer Carbon Nitride/Bifeo3 Composites for Efficient Organic Pollutant Photodegradation. SSRN Electronic Journal, 0, , .	0.4	0
249	Noble-Metal-Free Chalcogenide Nanotwins for Efficient and Stable Photocatalytic Pure Water Splitting by Surface Phosphorization and Cocatalyst Modification. SSRN Electronic Journal, 0, , .	0.4	0
250	Carbon nitride photocatalyst with internal electric field induced photogenerated carriers spatial enrichment for enhanced photocatalytic water splitting. Materials Today, 2022, 58, 100-109.	8.3	24
251	Direct Z-Scheme Photocatalytic System: Insights into the Formative Factors of Photogenerated Carriers Transfer Channel from Ultrafast Dynamics. ACS Catalysis, 2022, 12, 9570-9578.	5.5	32
252	Improved Carrier Lifetime in BiVO ₄ by Spin Protection. Nano Letters, 2022, 22, 6334-6341.	4.5	7

#	Article	IF	Citations
253	A candy-like photocatalyst by wrapping Co, N-co-doped hollow carbon sphere with ultrathin mesoporous carbon nitride for boosted photocatalytic hydrogen evolution. Chinese Chemical Letters, 2023, 34, 107749.	4.8	3
254	Dynamic construction of self-assembled supramolecular H12SubPcB-OPhCOOH/Ag3PO4 S-scheme arrays for visible photocatalytic oxidation of antibiotics. Applied Catalysis B: Environmental, 2022, 318, 121882.	10.8	22
255	Spatial Regulation of Acceptor Units in Olefin‣inked COFs toward Highly Efficient Photocatalytic H ₂ Evolution. Advanced Science, 2022, 9, .	5.6	37
256	Asymmetric Coordination of Singleâ€Atom Co Sites Achieves Efficient Dehydrogenation Catalysis. Advanced Functional Materials, 2022, 32, .	7.8	36
257	NiPS3 ultrathin nanosheets as versatile platform advancing highly active photocatalytic H2 production. Nature Communications, 2022, 13, .	5.8	72
258	Extended Conjugation Tuning Carbon Nitride for Nonâ€sacrificial H ₂ O ₂ Photosynthesis and Hypoxic Tumor Therapy**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	47
259	Photoelectron Storages in Functionalized Carbon Nitrides for Colorimetric Sensing of Oxygen. ACS Sensors, 2022, 7, 2328-2337.	4.0	11
260	Pointâ€ŧoâ€face contact heterojunctions: Interfacial design of 0D nanomaterials on 2D g ₃ N ₄ towards photocatalytic energy applications. , 2022, 4, 665-730.		40
261	Anchoring Single Nickel Atoms on Carbon-vacant Carbon Nitride Nanosheets for Efficient Photocatalytic Hydrogen Evolution. Chemical Research in Chinese Universities, 2022, 38, 1243-1250.	1.3	14
262	Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. Trends in Chemistry, 2022, 4, 886-906.	4.4	63
263	Constructing Interfacial Boronâ€Nitrogen Moieties in Turbostratic Carbon for Electrochemical Hydrogen Peroxide Production. Angewandte Chemie, 2022, 134, .	1.6	6
264	A n-Si/CoOx/Ni:CoOOH photoanode producing 600 mV photovoltage for efficient photoelectrochemical water splitting. Science China Materials, 2022, 65, 3442-3451.	3.5	5
265	Carrier Dynamics and Surface Reaction Boosted by Polymer-based Single-atom Photocatalysts. Chemical Research in Chinese Universities, 2022, 38, 1207-1218.	1.3	7
266	Photocatalytic water splitting on BiVO4: Balanced charge-carrier consumption and selective redox reaction. Nano Research, 2023, 16, 4568-4573.	5.8	9
267	Ferroelectric polarization enabled spatially selective adsorption of redox mediators to promote Z-scheme photocatalytic overall water splitting. Joule, 2022, 6, 1876-1886.	11.7	23
268	Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Advanced Composites and Hybrid Materials, 2022, 5, 2601-2610.	9.9	95
269	Advancement of renewable energy technologies via artificial and microalgae photosynthesis. Bioresource Technology, 2022, 363, 127830.	4.8	35
270	Onset Potential Shift of Water Oxidation in the Metastable Phase Transformation Process of β-Fe ₂ O ₃ . Energy & Fuels, 2022, 36, 11567-11575.	2.5	5

#	Article	IF	CITATIONS
271	Extended Conjugation Refining Carbon Nitride for Nonâ€sacrificial H2O2 Photosynthesis and Hypoxic Tumor Therapy. Angewandte Chemie, 0, , .	1.6	2
272	W–N Bonds Precisely Boost Z-Scheme Interfacial Charge Transfer in g-C ₃ N ₄ /WO ₃ Heterojunctions for Enhanced Photocatalytic H ₂ Evolution. ACS Catalysis, 2022, 12, 9994-10003.	5.5	117
273	Eutectic salt induced self-activation technique for porous graphene-like carbon nanosheets as the high-capacity cathodes for Zn-ion hybrid supercapacitors. Journal of Electroanalytical Chemistry, 2022, 921, 116673.	1.9	4
274	Z-scheme systems: From fundamental principles to characterization, synthesis, and photocatalytic fuel-conversion applications. Physics Reports, 2022, 983, 1-41.	10.3	69
275	Nanoarchitectonics of core-shelled hollow CuPc/Zn0.5Cd0.5S photocatalyst for stable hydrogen evolution under visible-light irradiation. Journal of Alloys and Compounds, 2022, 926, 166890.	2.8	10
276	Constructing built-in electric field within CsPbBr3/sulfur doped graphitic carbon nitride ultra-thin nanosheet step-scheme heterojunction for carbon dioxide photoreduction. Journal of Colloid and Interface Science, 2022, 628, 966-974.	5.0	26
277	An electron-hole separation mechanism caused by the pseudo-gap formed at the interfacial Co-N bond between cobalt porphyrin metal organic framework and boron-doped g-C3N4 for boosting photocatalytic H2 production. Journal of Colloid and Interface Science, 2022, 628, 477-487.	5.0	46
278	Defect engineering in polymeric carbon nitride with accordion structure for efficient photocatalytic CO2 reduction and H2 production. Chemical Engineering Journal, 2022, 450, 138425.	6.6	35
279	A Crystalline Carbon Nitride Based Nearâ€Infrared Active Photocatalyst. Advanced Functional Materials, 2022, 32, .	7.8	67
280	Pt Atoms/Clusters on Niâ€phytateâ€sensitized Carbon Nitride for Enhanced NIRâ€lightâ€driven Overall Water Splitting beyond 800â€nm. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
281	Potassium-doped carbon nitride: Highly efficient photoredox catalyst for selective oxygen reduction and arylboronic acid hydroxylation. Journal of Catalysis, 2022, 414, 64-75.	3.1	9
282	Concentrating photoelectrons on sulfur sites of ZnxCd1–xS to active H–OH bond of absorbed water boosts photocatalytic hydrogen generation. Surfaces and Interfaces, 2022, 34, 102312.	1.5	11
283	Design of few-layer carbon nitride/BiFeO3 composites for efficient organic pollutant photodegradation. Environmental Research, 2022, 215, 114190.	3.7	5
284	Achieving simultaneous hydrogen evolution and organic pollutants degradation through the modification of Ag3PO4 using Cs2AgBiBr6 quantum dots and graphene hydrogel. Separation and Purification Technology, 2022, 302, 122079.	3.9	3
285	Fast charge separation and transfer strategy in polymeric carbon nitride for efficient photocatalytic H2 evolution: Coupling surface Schottky junctions and interlayer charge transfer channels. Nano Energy, 2022, 103, 107767.	8.2	33
286	LED white-light-driven photocatalysis for effective lignocellulose reforming to co-produce hydrogen and value-added chemicals via Zn2/O@IP-g-CN. Journal of Environmental Chemical Engineering, 2022, 10, 108554.	3.3	2
287	Electron transfer via homogeneous phosphorus bridges enabling boosted photocatalytic generation of H2 and H2O2 from pure water with stoichiometric ratio. Nano Energy, 2022, 103, 107799.	8.2	16
288	Unveiling the role of Ag-Sb bimetallic S-scheme heterojunction for vis-NIR-light driven selective photoreduction CO2 to CH4. Applied Catalysis B: Environmental, 2022, 319, 121960.	10.8	15

#	Article	IF	Citations
289	Recent progress of indium-based photocatalysts: Classification, regulation and diversified applications. Coordination Chemistry Reviews, 2022, 473, 214819.	9.5	8
290	Photosensitization of TiO2 nanosheets with ZnIn2S4 for enhanced visible photocatalytic activity towardÂhydrogen production. Materials Today Chemistry, 2022, 26, 101114.	1.7	10
291	Construction of electron transport channels and oxygen adsorption sites to modulate reactive oxygen species for photocatalytic selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Applied Catalysis B: Environmental, 2022, 319, 121907.	10.8	27
292	Stitching electron localized heptazine units with "carbon patches―to regulate exciton dissociation behavior of carbon nitride for photocatalytic elimination of petroleum hydrocarbons. Chemical Engineering Journal, 2023, 452, 139092.	6.6	7
293	Carbon dots-modulated covalent triazine frameworks with exceptionally rapid hydrogen peroxide production in water. Chemical Engineering Journal, 2023, 451, 139035.	6.6	15
294	Modulating electronic structure of lattice O-modified orange polymeric carbon nitrogen to promote photocatalytic CO2 conversion. Applied Catalysis B: Environmental, 2023, 320, 122005.	10.8	35
295	Application of transition metal boride nanosheet as sulfur host in high loading Li-S batteries. Chemical Engineering Journal, 2023, 452, 139366.	6.6	7
296	Adjusting charge kinetics of conjugated polymers via integration of LSPR effect with homojunction. Chemical Engineering Journal, 2023, 452, 139068.	6.6	5
297	A CdS@MoS ₂ core@shell nanoheterostructure for efficient and stable photocatalytic H ₂ generation from lactic acid decomposition. New Journal of Chemistry, 2022, 46, 21078-21084.	1.4	3
298	In-Situ Cation-Exchange Strategy for Engineering Single-Atomic Co on Tio2 Photoanode Toward Efficient and Durable Solar Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
299	Recent advances in high-crystalline conjugated organic polymeric materials for photocatalytic CO ₂ conversion. Nanoscale, 2022, 14, 15217-15241.	2.8	13
300	Designing SnS/MoS ₂ van der Waals heterojunction for direct Z-scheme photocatalytic overall water-splitting by DFT investigation. Physical Chemistry Chemical Physics, 2022, 24, 21321-21330.	1.3	3
301	A direct Z-scheme heterojunction g-C ₃ N ₄ /α-Fe ₂ O ₃ nanocomposite for enhanced polymer-containing oilfield sewage degradation under visible light. Environmental Science: Water Research and Technology, 2022, 8, 1965-1975.	1.2	3
302	Robust and multifunctional natural polyphenolic composites for water remediation. Materials Horizons, 2022, 9, 2496-2517.	6.4	59
303	A novel metal-free ternary core–shell carbon sphere/C ₃ N ₄ /PPy nanocomposite for high-performance supercapacitors. New Journal of Chemistry, 2022, 46, 15292-15295.	1.4	4
304	The Mott–Schottky heterojunction MoC@NG@ZIS with enhanced kinetic response for promoting photocatalytic hydrogen production. Journal of Materials Chemistry A, 2022, 10, 21465-21473.	5.2	16
305	Synergistic effect of cyano defects and CaCO3 in graphitic carbon nitride nanosheets for efficient visible-light-driven photocatalytic NO removal. Journal of Hazardous Materials, 2023, 442, 130040.	6.5	69
306	Engineering the photocatalytic performance of B-C3N4@Bi2S3 hybrid heterostructures for fullâ€spectrumâ€driven Cr(VI) reduction and in-situ H2O2 generation: Experimental and DFT studies. Chemical Engineering Journal, 2023, 452, 139435.	6.6	27

#	Article	IF	CITATIONS
307	Delocalized ferroelectric engineering of efficient photo-generated charge directional transfer for solar energy conversion into H2. Chemical Engineering Journal, 2023, 452, 139468.	6.6	4
308	Selfâ€Assembled LaFeO ₃ /ZnFe ₂ O ₄ /La ₂ O ₃ Ultracompact Hybrids with Enhanced Piezoâ€Phototronic Effect for Oxygen Activation in Ambient Conditions. Advanced Functional Materials, 2022, 32, .	7.8	9
309	Synthesis of Silver Nanoparticles-Modified Graphitic Carbon Nitride Nanosheets for Highly Efficient Photocatalytic Hydrogen Peroxide Evolution. Molecules, 2022, 27, 5535.	1.7	6
310	High-efficiency photocatalyst based on a MoSiGeN4/SiC heterojunction. Journal of Materials Science, 2022, 57, 16404-16417.	1.7	7
311	Efficient Photocatalytic Hydrogen and Oxygen Evolution by Sideâ€Group Engineered Benzodiimidazole Oligomers with Strong Builtâ€in Electric Fields and Shortâ€Range Crystallinity. Angewandte Chemie, 2022, 134, .	1.6	3
312	Synchronous synthesis of S-doped carbon nitride/nickel sulfide photocatalysts for efficient dye degradation and hydrogen evolution. Applied Surface Science, 2023, 608, 154974.	3.1	16
313	Introducing B-N unit boosts photocatalytic H2O2 production on metal-free g-C3N4 nanosheets. Nano Research, 2023, 16, 2177-2184.	5.8	19
314	Materials Research Directions Toward a Green Hydrogen Economy: A Review. ACS Omega, 2022, 7, 32908-32935.	1.6	24
315	Construction of SrTiO3–LaCrO3 Solid Solutions with Consecutive Band Structures for Photocatalytic H2 Evolution under Visible Light Irradiation. Catalysts, 2022, 12, 1123.	1.6	2
316	Efficient Photocatalytic Hydrogen and Oxygen Evolution by Sideâ€Group Engineered Benzodiimidazole Oligomers with Strong Builtâ€in Electric Fields and Shortâ€Range Crystallinity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
317	Few-layered MoS2 anchored on 2D porous C3N4 nanosheets for Pt-free photocatalytic hydrogen evolution. Nano Research, 2023, 16, 3524-3535.	5.8	19
318	Integrated molten and vapor condensation of polymeric carbon nitride photoelectrode towards efficient water splitting. Science China Materials, 2023, 66, 623-633.	3.5	4
319	Atomically Dispersed Fe–N ₅ Sites Anchored in Porous N-Doped Carbon Nanofibers for Effective Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 13505-13513.	3.2	1
320	Heteroepitaxial growth of core-shell ZnO/CdS heterostructure for efficient and stable photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2022, 47, 34410-34420.	3.8	23
321	Accurate design of porous g-C ₃ N _{4+x} with greatly extended visible-light response for enhanced photocatalytic performance and mechanism insight for environmental remediation. Journal Physics D: Applied Physics, 2022, 55, 484002.	1.3	1
322	Two-dimensional double transition metal carbides as superior bifunctional electrocatalysts for overall water splitting. Electrochimica Acta, 2022, 434, 141257.	2.6	20
323	Pt Atoms/Clusters on Niâ€phytateâ€sensitized Carbon Nitride for Enhanced NIRâ€lightâ€driven Overall Water Splitting beyond 800 nm. Angewandte Chemie, 2022, 134, .	1.6	0
324	Symmetry breaking for semiconductor photocatalysis. Trends in Chemistry, 2022, 4, 1045-1055.	4.4	17

#	Article	IF	CITATIONS
325	Selfâ€Assembled Junctions of <scp>2D</scp> Singleâ€Layer Semiconductors: A Potential Way toward Advanced Photocatalysis. Energy and Environmental Materials, 2023, 6, .	7.3	0
326	Insights into atomically dispersed reactive centers on g-C3N4 photocatalysts for water splitting. , 2023, 2, 100094.		18
327	The development of balanced heterojunction photocatalysts. Cell Reports Physical Science, 2022, 3, 101082.	2.8	4
328	Multisite engineering towards atomically dispersed Ru on Ni-Co-P composite with N-doped carbon matrix for robust water oxidation. Journal of Electroanalytical Chemistry, 2022, , 116875.	1.9	1
329	Atomic Ti-Nx sites with switchable coordination number for enhanced visible-light photocatalytic water disinfection. Journal of Cleaner Production, 2022, 377, 134423.	4.6	8
330	Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production <i>via</i> a rebuilt extended i€-delocalized network. Energy and Environmental Science, 2022, 15, 5059-5068.	15.6	40
331	Coupling photocatalytic overall water splitting with hydrogenation of organic molecules: a strategy for using water as a hydrogen source and an electron donor to enable hydrogenation. Green Chemistry, 2022, 24, 9211-9219.	4.6	10
332	Uniform-embeddable-distributed Ni ₃ S ₂ cocatalyst inside and outside a sheet-like ZnIn ₂ S ₄ photocatalyst for boosting photocatalytic hydrogen evolution. Nanoscale, 2022, 14, 16952-16960.	2.8	6
333	High concentration of methyl orange elimination by targeted construction of an α-Bi ₂ O ₃ /Ph–Cî€,C–Cu Z-scheme. Catalysis Science and Technology, 2022, 12, 7122-7132.	2.1	7
334	Few-layer graphitic carbon nitride for enhanced visible-light photocatalytic efficiency: the role of narrow bandgap and nitrogen-vacancies. Environmental Science: Nano, 2022, 9, 4445-4458.	2.2	1
335	Low-energy intralayer phonon assisted carrier recombination in Z-scheme van der Waals heterostructures for photocatalysis. Journal of Materials Chemistry A, 2022, 10, 23744-23750.	5.2	6
336	S-scheme heterojunction/Schottky junction tandem synergistic effect promotes visible-light-driven catalytic activity. Nano Research, 2023, 16, 2152-2162.	5.8	9
337	Evidence of Direct Charge Transfer in Plasmon-Mediated Photocatalytic Water Splitting: A Time-Dependent Density Functional Theory Study. Physics of Fluids, 0, , .	1.6	4
338	Rational Design of Carbon Nitride Photoelectrodes with High Activity Toward Organic Oxidations. Angewandte Chemie, 2022, 134, .	1.6	0
339	Theoretical study on photocatalytic performance of ZnO/C2N heterostructure towards high efficiency water splitting. Frontiers in Chemistry, 0, 10, .	1.8	0
340	Charge Transfer Doping of Carbon Nitride Films through Noncovalent Iodination for Enhanced Photoelectrochemical Performance: Combined Experimental and Computational Insights. Small, 2022, 18, .	5.2	2
341	WO _{3â~'<i>x</i>} /Sâ€Doped gâ€C ₃ N ₄ Stepâ€Scheme Heterojunction for Highâ€Efficiency and Stable Vis–NIR Photocatalytic Removal of Pharmaceuticals and Personal Care Products. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	2
342	Noble-metal-free chalcogenide nanotwins for efficient and stable photocatalytic pure water splitting by surface phosphorization and cocatalyst modification. Materials Today Energy, 2022, 30, 101180.	2.5	2

#	Article	IF	CITATIONS
343	Rational Design of Carbon Nitride Photoelectrodes with High Activity Toward Organic Oxidations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
344	Decorating Phosphorusâ€Doped gâ€C ₃ N ₄ with Zinc Porphyrin Metal–Organic Framework via an Electrostatic Selfâ€Assembly Process: An Efficient Strategy to Boost Photocatalytic Hydrogen Evolution Performance. Solar Rrl, 2022, 6, .	3.1	13
345	Manipulating interface built-in electric fields for efficient spatial charge separation in hematite-based photoanodes. Science China Materials, 0, , .	3.5	0
346	Recent advances on g–C3N4–based Z-scheme photocatalysts: Structural design and photocatalytic applications. International Journal of Hydrogen Energy, 2023, 48, 196-231.	3.8	42
347	In Situ Synthesis of <scp>Cu₃P</scp> / <scp>Pâ€Doped gâ€C₃N₄</scp> Tight <scp>2D</scp> / <scp>2D</scp> Heterojunction Boosting Photocatalytic <scp>H₂</scp> Evolution ^{â€} . Chinese Journal of Chemistry, 2023, 41, 173-180.	2.6	6
348	A facile method to introduce a donor-acceptor system into polymeric carbon nitride for efficient photocatalytic overall water splitting. Journal of Materials Science and Technology, 2023, 141, 32-41.	5.6	6
349	Boosted solar water photoreduction by conjugated polymer-mediated tandem charge transfer. International Journal of Hydrogen Energy, 2023, 48, 2211-2220.	3.8	2
350	Regulating on photocatalytic overall water splitting performance of gallium thiophosphate based on transition metal doping: A first-principles study. Molecular Catalysis, 2022, 533, 112765.	1.0	0
351	BiVO4/Bi2S3 Z-scheme heterojunction with MnOx as a cocatalyst for efficient photocatalytic CO2 conversion to methanol by pure water. Nano Energy, 2022, 104, 107925.	8.2	21
352	In-situ topology synthesis of defective MoN nanosheets/g-C3N4 2D/2D heterojunction photocatalyst for efficient H2 production. Applied Surface Science, 2023, 608, 155199.	3.1	12
353	Boosting surface charge transfer by aldehyde group grafted on loofah-sponge-like carbon nitride for visible light H2 evolution. Applied Surface Science, 2023, 609, 155227.	3.1	2
354	Coupled adsorption and photocatalysis of g-C3N4 based composites: Material synthesis, mechanism, and environmental applications. Chemical Engineering Journal, 2023, 453, 139755.	6.6	87
355	Construction of Z-scheme TiO2/Ag/ZIF-8 nanorod array film with boosting photocatalytic and photocetalytic and photoelectrochemical properties. Journal of Alloys and Compounds, 2023, 932, 167680.	2.8	8
356	A review on S-scheme and dual S-scheme heterojunctions for photocatalytic hydrogen evolution, water detoxification and CO2 reduction. Fuel, 2023, 333, 126267.	3.4	65
357	Electron deficient boron-doped amorphous carbon nitride to uphill N2 photo-fixation through π back donation. Applied Catalysis B: Environmental, 2023, 321, 122070.	10.8	25
358	A Z-scheme 2D/0D ZnIn ₂ S ₄ /ZnO heterostructure for efficient photocatalytic degradation of tetracycline: energy band engineering and morphology modulation. Catalysis Science and Technology, 2023, 13, 426-436.	2.1	4
359	Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation. Applied Catalysis B: Environmental, 2023, 323, 122148.	10.8	69
360	Chlorine-mediated synthesis of self-exfoliated and wavy-structured graphitic carbon nitride nanosheets for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2023, 48, 3893-3900.	3.8	2

#	Article	IF	CITATIONS
361	A general strategy to synthesize single-atom metal-oxygen doped polymeric carbon nitride with highly enhanced photocatalytic water splitting activity. Applied Catalysis B: Environmental, 2023, 323, 122180.	10.8	28
362	Breaking through water-splitting bottlenecks over carbon nitride with fluorination. Nature Communications, 2022, 13, .	5.8	29
363	Defect Engineering Modulated Iron Single Atoms with Assist of Layered Clay for Enhanced Advanced Oxidation Processes. Small, 2022, 18, .	5.2	10
364	Electron-Deficient Zn-N6 Configuration Enabling Polymeric Carbon Nitride for Visible-Light Photocatalytic Overall Water Splitting. Nano-Micro Letters, 2022, 14, .	14.4	21
365	Reduced Graphene Oxides Modified Bi ₂ Te ₃ Nanosheets for Rapid Photoâ€Thermoelectric Catalytic Therapy of Bacteriaâ€Infected Wounds. Advanced Functional Materials, 2023, 33, .	7.8	10
366	A facile way to synthesize noble metal free TiO2 based catalysts for glycerol photoreforming. Journal of Industrial and Engineering Chemistry, 2023, 118, 247-258.	2.9	13
367	Detecting and Quantifying Wavelengthâ€Dependent Electrons Transfer in Heterostructure Catalyst via In Situ Irradiation XPS. Advanced Science, 2023, 10, .	5.6	23
368	Interlayer Charge Transfer Over Graphitized Carbon Nitride Enabling Highlyâ€Efficient Photocatalytic Nitrogen Fixation. Small, 2022, 18, .	5.2	11
369	Entropy-Increasing Single-Atom Photocatalysts Strengthening the Polarization Field for Boosting H ₂ 0 Overall Splitting into H ₂ . ACS Catalysis, 2022, 12, 14708-14716.	5.5	18
370	Constructing MoS2-coupled carbon/g-C3N4 heterointerface to optimize charge delivery for enhanced photocatalytic capacity. Journal of Alloys and Compounds, 2023, 935, 168041.	2.8	10
371	Active pressure and flow rate control of alkaline water electrolyzer based on wind power prediction and 100% energy utilization in off-grid wind-hydrogen coupling system. Applied Energy, 2022, 328, 120172.	5.1	10
372	Enhanced photocatalytic performance for water purification via oxygen-injected SnS2 nanosheets. Chemical Engineering Research and Design, 2023, 169, 629-635.	2.7	4
373	Morphology-effects of four different dimensional graphitic carbon nitrides on photocatalytic performance of dye degradation, water oxidation and splitting. Journal of Physics and Chemistry of Solids, 2023, 173, 111109.	1.9	5
374	Inter-plane 2D/2D ultrathin La2Ti2O7/Ti3C2 MXene Schottky heterojunctions toward high-efficiency photocatalytic CO2 reduction. Chinese Journal of Catalysis, 2023, 44, 146-159.	6.9	22
375	Boosted charge separation in direct Z-scheme heterojunctions of CsPbBr ₃ /Ultrathin carbon nitride for improved photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2022, 11, 241-250.	5.2	9
376	A chemically bonded and plasmonic Z-scheme junction for high-performance artificial photosynthesis of hydrogen peroxide. Journal of Materials Chemistry A, 2023, 11, 1199-1207.	5.2	3
377	A Z-scheme heterojunction of porphyrin-based core–shell Zr-MOF@Pro-COF-Br hybrid materials for efficient visible-light-driven CO ₂ reduction. Journal of Materials Chemistry A, 2023, 11, 2023-2030.	5.2	8
378	Two-dimensional nitrides extend the β-Ga2O3 application by controlling the band levels in β-Ga2O3 based heterostructure. Materials Today Physics, 2023, 30, 100949.	2.9	1

#	Article	IF	CITATIONS
379	<i>In situ</i> protonated-phosphorus interstitial doping induces long-lived shallow charge trapping in porous C _{3â^²<i>x</i>} N ₄ photocatalysts for highly efficient H ₂ generation. Energy and Environmental Science, 2023, 16, 460-472.	15.6	42
380	Construction of terbium oxide/polymer carbon nitride heterojunction for boosting photocatalytic overall water splitting without cocatalyst. Applied Catalysis A: General, 2023, 650, 118986.	2.2	12
381	<i>In situ</i> construction of an α-MoC/g-C ₃ N ₄ Mott–Schottky heterojunction with high-speed electron transfer channel for efficient photocatalytic H ₂ evolution. Inorganic Chemistry Frontiers, 2023, 10, 832-840.	3.0	4
382	Constructing Z-scheme 1D/2D heterojunction of ZnIn2S4 nanosheets decorated WO3 nanorods to enhance Cr(VI) photocatalytic reduction and rhodamine B degradation. Chemosphere, 2023, 313, 137351.	4.2	13
383	Biomass derived carbon dots mediated exciton dissociation in rose flower-like carbon nitride for boosting photocatalytic performance. Industrial Crops and Products, 2023, 192, 116086.	2.5	11
384	Enhanced solar hydrogen generation with the direct coupling of photo and thermal energy – An experimental and mechanism study. Applied Energy, 2023, 331, 120468.	5.1	6
385	Hydroxyl-modified Nb4C3Tx MXene@ZnIn2S4 sandwich structure for photocatalytic overall water splitting. Journal of Colloid and Interface Science, 2023, 633, 992-1001.	5.0	15
386	An efficient and multifunctional S-scheme heterojunction photocatalyst constructed by tungsten oxide and graphitic carbon nitride: Design and mechanism study. Journal of Colloid and Interface Science, 2023, 634, 195-208.	5.0	21
387	Engineering surface bromination in carbon nitride for efficient CO2 photoconversion to CH4. Journal of Colloid and Interface Science, 2023, 634, 1005-1013.	5.0	27
388	Heterojunction within dual electric fields dynamically tailoring charge transfer to surface redox active sites for efficient H2 generation. Applied Surface Science, 2023, 612, 155847.	3.1	2
389	Ultrathin origami accordionâ€like structure of vacancyâ€rich graphitized carbon nitride for enhancing CO ₂ photoreduction. , 2023, 5, .		8
390	Plasma Ag-Modified α-Fe2O3/g-C3N4 Self-Assembled S-Scheme Heterojunctions with Enhanced Photothermal-Photocatalytic-Fenton Performances. Nanomaterials, 2022, 12, 4212.	1.9	8
391	Superior photopiezocatalytic performance by enhancing spontaneous polarization through post-synthesis structure distortion in ultrathin Bi2WO6 nanosheet polar photocatalyst. Chemical Engineering Journal, 2023, 455, 140471.	6.6	14
392	<i>In Situ</i> Formed Z-Scheme Graphdiyne Heterojunction Realizes NIR-Photocatalytic Oxygen Evolution and Selective Radiosensitization for Hypoxic Tumors. ACS Nano, 2022, 16, 21186-21198.	7.3	11
393	Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution. Nano Research, 2023, 16, 4488-4493.	5.8	5
394	Vertical Growth of O-Vacancy Rich LDH Atomic Layers as OER-Sensitive Reactive Sites to Boost Overall Water Splitting on Perovskite Oxides. ACS Sustainable Chemistry and Engineering, 2022, 10, 16335-16343.	3.2	7
395	Heterojunction Design between WSe2 Nanosheets and TiO2 for Efficient Photocatalytic Hydrogen Generation. Catalysts, 2022, 12, 1668.	1.6	4
396	Boosting Photocatalytic Hydrogen Evolution Reaction by the Improved Mass Flow and Energy Flow Process Based on Ultrasound Waves. ACS Catalysis, 2023, 13, 296-307.	5.5	9

		CITATION R	EPORT	
#	Article		IF	CITATIONS
397	Interface Engineering in 2D/2D Heterogeneous Photocatalysts. Small, 2023, 19, .		5.2	23
398	Interfacial elaborating In2O3-decorated ZnO/reduced graphene oxide/ZnS heterostruct robust internal electric field for efficient solar-driven hydrogen evolution. Journal of Coll Interface Science, 2023, 635, 128-137.		5.0	8
399	Patterning alternate TiO2 and Cu2O strips on a conductive substrate as film photocata Z-scheme photocatalytic water splitting. Science Bulletin, 2022, 67, 2420-2427.	lyst for	4.3	15
400	Enhanced Hydrogen Evolution Performance of Carbon Nitride Using Transition Metal ar Coâ€Đopants. Small Structures, 2023, 4, .	nd Boron	6.9	8
401	Layered βâ€ZrNBr Nitroâ€Halide as Multifunctional Photocatalyst for Water Splitting a Reduction. Angewandte Chemie - International Edition, 2023, 62, .	nd CO ₂	7.2	3
402	Solar-light-driven photocatalytic hydrogen evolution by push-pull thiophenoxy-substitut phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2023, 27, 260-267.	ed zinc	0.4	3
403	Modulation of Excitonic Confinement of <scp>TiO_{2}for Overall <scp>CO_{2}</scp> Photoreduction^{â€Journal of Chemistry, 2023, 41, 1185-1190.}</scp>		2.6	4
404	Layered βâ€ZrNBr Nitroâ€Halide as Multifunctional Photocatalyst for Water Splitting a ₂ Reduction. Angewandte Chemie, 0, , .	nd CO	1.6	0
405	Inorganic Ultrathin 2D Photocatalysts: Modulation Strategies and Environmental/Energ Applications. Accounts of Materials Research, 2023, 4, 4-15.	у	5.9	5
406	A Twin Sâ€Scheme Artificial Photosynthetic System with Selfâ€Assembled Heterojuncti Photocatalytic Hydrogen Evolution Rate. Advanced Materials, 2023, 35, .	ons Yields Superior	11.1	104
407	Oxygen-incorporated carbon nitride porous nanosheets for highly efficient photoelectro CO2 reduction to formate. New Carbon Materials, 2022, 37, 1135-1142.	ocatalytic	2.9	6
408	Solar utilization beyond photosynthesis. Nature Reviews Chemistry, 2023, 7, 91-105.		13.8	54
409	Air ondition process for scalable fabrication of CdS/ZnS 1D/2D heterojunctions towa stable photocatalytic hydrogen production. , 2023, 5, .	rd efficient and		15
410	2023 roadmap on photocatalytic water splitting. JPhys Energy, 2023, 5, 012004.		2.3	4
411	Facile construction of carbon doped carbon nitride tube with increased π-electron dense efficient hydrogen production. Colloids and Surfaces A: Physicochemical and Engineerir 2023, 660, 130872.	sity for highly 1g Aspects,	2.3	5
412	Engineering the Charge Density on an In _{2.77} S ₄ /Porous Orga Hybrid Photocatalyst for CO ₂ -to-Ethylene Conversion Reaction. Journal of Chemical Society, 2023, 145, 422-435.	nic Polymer the American	6.6	36
413	Multifunctional TiO2/g-C3N4/Ag nanorod array film as a powerful substrate for surface- Raman scattering detection and green degradation. Ceramics International, 2023, 49, 1	enhanced 13548-13558.	2.3	2
414	2D–2D heterostructure g-C3N4-based materials for photocatalytic H2 evolution: Prog perspectives. Frontiers in Chemistry, 0, 10, .	gress and	1.8	2

#	Article	IF	CITATIONS
415	Fabrication and Enhanced Visible-Light Photocatalytic H2 Production of B-doped N-deficient g-C3N4/CdS Hybrids with Robust 2D/2D Hetero-Interface Interaction. Nanotechnology, 0, , .	1.3	0
416	Self-assembled 3D hollow carbon nitride with electron delocalization for enhanced photocatalytic hydrogen evolution. Applied Catalysis A: General, 2023, 652, 119032.	2.2	6
417	Singleâ€Atom Nickel on Carbon Nitride Photocatalyst Achieves Semihydrogenation of Alkynes with Water Protons via Monovalent Nickel. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
418	Ultrabroadband plasmon driving selective photoreforming of methanol under ambient conditions. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2
419	Initiating highly efficient (Bi,Ce) ₂ (O,S) _{3â^'<i>x</i>} oxysulfide catalysts with rich oxygen vacancies for hydrogen evolution <i>via</i> adjusting valence band configuration. Journal of Materials Chemistry A, 2023, 11, 4126-4141.	5.2	17
420	Synthesis of the ZnTPyP/WO ₃ nanorod-on-nanorod heterojunction direct Z-scheme with spatial charge separation ability for enhanced photocatalytic hydrogen generation. Nanoscale, 2023, 15, 2871-2881.	2.8	5
421	Singleâ€Atom Nickel on Carbon Nitride Photocatalyst Achieves Semihydrogenation of Alkynes with Water Protons via Monovalent Nickel. Angewandte Chemie, 2023, 135, .	1.6	3
422	Recent Advances in g-C3N4-Based Photocatalysts for NOx Removal. Catalysts, 2023, 13, 192.	1.6	3
423	Preparation of 2D Materials and Their Application in Oil–Water Separation. Biomimetics, 2023, 8, 35.	1.5	7
424	Growth of Robust Carbon Nitride Films by Double Crystallization with Exceptionally Boosted Electrochemiluminescence for Visual DNA Detection. Advanced Optical Materials, 2023, 11, .	3.6	9
425	Defectâ€Induced Activity Enhancement of Selfâ€Exfoliated Carbon Nitrides for Solar Hydrogen Evolution. ChemCatChem, 2023, 15, .	1.8	2
426	Modulation of Charge Trapping by Islandâ€like Singleâ€Atom Cobalt Catalyst for Enhanced Photoâ€Fentonâ€Like reaction. Advanced Functional Materials, 2023, 33, .	7.8	34
427	Controlled Synthesis of Nitro-Terminated Oligothiophene/Crystallinity-Improved g-C ₃ N ₄ Heterojunctions for Enhanced Visible-Light Catalytic H ₂ Production. ACS Applied Materials & Interfaces, 2023, 15, 5365-5377.	4.0	11
428	Facile synthesis of B and P doped g-C3N4 for enhanced synergetic activity between photocatalytic water splitting and BPA degradation. International Journal of Hydrogen Energy, 2023, 48, 13181-13188.	3.8	7
429	Surface-assisted synthesis of biomass carbon-decorated polymer carbon nitride for efficient visible light photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2023, 634, 1014-1023.	5.0	12
430	Heteronanostructures constructed from vertical MoS2 nanosheets on sepiolite nanofibers boosting electrocatalytic hydrogen evolution. Applied Clay Science, 2023, 233, 106798.	2.6	7
431	Boosting photocatalytic overall water splitting over single-layer graphene coated metal cocatalyst. Applied Catalysis B: Environmental, 2023, 325, 122369.	10.8	10
432	Ternary photocatalysts with electron modulation for efficient photocatalytic hydrogen evolution reactions: CdS-induced ring electrons transfer effect. Materials Today Energy, 2023, 32, 101235.	2.5	1

#	Article	IF	CITATIONS
433	Selective Ion Transport in Twoâ€Ðimensional Lamellar Nanochannel Membranes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
434	S-doped C ₃ N ₅ derived from thiadiazole for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2023, 11, 12837-12845.	5.2	24
435	Donor–Acceptor Covalent Organic Frameworks Films with Ultralow Band Gaps to Enhanced Third-Order Nonlinear Optical Properties. , 2023, 5, 694-703.		10
436	The cooperative role of nitrogen defects and cyano-group functionalization in carbon nitride towards enhancing its CO ₂ photoreduction activity. Sustainable Energy and Fuels, 2023, 7, 1664-1676.	2.5	4
437	Atomically Dispersed ZnN ₅ Sites Immobilized on gâ€C ₃ N ₄ Nanosheets for Ultrasensitive Selective Detection of Phenanthrene by Dual Ratiometric Fluorescence. Advanced Materials, 0, , 2211575.	11.1	10
438	Molecular layer-by-layer re-stacking of MoS ₂ –In ₂ Se ₃ by electrostatic means: assembly of a new layered photocatalyst. Materials Chemistry Frontiers, 2023, 7, 937-945.	3.2	0
439	Selective Ion Transport in Twoâ€Dimensional Lamellar Nanochannel Membranes. Angewandte Chemie, 2023, 135, .	1.6	1
440	In Situ Photodeposition of Cobalt Phosphate (CoHxPOy) on CdIn2S4 Photocatalyst for Accelerated Hole Extraction and Improved Hydrogen Evolution. Nanomaterials, 2023, 13, 420.	1.9	7
441	Controllable CO ₂ Reduction or Hydrocarbon Oxidation Driven by Entire Solar via Silver Quantum Dots Direct Photocatalysis. Small, 2023, 19, .	5.2	3
442	A perspective on two pathways of photocatalytic water splitting and their practical application systems. Physical Chemistry Chemical Physics, 2023, 25, 6586-6601.	1.3	14
443	Donor-acceptor engineered g-C3N4 enabling peroxymonosulfate photocatalytic conversion to 1O2 with nearly 100% selectivity. Journal of Hazardous Materials, 2023, 448, 130869.	6.5	22
444	Significantly enhanced photothermal catalytic CO2 reduction over TiO2/g-C3N4 composite with full spectrum solar light. Journal of Colloid and Interface Science, 2023, 638, 63-75.	5.0	17
445	Covalently connected core–shell NH2-MIL-125@COFs-OH hybrid materials for visible-light-driven CO2 reduction. Journal of Colloid and Interface Science, 2023, 637, 1-9.	5.0	12
446	Recent advances of two-dimensional lubricating materials: from tunable tribological properties to applications. Journal of Materials Chemistry A, 2023, 11, 9239-9269.	5.2	6
447	Band structure engineering of a polyimide photocatalyst towards enhanced water splitting. Energy Advances, 2023, 2, 556-564.	1.4	2
448	Facilitated photocatalytic H ₂ production on Cu-coordinated mesoporous g-C ₃ N ₄ nanotubes. Green Chemistry, 2023, 25, 2577-2582.	4.6	16
449	Promoted Utilization of Charge Carriers in La ₅ Ti ₂ Cu _{0.9} Ag _{0.1} O ₇ S ₅ -Based Photocatalyst Sheets for Efficient Z-Scheme Overall Water Splitting. ACS Catalysis, 2023, 13, 3285-3294.	5.5	12
450	Cocatalysts for Photocatalytic Overall Water Splitting: A Mini Review. Catalysts, 2023, 13, 355.	1.6	13

ARTICLE

451 增强Ï€å...±è½ç»"æž"çš"ç"µåå⁻†åº¦å'Œé¢å†...ç"µè•输è¿ëįfèį›g-C3N4çš"å...‰å,¬åŒ–æžæ°¢. Science China **M**aterials,起023, 66, 1

452	Mononuclear ruthenium (II) complex covalently anchored on melem and g-C3N4 as efficient heterogeneous catalysts for chemical water oxidation. Journal of Colloid and Interface Science, 2023, 643, 480-488.	5.0	3
453	C, N-vacancies and Br dopant co-enhanced photocatalytic H2 evolution of g-C3N4 from water and simulated seawater splitting. Chemical Engineering Journal, 2023, 461, 142046.	6.6	14
454	Hollow g-C3N4@Cu0.5In0.5S Core-Shell S-Scheme Heterojunction Photothermal Nanoreactors with Broad-Spectrum Response and Enhanced Photocatalytic Performance. Catalysts, 2023, 13, 723.	1.6	1
455	An in-situ assembled titanate nanotube-based dimensionality-hybrid for enhanced photocatalytic hydrogen generation. Applied Surface Science, 2023, 619, 156795.	3.1	0
456	Boosting photocatalytic hydrogen evolution over CdS/MoS2 on the graphene/montmorillonite composites. Applied Clay Science, 2023, 236, 106855.	2.6	4
457	Step scheme Fe2O3/S doped g-C3N4 heterojunction photocatalysts for photo-fenton norfloxacin and tetracycline degradation. Materials Science in Semiconductor Processing, 2023, 160, 107423.	1.9	8
458	High visible light responsive ZnIn2S4/TiO2-x induced by oxygen defects to boost photocatalytic hydrogen evolution. Applied Surface Science, 2023, 622, 156839.	3.1	10
459	Boosted Z-scheme photocatalytic overall water splitting with faceted Bi4TaO8Cl crystals as water oxidation photocatalyst. Applied Catalysis B: Environmental, 2023, 328, 122541.	10.8	6
460	Molten salt-lithium process induced controllable surface defects in titanium oxide for efficient photocatalysis. Applied Catalysis B: Environmental, 2023, 328, 122494.	10.8	5
461	Construction atomic-level N-P charge transfer channel for boosted CO2 photoreduction. Applied Catalysis B: Environmental, 2023, 328, 122472.	10.8	11
462	In-situ cation-exchange strategy for engineering single-atomic Co on TiO2 photoanode toward efficient and durable solar water splitting. Applied Catalysis B: Environmental, 2023, 330, 122630.	10.8	10
463	A high-cyano groups-content amorphous-crystalline carbon nitride isotype heterojunction photocatalyst for high-quantum-yield H2 production and enhanced CO2 reduction. Applied Catalysis B: Environmental, 2023, 331, 122733.	10.8	52
464	Effects of iron oxide contents on photocatalytic performance of nanocomposites based on g-C3N4. Scientific Reports, 2023, 13, .	1.6	5
465	Enhanced Interfacial Charge Transfer/Separation By LSPRâ€induced Defective Semiconductor Toward High Co ₂ RR Performance. Small, 2023, 19, .	5.2	7
466	Three coordinate nitrogen (N3c) vacancies from in-situ hydrogen bond breaking over polymeric carbon nitride for efficient photocatalysis. Journal of Environmental Chemical Engineering, 2023, 11, 109495.	3.3	3
467	Critical parameters and essential strategies in designing photoanodes to overcome the sluggish water oxidation reaction. Journal of Environmental Chemical Engineering, 2023, 11, 109356.	3.3	5
468	Tremella-like Boron-doped hierarchical CN and dispersion Co phthalocyanine assembling heterojunction for photocatalytic hydrogen evolution. Chemical Engineering Journal, 2023, 465, 142775.	6.6	2

#	Article	IF	CITATIONS
469	Constructing a novel CuS/Cu2S Z-scheme heterojunction for highly-efficiency NIR light-driven antibacterial activity. Applied Surface Science, 2023, 624, 156848.	3.1	10
470	Solar-light-driven photocatalytic hydrogen evolution activity of gCN/WS2 heterojunctions incorporated with the first-row transition metals. Journal of Alloys and Compounds, 2023, 950, 169753.	2.8	4
471	Janus Z-scheme heterostructure of ZnIn2S4/MoSe2/In2Se3 for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2023, 642, 669-679.	5.0	7
472	Design of lateral and vertical Bi4O5I2/BiOCl heterojunctions with different charge migration pathway for efficient photoredox activity. Applied Catalysis B: Environmental, 2023, 329, 122554.	10.8	25
473	B-Doped g-C3N4/Black TiO2 Z-Scheme Nanocomposites for Enhanced Visible-Light-Driven Photocatalytic Performance. Nanomaterials, 2023, 13, 518.	1.9	1
474	Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting. Nature Communications, 2023, 14, .	5.8	54
475	Simultaneous coâ€Photocatalytic CO ₂ Reduction and Ethanol Oxidation towards Synergistic Acetaldehyde Synthesis. Angewandte Chemie, 2023, 135, .	1.6	3
476	Simultaneous coâ€Photocatalytic CO ₂ Reduction and Ethanol Oxidation towards Synergistic Acetaldehyde Synthesis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
477	Synergetic contribution of carbon and oxygen co-doped carbon nitride nanosheets as metal-free photocatalysts for wastewater purification. Results in Engineering, 2023, 17, 100956.	2.2	4
478	Effect of oxygen vacancies on photoelectrochemical properties of amphoteric semiconductor Bi4Ti3O12 photoelectrode. Vacuum, 2023, 210, 111899.	1.6	6
479	Covalent-Coupled Zn _{0.4} Cd _{0.6} S with g-C ₃ N ₄ as a Sheet-on-Sheet Z-Scheme Photocatalyst for Water Splitting. Industrial & Engineering Chemistry Research, 2023, 62, 3538-3545.	1.8	5
482	Oneâ€Pot Synthesis of 2Dâ€2D WO ₃ /gâ€C ₃ N ₄ Photocatalyst in Reverse Microemulsion System via Supercritical CO ₂ for Enhanced Hydrogen Generation. ChemSusChem, 2023, 16, .	3.6	5
483	Addressing the stability challenge of photo(electro)catalysts towards solar water splitting. Chemical Science, 2023, 14, 3415-3427.	3.7	8
484	å‰ç"µåŒ–å¦å应ä,ç•Œé¢æ°"æ³jå¤a°ºåº¦ä½œç""机å^¶çš"ç"究进展. Chinese Science Bulletin, 2023, , .	0.4	1
485	Noble-Metal-Free Ultrathin CdS–NiFeS 2D–2D Heterojunction Nanosheets for Significantly Enhanced Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2023, 11, 4009-4019.	3.2	7
486	The Precision Defect Engineering with Nonmetallic Element Refilling Strategy in g ₃ N ₄ for Enhanced Photocatalytic Hydrogen Production. Small, 2023, 19, .	5.2	24
487	Atomic‣evel Regulated 2D ReSe ₂ : A Universal Platform Boostin Photocatalysis. Advanced Materials, 2023, 35, .	11.1	25
488	Decoupled Artificial Photosynthesis. Angewandte Chemie, 2023, 135, .	1.6	0

		CITATION REPORT		
#	Article		IF	CITATIONS
489	Decoupled Artificial Photosynthesis. Angewandte Chemie - International Edition, 2023	, 62, .	7.2	17
490	Highly-efficient photocatalytic hydrogen evolution triggered by spatial confinement ef co-crystal templated boron-doped carbon nitride hollow nanotubes. Journal of Materia A, 2023, 11, 7584-7595.		5.2	16
491	Controllable Fabrication of Hg–Pd–PdO Heterostructures as Efficient Peroxidase N Carcinoembryonic Antigen Detection. ACS Applied Nano Materials, 2023, 6, 3618-362		2.4	1
492	Integrating Mixed Halide Perovskite Photocatalytic HI Splitting and Electrocatalysis int Efficient and Robust Pure Water Splitting. Advanced Materials, 2023, 35, .	o a Loop for	11.1	22
493	Approaching the commercial threshold of solar water splitting toward hydrogen by III-r nanowires. Frontiers in Energy, 2024, 18, 122-124.	nitrides	1.2	4
494	Engineering Z-Scheme FeOOH/PCN with Fast Photoelectron Transfer and Surface Redo Efficient Solar-Driven CO ₂ Reduction. ACS Applied Materials & amp; Interf 12957-12966.		4.0	6
495	Boosting charge transfer in Au-decorated B/K co-doped CN nanosheets towards enhan photocatalytic CO ₂ reduction. Materials Chemistry Frontiers, 2023, 7, 20		3.2	4
496	Spatial separation of redox centers for boosting cooperative photocatalytic hydrogen with oxidation coupling of benzylamine over Pt@UiO-66-NH ₂ @Znln ₂ S ₄ . Catalysis Science a 13, 2517-2528.		2.1	4
497	Visible Photocatalytic Hydrogen Evolution by g-C3N4/SrZrO3 Heterostructure Material Nanomaterials, 2023, 13, 977.		1.9	4
498	Allochroic platinum/carbon nitride with photoactivated ohmic contact for efficient visil photocatalytic hydrogen evolution. Chemical Engineering Journal, 2023, 462, 142337.	ole-light	6.6	3
499	Constructing Spatially Separated Cageâ€Like Zâ€scheme Heterojunction Photocatalys Photocatalytic H ₂ Evolution. Small, 2023, 19, .	t for Enhancing	5.2	15
500	Superâ€Photothermal Effectâ€Mediated Fast Reaction Kinetic in Sâ€Scheme Organic/ Heterojunction Hollow Spheres Toward Optimized Photocatalytic Performance. Small,	norganic 2023, 19, .	5.2	19
501	Solarâ€ŧoâ€H ₂ O ₂ Energy Conversion by the Photothermal I Photocatalyst via a Twoâ€Channel Pathway. ChemSusChem, 2023, 16, .	Effect of a Polymeric	3.6	4
502	Mimicking Photosynthesis: A Natural Zâ€5cheme Photocatalyst Constructed from Red Waste for Overall Water Splitting. Angewandte Chemie - International Edition, 2023, 6	Mud Bauxite 52, .	7.2	7
503	Mimicking Photosynthesis: A Natural Zâ€5cheme Photocatalyst Constructed from Red Waste for Overall Water Splitting. Angewandte Chemie, 2023, 135, .	Mud Bauxite	1.6	1
504	Photocatalytic Applications of ReS2-Based Heterostructures. Molecules, 2023, 28, 262	27.	1.7	3
505	Decrypting the Controlled Product Selectivity over Agâ^'Cu Bimetallic Surface Alloys fo Electrochemical CO ₂ Reduction. Angewandte Chemie, 2023, 135, .	ır	1.6	2
506	Decrypting the Controlled Product Selectivity over Agâ^'Cu Bimetallic Surface Alloys fo Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edit	r ion, 2023, 62, .	7.2	20

#	Article	IF	CITATIONS
507	Direct Z-Scheme Polymer/Polymer Double-Shell Hollow Nanostructures for Efficient NADH Regeneration and Biocatalytic Artificial Photosynthesis under Visible Light. ACS Catalysis, 2023, 13, 4433-4443.	5.5	5
508	Anchored Cu single atoms on porous g-C ₃ N ₄ for superior photocatalytic H ₂ evolution from water splitting. RSC Advances, 2023, 13, 8915-8922.	1.7	5
509	Molecular assembly of carbon nitride-based composite membranes for photocatalytic sterilization and wound healing. Chemical Science, 2023, 14, 4319-4327.	3.7	2
510	Synergy of Cd Doping and S Vacancies in Cd _{<i>x</i>} Zn _{1â€"<i>x</i>} In ₂ S ₄ Hierarchical Nanotubes for Highly Improved Visible-Light-Driven H ₂ Evolution. Inorganic Chemistry, 2023, 62, 5690-5699.	1.9	4
511	Preparation of carbon nitride nanotubes with P-doping and their photocatalytic properties for hydrogen evolution. Carbon, 2023, 208, 290-302.	5.4	21
512	Photocatalysis of water into hydrogen peroxide over an atomic Ga-N5 site. , 2023, 2, 557-563.		46
513	In situ constructing atomic interface in ruthenium-based amorphous hybrid-structure towards solar hydrogen evolution. Nature Communications, 2023, 14, .	5.8	7
514	An electron-hole rich dual-site nickel catalyst for efficient photocatalytic overall water splitting. Nature Communications, 2023, 14, .	5.8	28
515	Hydrovoltaic effect-enhanced photocatalysis by polyacrylic acid/cobaltous oxide–nitrogen doped carbon system for efficient photocatalytic water splitting. Nature Communications, 2023, 14, .	5.8	16
516	Photocatalytic Dry Reforming of Methane Enhanced by "Dualâ€Path―Strategy with Excellent Lowâ€Temperature Catalytic Performance. Advanced Functional Materials, 2023, 33, .	7.8	9
517	Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nature Energy, 2023, 8, 504-514.	19.8	38
518	Activating Main-Group Mg Atomic Sites within Tri- <i>s</i> -triazine for Photocatalytic H ₂ O Overall Splitting: Dynamic Mechanism and Performance. ACS Catalysis, 2023, 13, 5678-5688.	5.5	5
519	Single-atom cobalt-incorporating carbon nitride for photocatalytic solar hydrogen conversion: An X-ray spectromicroscopy study. Journal of Electron Spectroscopy and Related Phenomena, 2023, 264, 147319.	0.8	1
520	An ultrathin 2D NiCo-LDH nanosheet decorated NH ₂ -UiO-66 MOF-nanocomposite with exceptional chemical stability for electrocatalytic water splitting. Journal of Materials Chemistry A, 2023, 11, 10309-10318.	5.2	21
521	Tandem internal electric fields in intralayer/interlayer carbon nitride homojunction with a directed flow of photo-excited electrons for photocatalysis. Applied Catalysis B: Environmental, 2023, 333, 122781.	10.8	8
522	Combing Hollow Shell Structure and Z-Scheme Heterojunction Construction for Promoting CO ₂ Photoreduction. Journal of Physical Chemistry C, 2023, 127, 8071-8082.	1.5	2
523	Realigning the melon chains in carbon nitride by rubidium ions to promote photo-reductive activities for hydrogen evolution and environmental remediation. Journal of Hazardous Materials, 2023, 453, 131435.	6.5	8
524	Advances in organic semiconductors for photocatalytic hydrogen evolution reaction. , 2023, 1, 333-352.		10

#	Article	IF	CITATIONS
578	BiFeO ₃ -Based All Perovskite Oxides Direct Z-Scheme Heterostructure for Efficient Oxygen Evolution. ACS Applied Energy Materials, 2023, 6, 5653-5661.	2.5	1
579	g-C ₃ N ₄ Photocatalysts: Utilizing Electron–Hole Pairs for Boosted Redox Capability in Water Splitting. Energy Material Advances, 2023, 4, .	4.7	7
615	Microfluidic Flow Cells for Energy Conversion and Utilization. Green Energy and Technology, 2023, , 173-198.	0.4	0
624	Metal-doped carbon nitride: an all-in-one photocatalyst. , 2023, 1, 810-831.		4
625	Recent advances in photocatalyst sheet development and challenges for cost-effective solar hydrogen production. Journal of Materials Chemistry A, 2023, 11, 20470-20479.	5.2	2
626	Heterostructured 2D material-based electro-/photo-catalysts for water splitting. Materials Chemistry Frontiers, 2023, 7, 6154-6187.	3.2	3
635	Multifunctional carbon nitride nanoarchitectures for catalysis. Chemical Society Reviews, 2023, 52, 7602-7664.	18.7	9
647	Photocatalysis energy conversion and environmental protection. , 2024, , 283-293.		0
702	The confusion about S-scheme electron transfer: Critical understanding and new perspective. Energy and Environmental Science, 0, , .	15.6	1