Pressureâ€Responsive Twoâ€Dimensional Metal–Or CO₂ Separation

Angewandte Chemie - International Edition 60, 11318-11325

DOI: 10.1002/anie.202017089

Citation Report

#	Article	IF	CITATIONS
1	Calcium-Based Metal–Organic Framework for Efficient Capture of Sulfur Hexafluoride at Low Concentrations. Industrial & Engineering Chemistry Research, 2021, 60, 5976-5983.	1.8	30
2	Slacking of Gate Adsorption Behavior on Metal–Organic Frameworks under an External Force. ACS Applied Materials & Interfaces, 2021, 13, 30213-30223.	4.0	10
3	Computer-Aided Discovery of MOFs with Calixarene-Analogous Microenvironment for Exceptional SF ₆ Capture. Chemistry of Materials, 2021, 33, 5108-5114.	3.2	37
4	Heating-driven assembly of covalent organic framework nanosheets for gas separation. Journal of Membrane Science, 2021, 632, 119326.	4.1	30
5	Regulation of hydrophobicity and water adsorption of MIL-101(Cr) through post-synthetic modification. Inorganic Chemistry Communication, 2021, 130, 108741.	1.8	14
6	Synthesis and characterization of iron oxide/MIL-101 composite via microwave solvothermal treatment. Surface Science, 2022, 716, 121952.	0.8	5
7	Fabrication of Ultrathin Membranes Using 2Dâ€MOF Nanosheets for Tunable Gas Separation. Chemistry - an Asian Journal, 2021, 16, 3413-3418.	1.7	6
8	Ultrathin Covalent Organic Framework Membranes via a Multiâ€Interfacial Engineering Strategy for Gas Separation. Advanced Materials, 2022, 34, e2104946.	11.1	82
9	Homoporous hybrid membranes containing metal-organic cages for gas separation. Journal of Membrane Science, 2021, 636, 119564.	4.1	27
10	Preparation of Two-Dimensional Metal-Organic Framework Membranes and Their Applications in Separation. Acta Chimica Sinica, 2021, 79, 869.	0.5	12
11	Polycrystalline Iron(III) metal-organic framework membranes for organic solvent nanofiltration with high permeance. Journal of Membrane Science, 2022, 644, 120130.	4.1	16
12	Advanced membranes with responsive two-dimensional nanochannels. , 2021, 1, 100012.		8
13	Twoâ€Đimensional Metal–Organic Framework Nanosheets: Synthesis and Applications in Electrocatalysis and Photocatalysis. ChemSusChem, 2022, 15, .	3.6	33
14	Flexible metal–organic frameworks for gas storage and separation. Dalton Transactions, 2022, 51, 4608-4618.	1.6	66
15	An adenosine triphosphate-responsive metal–organic framework decorated with palladium nanosheets for synergistic tri-modal therapy. CrystEngComm, 2022, 24, 2558-2566.	1.3	3
16	Moving beyond passive separations. Nature Materials, 2022, 21, 387-388.	13.3	3
17	Poly(ionic liquid)-Functionalized UiO-66-(OH) ₂ : Improved Interfacial Compatibility and Separation Ability in Mixed Matrix Membranes for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2022, 61, 7626-7633.	1.8	21
18	Ultrathin Ni-Co nanosheets with disparate-CO2-affinity nanodomains in membranes to improve gas separation. Separation and Purification Technology, 2022, 292, 121024.	3.9	9

#	Article	IF	CITATIONS
19	Highly stable membrane comprising MOF nanosheets and graphene oxide for ultra-permeable nanofiltration. Journal of Membrane Science, 2022, 652, 120479.	4.1	24
20	From normal crosslinking to core–shell structure: Improved performance of β-cyclodextrin based adsorbent toward efficient separation of acetophenone and 1-phenylethanol. Separation and Purification Technology, 2022, 292, 120955.	3.9	3
21	Kinetic Separation of C2H6/C2H4 in A Cage-Interconnected Metal-Organic Framework: An Interaction-Screening Mechanism. Inorganic Chemistry Frontiers, 0, , .	3.0	5
22	Scalable fabrication of highly selective SSZ-13 membranes on 19-channel monolithic supports for efficient CO2 capture. Separation and Purification Technology, 2022, 293, 121122.	3.9	16
23	Titaniumâ€Oxo Cluster Assisted Fabrication of a Defectâ€Rich Tiâ€MOF Membrane Showing Versatile Gasâ€Separation Performance. Angewandte Chemie, 2022, 134, .	1.6	4
24	Titaniumâ€Oxo Cluster Assisted Fabrication of a Defectâ€Rich Tiâ€MOF Membrane Showing Versatile Gasâ€Separation Performance. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
25	Gel-to-crystal route towards MOF-mixed MOF-matrix membranes. Materials Today Chemistry, 2022, 24, 100867.	1.7	5
26	Mixed matrix membranes containing composite nanosheets with three-dimensional nanopores for efficient CO2 separation. International Journal of Greenhouse Gas Control, 2022, 117, 103658.	2.3	9
27	A Review of Metal–Organic Frameworkâ€Based Compounds for Environmental Applications. Energy and Environmental Materials, 2023, 6, .	7.3	15
28	Improving proton conductivity of metal organic framework materials by reducing crystallinity. Applied Organometallic Chemistry, 2022, 36, .	1.7	10
29	Thin-Film Mixed-Matrix Membranes with Poly(Ethylene Glycol)-Grafted Graphene Oxide for Co2 Separation. SSRN Electronic Journal, 0, , .	0.4	0
30	Switching gas permeation through smart membranes by external stimuli: a review. Journal of Materials Chemistry A, 2022, 10, 16743-16760.	5.2	13
31	A Hexagonal Nut‣ike Metal–Organic Framework and Its Conformal Transformation. Small, 2022, 18, .	5.2	7
32	Recent Development of Bio-inspired Porous Materials for Catalytic Applications. Chemical Research in Chinese Universities, 0, , .	1.3	0
33	lsomerous Al-BDC-NH2 metal-organic frameworks for metronidazole removal: Effect of topology structure. Journal of Solid State Chemistry, 2022, 314, 123376.	1.4	8
35	Viscosity reduction mechanism of functionalized silica nanoparticles in heavy oil-water system. Fuel Processing Technology, 2022, 237, 107454.	3.7	12
36	Astragaloside trigger autophagy: Implication a potential therapeutic strategy for pulmonary fibrosis. Biomedicine and Pharmacotherapy, 2022, 154, 113603.	2.5	2
37	Th-MOF showing six-fold imide-sealed pockets for middle-size-separation of propane from natural gas. Nano Research, 2023, 16, 3287-3293.	5.8	13

CITATION REPORT

#	Article	IF	CITATIONS
38	Recent developments of anti-plasticized membranes for aggressive CO2 separation. Green Chemical Engineering, 2023, 4, 1-16.	3.3	6
39	Manipulation strategies for improving gas separation performance on metal-organic frameworks membranes. Results in Engineering, 2022, 15, 100609.	2.2	9
40	Engineering CO2-philic pathway via grafting poly(ethylene glycol) on graphene oxide for mixed matrix membranes with high CO2 permeance. Chemical Engineering Journal, 2023, 453, 139818.	6.6	6
41	Tunable mass transport in the artificial smart membranes based on two-dimensional materials. , 2022, 2, 100045.		5
42	Recent advances in responsive membrane functionalization approaches and applications. Separation Science and Technology, 2023, 58, 1202-1236.	1.3	3
43	Time-resolved in-situ X-ray diffraction and crystal structure analysis of porous coordination polymer CPL-1 in CO2 adsorption. Journal of Solid State Chemistry, 2022, , 123796.	1.4	3
44	Plasmon-enhanced visible-light photocatalytic antibacterial activity of metal–organic framework/gold nanocomposites. Journal of Materials Chemistry A, 2023, 11, 2391-2401.	5.2	7
45	<i>In situ</i> growth of metal–organic frameworks in nanochannels for highly sensitive microcystin-LR detection. Environmental Science: Nano, 2023, 10, 834-842.	2.2	2
46	Modulation on interlayer channels of LDH/polymer hybrid membranes for efficient CO2 separation. Applied Surface Science, 2023, 618, 156651.	3.1	8
47	A highly permeable porous organic cage composite membrane for gas separation. Journal of Materials Chemistry A, 2023, 11, 6831-6841.	5.2	12
48	Ultrathin membrane with robust and superior CO2 permeance by precision control of multilayer structures. Chemical Engineering Journal, 2023, 462, 142087.	6.6	10
49	Mixed-Matrix Membranes Containing Porous Materials for Gas Separation: From Metal–Organic Frameworks to Discrete Molecular Cages. Engineering, 2023, 23, 40-55.	3.2	8

50 High-pressure Mechanical Behaviour Under Hydrostatic Compression. , 2023, , 205-266.