Higher infectivity of the SARS oVâ€2 new variants is N501Y mutants: An insight from structural data

Journal of Cellular Physiology 236, 7045-7057 DOI: 10.1002/jcp.30367

Citation Report

#	Article	IF	CITATIONS
1	Bioinformatic and MD Analysis of N501Y SARS-CoV-2 (UK) Variant. IFIP Advances in Information and Communication Technology, 2021, , 1-13.	0.7	1
2	The SARS-CoV-2 B.1.618 variant slightly alters the spike RBD–ACE2 binding affinity and is an antibody escaping variant: a computational structural perspective. RSC Advances, 2021, 11, 30132-30147.	3.6	57
4	Higher infectivity of the SARS oVâ€2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. Journal of Cellular Physiology, 2021, 236, 7045-7057.	4.1	283
6	Insights Into Mutations Induced Conformational Changes and Rearrangement of Fe2+ Ion in pncA Gene of Mycobacterium tuberculosis to Decipher the Mechanism of Resistance to Pyrazinamide. Frontiers in Molecular Biosciences, 2021, 8, 633365.	3.5	5
8	Preliminary report on severe acute respiratory syndrome coronavirus 2 (SARS oVâ€⊋) Spike mutation T478K. Journal of Medical Virology, 2021, 93, 5638-5643.	5.0	129
11	Present variants of concern and variants of interest of severe acute respiratory syndrome coronavirus 2: Their significant mutations in Sâ€glycoprotein, infectivity, reâ€infectivity, immune escape and vaccines activity. Reviews in Medical Virology, 2022, 32, e2270.	8.3	71
13	Mutational Landscape of Pirin and Elucidation of the Impact of Most Detrimental Missense Variants That Accelerate the Breast Cancer Pathways: A Computational Modelling Study. Frontiers in Molecular Biosciences, 2021, 8, 692835.	3.5	27
14	Immunogenomics guided design of immunomodulatory multi-epitope subunit vaccine against the SARS-CoV-2 new variants, and its validation through in silico cloning and immune simulation. Computers in Biology and Medicine, 2021, 133, 104420.	7.0	59
16	The Fight against COVID-19 on the Multi-Protease Front and Surroundings: Could an Early Therapeutic Approach with Repositioning Drugs Prevent the Disease Severity?. Biomedicines, 2021, 9, 710.	3.2	7
19	Anchor-Locker Binding Mechanism of the Coronavirus Spike Protein to Human ACE2: Insights from Computational Analysis. Journal of Chemical Information and Modeling, 2021, 61, 3529-3542.	5.4	26
20	ACE2 Receptor-Modified Algae-Based Microrobot for Removal of SARS-CoV-2 in Wastewater. Journal of the American Chemical Society, 2021, 143, 12194-12201.	13.7	42
21	Abrogation of SARS-CoV-2 interaction with host (NRP1) neuropilin-1 receptor through high-affinity marine natural compounds to curtail the infectivity: A structural-dynamics data. Computers in Biology and Medicine, 2022, 141, 104714.	7.0	14
22	SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Frontiers in Immunology, 2021, 12, 701501.	4.8	157
23	Mutations in SARS-CoV-2 ORF8 Altered the Bonding Network With Interferon Regulatory Factor 3 to Evade Host Immune System. Frontiers in Microbiology, 2021, 12, 703145.	3.5	22
24	In Silico Mutagenesis-Based Remodelling of SARS-CoV-1 Peptide (ATLQAIAS) to Inhibit SARS-CoV-2: Structural-Dynamics and Free Energy Calculations. Interdisciplinary Sciences, Computational Life Sciences, 2021, 13, 521-534.	3.6	17
25	Importance of mutations in amino acid 484 of the Spike protein of SARS-CoV-2: rapid detection by restriction enzyme analysis. Investigacion Clinica, 0, 62, 18-26.	0.0	2
26	Genetic emergence of B.1.617.2 in COVID-19. New Microbes and New Infections, 2021, 43, 100929.	1.6	45
27	Regulation Mechanism for the Binding between the SARS-CoV-2 Spike Protein and Host Angiotensin-Converting Enzyme II. Journal of Physical Chemistry Letters, 2021, 12, 6252-6261.	4.6	12

#	Article	IF	CITATIONS
30	Keep out! SARS-CoV-2 entry inhibitors: their role and utility as COVID-19 therapeutics. Virology Journal, 2021, 18, 154.	3.4	29
31	Preliminary Structural Data Revealed That the SARSâ€CoVâ€2 B.1.617 Variant's RBD Binds to ACE2 Receptor Stronger Than the Wild Type to Enhance the Infectivity. ChemBioChem, 2021, 22, 2641-2649.	2.6	46
33	Towards an Ensemble Vaccine against the Pegivirus Using Computational Modelling Approaches and Its Validation through In Silico Cloning and Immune Simulation. Vaccines, 2021, 9, 818.	4.4	9
34	Investigation of nonsynonymous mutations in the spike protein of SARS-CoV-2 and its interaction with the ACE2 receptor by molecular docking and MM/GBSA approach. Computers in Biology and Medicine, 2021, 135, 104654.	7.0	37
36	SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity. Lancet Infectious Diseases, The, 2021, 21, 1070.	9.1	188
37	Facing the wrath of enigmatic mutations: a review on the emergence of severe acute respiratory syndrome coronavirus 2 variants amid coronavirus diseaseâ€19 pandemic. Environmental Microbiology, 2022, 24, 2615-2629.	3.8	23
39	An Analysis Based on Molecular Docking and Molecular Dynamics Simulation Study of Bromelain as Anti-SARS-CoV-2 Variants. Frontiers in Pharmacology, 2021, 12, 717757.	3.5	28
40	CytomegaloVirusDb: Multi-omics knowledge database for cytomegaloviruses. Computers in Biology and Medicine, 2021, 135, 104563.	7.0	9
41	The Promise of Mutation Resistant Drugs for SARS-CoV-2 That Interdict in the Folding of the Spike Protein Receptor Binding Domain. Covid, 2021, 1, 288-302.	1.5	3
42	Effect of SARS-CoV-2 Mutations on the Efficacy of Antibody Therapy and Response to Vaccines. Vaccines, 2021, 9, 914.	4.4	20
43	In Silico Evaluation of Iranian Medicinal Plant Phytoconstituents as Inhibitors against Main Protease and the Receptor-Binding Domain of SARS-CoV-2. Molecules, 2021, 26, 5724.	3.8	39
44	Exploring the Interaction between E484K and N501Y Substitutions of SARS-CoV-2 in Shaping the Transmission Advantage of COVID-19 in Brazil: A Modeling Study. American Journal of Tropical Medicine and Hygiene, 2021, 105, 1247-1254.	1.4	5
45	Proteolytic activation of SARS oVâ€2 spike protein. Microbiology and Immunology, 2022, 66, 15-23.	1.4	106
46	Dynamics of SARS-CoV-2 mutations reveals regional-specificity and similar trends of N501 and high-frequency mutation N501Y in different levels of control measures. Scientific Reports, 2021, 11, 17755.	3.3	19
47	Interactions of the Receptor Binding Domain of SARS-CoV-2 Variants with hACE2: Insights from Molecular Docking Analysis and Molecular Dynamic Simulation. Biology, 2021, 10, 880.	2.8	38
48	The origins of SARS-CoV-2: A critical review. Cell, 2021, 184, 4848-4856.	28.9	330
50	Wave-wise comparative genomic study for revealing the complete scenario and dynamic nature of COVID-19 pandemic in Bangladesh. PLoS ONE, 2021, 16, e0258019.	2.5	13
51	The Role of Spike Protein Mutations in the Infectious Power of SARSâ€COVâ€2 Variants: A Molecular Interaction Perspective. ChemBioChem, 2022, 23,	2.6	14

#	Article	IF	CITATIONS
52	Kidney injury in COVID-19 patients, drug development and their renal complications: Review study. Biomedicine and Pharmacotherapy, 2021, 142, 111966.	5.6	22
53	Structural modelling of SARS-CoV-2 alpha variant (B.1.1.7) suggests enhanced furin binding and infectivity. Virus Research, 2021, 303, 198522.	2.2	41
54	SARS-CoV-2 new variants: Characteristic features and impact on the efficacy of different vaccines. Biomedicine and Pharmacotherapy, 2021, 143, 112176.	5.6	51
55	SARS-CoV-2 Variants of Concern. Yonsei Medical Journal, 2021, 62, 961.	2.2	183
56	The challenges of COVIDâ€19 Delta variant: Prevention and vaccine development. MedComm, 2021, 2, 846-854.	7.2	37
57	Molecular Insights of SARS-CoV-2 Infection and Molecular Treatments. Current Molecular Medicine, 2022, 22, 621-639.	1.3	2
58	Characterization of SARS-CoV-2 Variants N501Y.V1 and N501Y.V2 Spike on Viral Infectivity. Frontiers in Cellular and Infection Microbiology, 2021, 11, 720357.	3.9	7
59	Temporal-Geographical Dispersion of SARS-CoV-2 Spike Glycoprotein Variant Lineages and Their Functional Prediction Using in Silico Approach. MBio, 2021, 12, e0268721.	4.1	3
60	MMV-db: vaccinomics and RNA-based therapeutics database for infectious hemorrhagic fever-causing mammarenaviruses. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	7
61	Immunoinformatics and Immunogenetics-Based Design of Immunogenic Peptides Vaccine against the Emerging Tick-Borne Encephalitis Virus (TBEV) and Its Validation through In Silico Cloning and Immune Simulation. Vaccines, 2021, 9, 1210.	4.4	12
63	Mutational profile confers increased stability of SARS-CoV-2 spike protein in Brazilian isolates. Journal of Biomolecular Structure and Dynamics, 2022, 40, 13184-13189.	3.5	3
64	Bioinformatics analysis of the differences in the binding profile of the wild-type and mutants of the SARS-CoV-2 spike protein variants with the ACE2 receptor. Computers in Biology and Medicine, 2021, 138, 104936.	7.0	23
65	Structural probing of HapR to identify potent phytochemicals to control Vibrio cholera through integrated computational approaches. Computers in Biology and Medicine, 2021, 138, 104929.	7.0	17
66	Evaluation of the clinical and analytical performance of the Seegene allplexâ,,¢ SARS-CoV-2 variants I assay for the detection of variants of concern (VOC) and variants of interests (VOI). Journal of Clinical Virology, 2021, 144, 104996.	3.1	16
67	COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes and Endocrinology,the, 2021, 9, 786-798.	11.4	155
68	SARS-CoV-2 beta variant substitutions alter spike glycoprotein receptor binding domain structure and stability. Journal of Biological Chemistry, 2021, 297, 101371.	3.4	6
70	Survey of SARS-CoV-2 genetic diversity in two major Brazilian cities using a fast and affordable Sanger sequencing strategy. Genomics, 2021, 113, 4109-4115.	2.9	9
71	SARS-CoV-2 Mutations and Variants: what do we know so far?. Microbes, Infection and Chemotherapy, 0, 1, e1256.	0.0	5

#	Article	IF	Citations
72	Mouse-adapted SARS-CoV-2 protects animals from lethal SARS-CoV challenge. PLoS Biology, 2021, 19, e3001284.	5.6	54
73	Structural and functional insights into the spike protein mutations of emerging SARS-CoV-2 variants. Cellular and Molecular Life Sciences, 2021, 78, 7967-7989.	5.4	40
74	ACE2 : S1 RBD Interaction-Targeted Peptides and Small Molecules as Potential COVID-19 Therapeutics. Advances in Pharmacological and Pharmaceutical Sciences, 2021, 2021, 1-10.	1.3	5
75	DNA aptamers masking angiotensin converting enzyme 2 as an innovative way to treat SARS-CoV-2 pandemic. Pharmacological Research, 2022, 175, 105982.	7.1	18
76	Molecular insights into receptor binding energetics and neutralization of SARS-CoV-2 variants. Nature Communications, 2021, 12, 6977.	12.8	55
77	Cross-validation of SARS-CoV-2 responses in kidney organoids and clinical populations. JCI Insight, 2021, 6, .	5.0	21
79	Covidâ€19 vaccines and variants of concern: A review. Reviews in Medical Virology, 2022, 32, e2313.	8.3	201
80	Structural-Dynamics and Binding Analysis of RBD from SARS-CoV-2 Variants of Concern (VOCs) and GRP78 Receptor Revealed Basis for Higher Infectivity. Microorganisms, 2021, 9, 2331.	3.6	8
81	Emerging SARSâ€CoVâ€2 variants can potentially break set epidemiological barriers in COVIDâ€19. Journal of Medical Virology, 2022, 94, 1300-1314.	5.0	32
82	A Novel Strategy for the Detection of SARS-CoV-2 Variants Based on Multiplex PCR-Mass Spectrometry Minisequencing Technology. Microbiology Spectrum, 2021, 9, e0126721.	3.0	19
83	Peptides derived from the SARS-CoV-2 receptor binding motif bind to ACE2 but do not block ACE2-mediated host cell entry or pro-inflammatory cytokine induction. PLoS ONE, 2021, 16, e0260283.	2.5	1
85	Codon usage, phylogeny and binding energy estimation predict the evolution of SARS-CoV-2. One Health, 2021, 13, 100352.	3.4	2
86	E484K and N501Y SARS-CoV 2 spike mutants Increase ACE2 recognition but reduce affinity for neutralizing antibody. International Immunopharmacology, 2022, 102, 108424.	3.8	31
87	Structural Analysis on the Severe Acute Respiratory Syndrome Coronavirus 2 Non-structural Protein 13 Mutants Revealed Altered Bonding Network With TANK Binding Kinase 1 to Evade Host Immune System. Frontiers in Microbiology, 2021, 12, 789062.	3.5	8
88	Genome Characterization and Potential Risk Assessment of the Novel SARS-CoV-2 Variant Omicron (B.1.1.529). Zoonoses, 2021, 1, .	1.1	38
89	Establishing reference sequences for each clade of SARSâ€CoVâ€2 to provide a basis for virus variation and function research. Journal of Medical Virology, 2021, , .	5.0	3
90	Fruit Bromelain-Derived Peptide Potentially Restrains the Attachment of SARS-CoV-2 Variants to hACE2: A Pharmacoinformatics Approach. Molecules, 2022, 27, 260.	3.8	21
91	Computational modelling of potentially emerging SARS-CoV-2 spike protein RBDs mutations with higher binding affinity towards ACE2: A structural modelling study. Computers in Biology and Medicine, 2022, 141, 105163.	7.0	17

#	Article	IF	CITATIONS
92	Use of Sanger protocols to identify variants of concern, key mutations and track evolution of SARS-CoV-2. Journal of Virological Methods, 2022, 300, 114422.	2.1	2
93	Comparative mutational analysis of SARS-CoV-2 isolates from Pakistan and structural-functional implications using computational modelling and simulation approaches. Computers in Biology and Medicine, 2022, 141, 105170.	7.0	15
94	A comprehensive overview of identified mutations in SARS CoV-2 spike glycoprotein among Iranian patients. Gene, 2022, 813, 146113.	2.2	8
96	Critical Mutations of the SARS-CoV-2 Virus. WSEAS Transactions on Biology and Biomedicine, 2022, 19, 22-30.	0.5	1
97	Prion-like Domains in Spike Protein of SARS-CoV-2 Differ across Its Variants and Enable Changes in Affinity to ACE2. Microorganisms, 2022, 10, 280.	3.6	25
98	Emergence of SARS-CoV-2 Variants in the World: How Could This Happen?. Life, 2022, 12, 194.	2.4	25
99	Structural and Dynamic Insights into the W68L, L85P, and T87A Mutations of Mycobacterium tuberculosis Inducing Resistance to Pyrazinamide. International Journal of Environmental Research and Public Health, 2022, 19, 1615.	2.6	1
100	Viral Load in COVID-19 Patients: Implications for Prognosis and Vaccine Efficacy in the Context of Emerging SARS-CoV-2 Variants. Frontiers in Medicine, 2021, 8, 836826.	2.6	15
101	Structural Comparison and Drug Screening of Spike Proteins of Ten SARS-CoV-2 Variants. Research, 2022, 2022, 9781758.	5.7	15
102	SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature, 2022, 603, 715-720.	27.8	577
103	Mutations in the receptor-binding domain of human SARS CoV-2 spike protein increases its affinity to bind human ACE-2 receptor. Journal of Biomolecular Structure and Dynamics, 2023, 41, 2368-2381.	3.5	7
104	Multiplex PCR Assays for Identifying all Major Severe Acute Respiratory Syndrome Coronavirus 2 Variants. Journal of Molecular Diagnostics, 2022, 24, 309-319.	2.8	36
105	Betacoronavirus-specific alternate splicing. Genomics, 2022, 114, 110270.	2.9	12
106	The Omicron (B.1.1.529) variant of SARS-CoV-2 binds to the hACE2 receptor more strongly and escapes the antibody response: Insights from structural and simulation data. International Journal of Biological Macromolecules, 2022, 200, 438-448.	7.5	64
107	Rapid and sensitive detection of SARS-CoV-2 variants in nasopharyngeal swabs and wastewaters. Diagnostic Microbiology and Infectious Disease, 2022, 102, 115632.	1.8	6
108	Computational prediction of the effect of mutations in the receptor-binding domain on the interaction between SARS-CoV-2 and human ACE2. Molecular Diversity, 2022, 26, 3309-3324.	3.9	17
109	Evaluation of Interactions between SARS-CoV-2 RBD and Full-Length ACE2 with Coarse-Grained Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2022, 62, 936-944.	5.4	9
110	SARS-CoV-2 Variant Determination Through SNP Assays in Samples From Industry Workers From Rio de Janeiro, Brazil. Frontiers in Microbiology, 2021, 12, 757783.	3.5	3

#	Article	IF	CITATIONS
111	Targeting the RBD of Omicron Variant (B.1.1.529) with Medicinal Phytocompounds to Abrogate the Binding of Spike Glycoprotein with the hACE2 Using Computational Molecular Search and Simulation Approach. Biology, 2022, 11, 258.	2.8	8
112	In-Silico Design of a Novel Tridecapeptide Targeting Spike Protein of SARS-CoV-2 Variants of Concern. International Journal of Peptide Research and Therapeutics, 2022, 28, 28.	1.9	12
113	Spike Protein and the Various Cell-Surface Carbohydrates: An Interaction Study. ACS Chemical Biology, 2022, 17, 103-117.	3.4	3
114	SARS-CoV-2 spreads through cell-to-cell transmission. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	145
116	Collective residue interactions in trimer complexes of SARS-CoV-2 spike proteins analyzed by fragment molecular orbital method. Applied Physics Express, 2022, 15, 017001.	2.4	7
117	B.1.617.2 (Delta) Variant of SARS-CoV-2: features, transmission and potential strategies. International Journal of Biological Sciences, 2022, 18, 1844-1851.	6.4	34
118	Blocking key mutated hotspot residues in the RBD of the omicron variant (B.1.1.529) with medicinal compounds to disrupt the RBD-hACE2 complex using molecular screening and simulation approaches. RSC Advances, 2022, 12, 7318-7327.	3.6	20
121	SARS-CoV-2 Variants Increase Kinetic Stability of Open Spike Conformations as an Evolutionary Strategy. MBio, 2022, 13, e0322721.	4.1	48
122	Phage Display-Derived Compounds Displace hACE2 from Its Complex with SARS-CoV-2 Spike Protein. Biomedicines, 2022, 10, 441.	3.2	4
123	Whole genome sequence analysis showing unique SARS-CoV-2 lineages of B.1.524 and AU.2 in Malaysia. PLoS ONE, 2022, 17, e0263678.	2.5	8
124	Structural Dynamics and Molecular Evolution of the SARS-CoV-2 Spike Protein. MBio, 2022, 13, e0203021.	4.1	10
125	Multiple SARS-CoV-2 Variants Exhibit Variable Target Cell Infectivity and Ability to Evade Antibody Neutralization. Frontiers in Immunology, 2022, 13, 836232.	4.8	15
126	A Rapid and Consistent Method to Identify Four SARS-CoV-2 Variants during the First Half of 2021 by RT-PCR. Vaccines, 2022, 10, 483.	4.4	5
127	Impact of new variants on SARS-CoV-2 infectivity and neutralization: A molecular assessment of the alterations in the spike-host protein interactions. IScience, 2022, 25, 103939.	4.1	32
128	COVID-19 pandemic: the delta variant, T-cell responses, and the efficacy of developing vaccines. Inflammation Research, 2022, 71, 377-396.	4.0	11
129	Unbinding of hACE2 and inhibitors from the receptor binding domain of SARS-CoV-2 spike protein. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3245-3264.	3.5	2
130	EK1 with dual Q1004E/N1006I mutation: a promising fusion inhibitor for the HR1 domain of SARS-CoV-2. Journal of Infection, 2022, 84, 579-613.	3.3	2
131	Kappa-RBD produced by glycoengineered Pichia pastoris elicited high neutralizing antibody titers against pseudoviruses of SARS-CoV-2 variants. Virology, 2022, 569, 56-63.	2.4	6

#	Article	IF	CITATIONS
132	The spike-ACE2 binding assay: An in vitro platform for evaluating vaccination efficacy and for screening SARS-CoV-2 inhibitors and neutralizing antibodies. Journal of Immunological Methods, 2022, 503, 113244.	1.4	11
134	Exploring the inhibitory potential of Saussurea costus and Saussurea involucrata phytoconstituents against the Spike glycoprotein receptor binding domain of SARS-CoV-2 Delta (B.1.617.2) variant and the main protease (Mpro) as therapeutic candidates, using Molecular docking, DFT, and ADME/Tox studies. lournal of Molecular Structure. 2022. 1263. 133032.	3.6	14
135	Potential inhibitor for blocking binding between ACE2 and SARS-CoV-2 spike protein with mutations. Biomedicine and Pharmacotherapy, 2022, 149, 112802.	5.6	5
136	Phytochemicals-based targeting RdRp and main protease of SARS-CoV-2 using docking and steered molecular dynamic simulation: A promising therapeutic approach for Tackling COVID-19. Computers in Biology and Medicine, 2022, 145, 105468.	7.0	34
137	The non-pharmaceutical interventions may affect the advantage in transmission of mutated variants during epidemics: A conceptual model for COVID-19. Journal of Theoretical Biology, 2022, 542, 111105.	1.7	5
138	Crystal structure of Acetyl-CoA carboxylase (AccB) from Streptomyces antibioticus and insights into the substrate-binding through in silico mutagenesis and biophysical investigations. Computers in Biology and Medicine, 2022, 145, 105439.	7.0	2
139	A comprehensive evolutionary and epidemiological characterization of insertion and deletion mutations in SARS-CoV-2 genomes. Virus Evolution, 2021, 7, veab104.	4.9	9
140	SARS-CoV-2 Variants of Concern Infect the Respiratory Tract and Induce Inflammatory Response in Wild-Type Laboratory Mice. Viruses, 2022, 14, 27.	3.3	21
141	RBD Double Mutations of SARS-CoV-2 Strains Increase Transmissibility through Enhanced Interaction between RBD and ACE2 Receptor. Viruses, 2022, 14, 1.	3.3	23
142	SARS-CoV-2 Variants: Mutations and Effective Changes. Biotechnology and Bioprocess Engineering, 2021, 26, 859-870.	2.6	12
143	Insights into the Binding of Receptor-Binding Domain (RBD) of SARS-CoV-2 Wild Type and B.1.620 Variant with hACE2 Using Molecular Docking and Simulation Approaches. Biology, 2021, 10, 1310.	2.8	5
144	Rescuing the Host Immune System by Targeting the Immune Evasion Complex ORF8-IRF3 in SARS-CoV-2 Infection with Natural Products Using Molecular Modeling Approaches. International Journal of Environmental Research and Public Health, 2022, 19, 112.	2.6	5
145	Scope of SARS-CoV-2 variants, mutations, and vaccine technologies. The Egyptian Journal of Internal Medicine, 2022, 34, 34.	0.9	5
146	Amomum tsao-ko essential oil, a novel anti-COVID-19 Omicron spike protein natural products: A computational study. Arabian Journal of Chemistry, 2022, 15, 103916.	4.9	4
147	Comparative genomics, evolutionary epidemiology, and RBD-hACE2 receptor binding pattern in B.1.1.7 (Alpha) and B.1.617.2 (Delta) related to their pandemic response in UK and India. Infection, Genetics and Evolution, 2022, 101, 105282.	2.3	7
148	Clinical Characteristics, Transmissibility, Pathogenicity, Susceptible Populations, and Re-infectivity of Prominent COVID-19 Variants. , 2022, 13, 402.		28
149	Covid-19: virology, variants, and vaccines. , 2022, 1, e000040.		24
150	Nanobodies Protecting From Lethal SARS-CoV-2 Infection Target Receptor Binding Epitopes Preserved in Virus Variants Other Than Omicron. Frontiers in Immunology, 2022, 13, 863831.	4.8	10

ARTICLE IF CITATIONS Delta variant (B.1.617.2) of SARS-CoV-2: Mutations, impact, challenges and possible solutions. Human 3.3 44 151 Vaccines and Immunotherapeutics, 2022, 18, 2068883. Biophysical Fitness Landscape of the SARS-CoV-2 Delta Variant Receptor Binding Domain. Journal of 4.2 Molecular Biology, 2022, 434, 167622. 153 Emerging SARS-CoV-2 variants: Why, how, and what's next?., 2022, 1, 100029. 26 Physicochemical effect of the N501Y, E484K/Q, K417N/T, L452R and T478K mutations on the SARS-CoV-2 spike protein RBD and its influence on agent fitness and on attributes developed by emerging variants of concern. Virology, 2022, 572, 44-54. 154 2.4 Investigation of the binding and dynamic features of A.30 variant revealed higher binding of RBD for 155 hACE2 and escapes the neutralizing antibody: A molecular simulation approach. Computers in Biology 7.0 4 and Medicine, 2022, 146, 105574. A protein coupling and molecular simulation analysis of the clinical mutants of androgen receptor revealed a higher binding for Leupaxin, to increase the prostate cancer invasion and motility. Computers in Biology and Medicine, 2022, 146, 105537. Bioinformatics for the Origin and Evolution of Viruses. Advances in Experimental Medicine and 157 1.6 2 Biology, 2022, 1368, 53-71. Evolutionary Traits and Genomic Surveillance of SARS-CoV-2 in South America. Global Health, 0.8 Epidemiology and Genomics, 2022, 2022, 1-9. Characterization of proteome wide antigenic epitopes to design proteins specific and proteome-wide 159 ensemble vaccines against heartland virus using structural vaccinology and immune simulation 2.9 6 approaches. Microbial Pathogenesis, 2022, 168, 105592. Repositioning of experimentally validated anti-breast cancer peptides to target FAK-PAX complex to halt the breast cancer progression: a biomolecular simulation approach. Molecular Diversity, 0, , . Emergence of SARS-CoV-2 New Variants and Their Clinical Significance. Canadian Journal of Infectious 161 17 1.9 Diseases and Medical Microbiology, 2022, 2022, 1-8. An Insight Based on Computational Analysis of the Interaction between the Receptor-Binding Domain 2.8 of the Ömicron Variants and Human Angiotensin-Converting Enzyme 2. Biology, 2022, 11, 797. SARS-CoV-2 variants and COVID-19 vaccines: Current challenges and future strategies. International 163 3.3 26 Reviews of Immunology, 2023, 42, 393-414. Differential Pathogenesis of SARS-CoV-2 Variants of Concern in Human ACE2-Expressing Mice. Viruses, 164 3.3 2022, 14, 1139. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. 165 47.7 38 Chemical Reviews, 2022, 122, 11287-11368. Developing Pseudovirus-Based Neutralization Assay against Omicron-Included SARS-CoV-2 Variants. Viruses, 2022, 14, 1332. Biological Properties of SARS-CoV-2 Variants: Epidemiological Impact and Clinical Consequences. 167 4.4 23 Vaccines, 2022, 10, 919. Structural and dynamic investigation of nonâ€synonymous variations in Renin–AGT complex revealed altered binding via hydrogenâ€bonding network reprogramming to accelerate the hypertension 3.2 pathway. Chemical Biology and Drug Design, 2022, 100, 730-746.

#	Article	IF	CITATIONS
169	The Candidate Molecules, RBD-ACE2 Binding Inhibitors to Prevent SARS-CoV-2 Infection. Journal of Computational Biophysics and Chemistry, 0, , .	1.7	0
171	Recapping the Features of SARS-CoV-2 and Its Main Variants: Status and Future Paths. Journal of Personalized Medicine, 2022, 12, 995.	2.5	9
172	South African (501Y.V2) and the United Kingdom (B.1.1.7) SARS-CoV-2 spike (S) protein variants demonstrate a higher binding affinity to ACE2. Combinatorial Chemistry and High Throughput Screening, 2022, 25, .	1.1	0
173	Neutralization Activity against SARS-CoV-2 Variants after Booster Vaccination in Populations without COVID-19: A Meta-Analysis. Vaccines, 2022, 10, 1101.	4.4	1
174	Differences between Omicron SARS-CoV-2 RBD and other variants in their ability to interact with cell receptors and monoclonal antibodies. Journal of Biomolecular Structure and Dynamics, 2023, 41, 5707-5727.	3.5	7
175	Omicron Binding Mode: Contact Analysis and Dynamics of the Omicron Receptor-Binding Domain in Complex with ACE2. Journal of Chemical Information and Modeling, 2022, 62, 3844-3853.	5.4	11
176	Novel Lateral Flow-Based Assay for Simple and Visual Detection of SARS-CoV-2 Mutations. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	1
177	Functional mutations of SARS-CoV-2: implications to viral transmission, pathogenicity and immune escape. Chinese Medical Journal, 0, Publish Ahead of Print, .	2.3	3
178	An integrated understanding of the evolutionary and structural features of the SARS-CoV-2 spike receptor binding domain (RBD). International Journal of Biological Macromolecules, 2022, 217, 492-505.	7.5	9
179	Declining neutralizing antibody levels after SARS-CoV-2 mRNA vaccination: observational data from community point-of-care testing service in Brno, Czechia. Central European Journal of Public Health, 2022, 30, 111-118.	1.1	0
180	Decreased Interfacial Dynamics Caused by the N501Y Mutation in the SARS-CoV-2 S1 Spike:ACE2 Complex. Frontiers in Molecular Biosciences, 0, 9, .	3.5	9
181	Structural and molecular insights into the mechanism of resistance to enzalutamide by the clinical mutants in androgen receptor (AR) in castration-resistant prostate cancer (CRPC) patients. International Journal of Biological Macromolecules, 2022, 218, 856-865.	7.5	5
182	A strategy to optimize the peptide-based inhibitors against different mutants of the spike protein of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 2023, 41, 6191-6202.	3.5	2
185	Evolutionary progression of collective mutations in Omicron sub-lineages towards efficient RBD-hACE2: Allosteric communications between and within viral and human proteins. Computational and Structural Biotechnology Journal, 2022, 20, 4562-4578.	4.1	3
186	Validation of catalytic site residues of Ubiquitin Specific Protease 2 (USP2) by molecular dynamic simulation and novel kinetics assay for rational drug design. Molecular Diversity, 2023, 27, 1323-1332.	3.9	1
187	Tracing the origin of Severe acute respiratory syndrome Coronavirusâ€2 (SARSâ€CoVâ€2): A systematic review and narrative synthesis. Journal of Medical Virology, 0, , .	5.0	3
188	Promising natural products against <scp>SARSâ€CoV</scp> â€2: Structure, function, and clinical trials. Phytotherapy Research, 2022, 36, 3833-3858.	5.8	9
190	Virulence and biofilm inhibition of 3-methoxycinnamic acid against Agrobacterium tumefaciens. Journal of Applied Microbiology, 2022, 133, 3161-3175.	3.1	3

#	Article	IF	CITATIONS
191	Most frequently harboured missense variants of hACE2 across different populations exhibit varying patterns of binding interaction with spike glycoproteins of emerging SARS-CoV-2 of different lineages. Computers in Biology and Medicine, 2022, 148, 105903.	7.0	5
192	Structural aspects of SARS-CoV-2 mutations: Implications to plausible infectivity with ACE-2 using computational modeling approach. Journal of Biomolecular Structure and Dynamics, 2023, 41, 6518-6533.	3.5	9
193	Genomic surveillance: Circulating lineages and genomic variation of SARS-CoV-2 in early pandemic in Ceará state, Northeast Brazil. Virus Research, 2022, 321, 198908.	2.2	2
194	Structural communication fingerprinting and dynamic investigation of RBD-hACE2 complex from BA.1 × AY.4 recombinant variant (Deltacron) of SARS-CoV-2 to decipher the structural basis for enhanced transmission. Journal of Biomolecular Structure and Dynamics, 0, , 1-12.	3.5	4
195	Structural topological analysis of spike proteins of SARS-CoV-2 variants of concern highlight distinctive amino acid substitution patterns. European Journal of Cell Biology, 2022, 101, 151275.	3.6	4
196	Electrostatic Features for the Receptor Binding Domain of SARS-COV-2 Wildtype and Its Variants. Compass to the Severity of the Future Variants with the Charge-Rule. Journal of Physical Chemistry B, 2022, 126, 6835-6852.	2.6	19
197	Tracking Co-Occurrence of N501Y, P681R, and Other Key Mutations in SARS-CoV-2 Spike for Surveillance. , 2022, 2, 147-162.		4
198	Molecular characterization of a new SARS-CoV-2 recombinant cluster XAG identified in Brazil. Frontiers in Medicine, 0, 9, .	2.6	6
199	Case Report: A 29-Year-Old Pregnant Woman at 24 Weeks of Gestation Presenting with Laryngotracheitis and COVID-19 Due to the R.1 Variant of SARS-CoV-2. American Journal of Case Reports, 0, 23, .	0.8	1
202	A critical overview of current progress for COVID-19: development of vaccines, antiviralÂdrugs, and therapeutic antibodies. Journal of Biomedical Science, 2022, 29, .	7.0	64
203	Ultra-Large-Scale Screening of Natural Compounds and Free Energy Calculations Revealed Potential Inhibitors for the Receptor-Binding Domain (RBD) of SARS-CoV-2. Molecules, 2022, 27, 7317.	3.8	3
204	mRNA-Based Vaccine Designing against Epstein-Barr Virus to Induce an Immune Response Using Immunoinformatic and Molecular Modelling Approaches. International Journal of Environmental Research and Public Health, 2022, 19, 13054.	2.6	7
205	An efficient method to enhance recovery and detection of SARS-CoV-2 RNA in wastewater. Journal of Environmental Sciences, 2023, 130, 139-148.	6.1	16
206	Prerequisite for COVID-19 Prediction: A Review on Factors Affecting the Infection Rate. International Journal of Environmental Research and Public Health, 2022, 19, 12997.	2.6	3
207	Infection of the oral cavity with SARS-CoV-2 variants: Scope of salivary diagnostics. Frontiers in Oral Health, 0, 3, .	3.0	3
208	SARSâ€CoVâ€2 evolves to reduce but not abolish neutralizing action. Journal of Medical Virology, 2023, 95, .	5.0	6
209	The role of SARS-CoV-2 accessory proteins in immune evasion. Biomedicine and Pharmacotherapy, 2022, 156, 113889.	5.6	45
210	Novel coronavirus mutations: Vaccine development and challenges. Microbial Pathogenesis, 2022, 173, 105828.	2.9	7

#	Article	IF	CITATIONS
211	Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible Treatments: All options on the Table. International Immunopharmacology, 2022, 113, 109325.	3.8	21
212	SARS-CoV-2 variants: Impact on biological and clinical outcome. Frontiers in Medicine, 0, 9, .	2.6	7
213	The effect of mutations on binding interactions between the SARS-CoV-2 receptor binding domain and neutralizing antibodies B38 and CB6. Scientific Reports, 2022, 12, .	3.3	3
214	Mutational Insight into Allosteric Regulation of Kir Channel Activity. ACS Omega, 2022, 7, 43621-43634.	3.5	2
215	In silico study of SARSâ€CoVâ€2 spike protein RBD and human ACEâ€2 affinity dynamics across variants and Omicron subvariants. Journal of Medical Virology, 2023, 95, .	5.0	12
216	Structural plasticity of omicron BA.5 and BA.2.75 for enhanced ACE-dependent entry into cells. Journal of Biomolecular Structure and Dynamics, 2023, 41, 10762-10773.	3.5	2
217	Molecular evolution of SARS oVâ€2 from December 2019 to August 2022. Journal of Medical Virology, 2023, 95, .	5.0	22
218	Interactions of angiotensin-converting enzyme-2 (ACE2) and SARS-CoV-2 spike receptor-binding domain (RBD): a structural perspective. Molecular Biology Reports, 2023, 50, 2713-2721.	2.3	13
219	Epidemiology and Characteristics of SARS-CoV-2 Variants of Concern: The Impacts of the Spike Mutations. Microorganisms, 2023, 11, 30.	3.6	11
220	Force-tuned avidity of spike variant-ACE2 interactions viewed on the single-molecule level. Nature Communications, 2022, 13, .	12.8	20
221	Mutational analysis of the spike protein of SARS-COV-2 isolates revealed atomistic features responsible for higher binding and infectivity. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	1
222	Investigation on the interaction mechanism of different SARS-CoV-2 spike variants with hACE2: insights from molecular dynamics simulations. Physical Chemistry Chemical Physics, 2023, 25, 2304-2319.	2.8	3
223	Network pharmacology- and molecular simulation-based exploration of therapeutic targets and mechanisms of heparin for the treatment of sepsis/COVID-19. Journal of Biomolecular Structure and Dynamics, 2023, 41, 12586-12598.	3.5	5
224	Revealing the Molecular Interactions between Human ACE2 and the Receptor Binding Domain of the SARS-CoV-2 Wild-Type, Alpha and Delta Variants. International Journal of Molecular Sciences, 2023, 24, 2517.	4.1	1
225	Is BF.7 more infectious than other Omicron subtypes: Insights from structural and simulation studies of BF.7 spike RBD variant. International Journal of Biological Macromolecules, 2023, 238, 124154.	7.5	4
226	Deciphering the mechanism of resistance by novel double mutations in pncA in Mycobacterium tuberculosis using protein structural graphs (PSG) and structural bioinformatic approaches. Computers in Biology and Medicine, 2023, 154, 106599.	7.0	0
227	Discovery of Isojacareubin as a covalent inhibitor of SARSâ€CoVâ€2 main protease using structural and experimental approaches. Journal of Medical Virology, 2023, 95, .	5.0	3
228	Effect of Nutlin-3a on stability of p53-MDM2 complex. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 068702.	0.5	1

#	Article	IF	CITATIONS
229	Persistence of a Frameshifting Deletion in SARS-CoV-2 ORF7a for the Duration of a Major Outbreak. Viruses, 2023, 15, 522.	3.3	2
230	Research progress in spike mutations of SARSâ€CoVâ€2 variants and vaccine development. Medicinal Research Reviews, 2023, 43, 932-971.	10.5	7
231	mRNA Vaccines against SARS-CoV-2: Advantages and Caveats. International Journal of Molecular Sciences, 2023, 24, 5944.	4.1	12
233	How SARS-CoV-2 Alters the Regulation of Gene Expression in Infected Cells. Journal of Physical Chemistry Letters, 2023, 14, 3199-3207.	4.6	2
234	The influence of single-point mutation D614G on the binding process between human angiotensin-converting enzyme 2 and the SARS-CoV-2 spike protein-an atomistic simulation study. RSC Advances, 2023, 13, 9800-9810.	3.6	0
235	Understanding Mutations in Human SARS-CoV-2 Spike Glycoprotein: A Systematic Review & Meta-Analysis. Viruses, 2023, 15, 856.	3.3	10
236	Within-host genetic diversity of SARS-CoV-2 lineages in unvaccinated and vaccinated individuals. Nature Communications, 2023, 14, .	12.8	10
237	Computational Modeling and Evaluation of Potential mRNA and Peptide-Based Vaccine against Marburg Virus (MARV) to Provide Immune Protection against Hemorrhagic Fever. BioMed Research International, 2023, 2023, 1-18.	1.9	3
238	Specific Activation of T Cells by an ACE2-Based CAR-Like Receptor upon Recognition of SARS-CoV-2 Spike Protein. International Journal of Molecular Sciences, 2023, 24, 7641.	4.1	4
239	Multiplex Assays Enable Simultaneous Detection and Identification of SARS-CoV-2 Variants of Concern in Clinical and Wastewater Samples. ACS Measurement Science Au, 2023, 3, 258-268.	4.4	4
241	Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chemical Science, 2023, 14, 6149-6206.	7.4	12
242	Inhibition of SARS-CoV-2 Spike Protein Pseudotyped Virus Infection Using ACE2-Tethered Micro/Nanoparticles. Bioengineering, 2023, 10, 652.	3.5	0
243	The XBB.1.5 slightly increase the binding affinity for host receptor ACE2 and exhibit strongest immune escaping features: molecular modeling and free energy calculation. Frontiers in Molecular Biosciences, 0, 10, .	3.5	4
244	Structural basis for the mechanism of interaction of SARS-CoV-2 B.1.640.2 variant RBD with the host receptors hACE2 and GRP78. Journal of Biomolecular Structure and Dynamics, 2024, 42, 2034-2042.	3.5	0
245	Free Energy Perturbation Calculations of Mutation Effects on SARS-CoV-2 RBD::ACE2 Binding Affinity. Journal of Molecular Biology, 2023, 435, 168187.	4.2	3
246	SARS-CoV-2 omicron RBD forms a weaker binding affinity to hACE2 compared to Delta RBD in <i>in-silico</i> studies. Journal of Biomolecular Structure and Dynamics, 0, , 1-10.	3.5	0
247	Structural insights into the mechanism of resistance to bicalutamide by the clinical mutations in androgen receptor in chemo-treatment resistant prostate cancer. Journal of Biomolecular Structure and Dynamics, 2024, 42, 1181-1190.	3.5	2
248	Molecular epidemiological characteristics of SARS-CoV-2 in imported cases from 2021 to 2022 in Zhejiang Province, China. Frontiers in Public Health, 0, 11, .	2.7	2

#	Article	IF	CITATIONS
249	SARSâ€CoVâ€2 variants circulating in the Fars province, southern Iran, December 2020–March 2021: A crossâ€sectional study. Health Science Reports, 2023, 6, .	1.5	1
250	Analysis of Sars-CoV-2 RBD Mutations in Khuzestan Province, Iran - A Retrospective Study, 2021. Iranian Journal of Medical Microbiology, 2023, 17, 194-201.	0.6	0
251	Beta, Delta, and Omicron, Deadliest Among SARS-CoV-2 Variants: A Computational Repurposing Approach. Evolutionary Bioinformatics, 2023, 19, .	1.2	0
252	Physicochemical effects of emerging exchanges on the spike protein's RBM of the SARS-CoV-2 Omicron subvariants BA.1-BA.5 and its influence on the biological properties and attributes developed by these subvariants. Virology, 2023, 587, 109850.	2.4	0
254	The emergence of Omicron VOC and its rapid spread and persistence in the Western Amazon. PLoS ONE, 2023, 18, e0285742.	2.5	1
255	Acquired Immune Deficiency Syndrome correlation with SARS-CoV-2 N genotypes. Biomedical Journal, 2023, , 100650.	3.1	Ο
256	Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chemical Society Reviews, 2023, 52, 6497-6553.	38.1	1
257	Exploring the natural products chemical space through a molecular search to discover potential inhibitors that target the hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD). Frontiers in Pharmacology, 0, 14, .	3.5	1
258	Introduction and effect of natural selection analysis at common mutations of SARS-CoV-2 spike gene in Iran. Virus Research, 2023, 336, 199202.	2.2	0
259	The Key Site Variation and Immune Challenges in SARS-CoV-2 Evolution. Vaccines, 2023, 11, 1472.	4.4	2
260	SARSâ€CoVâ€2 variants of concern elicit divergent early immune responses in hACE2 transgenic mice. European Journal of Immunology, 2023, 53, .	2.9	0
263	Antibody evasion associated with the RBD significant mutations in several emerging SARS-CoV-2 variants and its subvariants. Drug Resistance Updates, 2023, 71, 101008.	14.4	0
264	Monitoring and tracking the spread of SARS-CoV-2 in Asturias, Spain. Access Microbiology, 2023, 5, .	0.5	0
265	Riding the Wave: Unveiling the Conformational Waves from RBD of SARS-CoV-2 Spike Protein to ACE2. Journal of Physical Chemistry B, 2023, 127, 8525-8536.	2.6	0
266	Comparative Study of the Mutations Observed in the SARS-CoV-2 RBD Variants of Concern and Their Impact on the Interaction with the ACE2 Protein. Journal of Physical Chemistry B, 2023, 127, 8586-8602.	2.6	2
267	Spike (S) Glycoprotein N501Y Mutant. Springer Series in Biophysics, 2023, , 349-357.	0.4	0
268	Distinctive Combinations of RBD Mutations Contribute to Antibody Evasion in the Case of the SARS-CoV-2 Beta Variant. Journal of Microbiology and Biotechnology, 2023, , .	2.1	0
269	Nanomedicine approaches against SARS-CoV-2 and variants. Journal of Controlled Release, 2024, 365, 101-111.	9.9	1

#	Article	IF	CITATIONS
270	Introduction, Dispersal, and Predominance of SARS-CoV-2 Delta Variant in Rio Grande do Sul, Brazil: A Retrospective Analysis. Microorganisms, 2023, 11, 2938.	3.6	0
271	Development of primer-probe sets to rapidly distinguish single nucleotide polymorphisms in SARS-CoV-2 lineages. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	1
272	Virological Characteristics of Five SARS-CoV-2 Variants, Including Beta, Delta and Omicron BA.1, BA.2, BA.5. Viruses, 2023, 15, 2394.	3.3	0
273	A Modified Recombinant DNA-Based SARS-CoV-2 Vaccine Expressing Stabilized Uncleavable Spike Protein Elicits Humoral and Cellular Immunity against Various SARS-CoV-2 Variants of Concern. Transboundary and Emerging Diseases, 2023, 2023, 1-11.	3.0	0
274	Resistance analysis following sotrovimab treatment in participants with COVID-19 during the phase III COMET-ICE study. Future Virology, 2023, 18, 975-990.	1.8	2
275	Mutational analysis of SARS-CoV-2 ORF6-KPNA2 binding interface and identification of potent small molecule inhibitors to recuse the host immune system. Frontiers in Immunology, 0, 14, .	4.8	0
276	Adjuvanted SARS-CoV-2 spike protein vaccination elicits long-lived plasma cells in nonhuman primates. Science Translational Medicine, 2024, 16, .	12.4	4
277	Structural and molecular investigation of the impact of S30L and D88N substitutions in G9R protein on coupling with E4R from Monkeypox virus (MPXV). Journal of Biomolecular Structure and Dynamics, 0, , 1-12.	3.5	0
278	Exploring the natural products chemical space to abrogate the F3L-dsRNA interface of monkeypox virus to enhance the immune responses using molecular screening and free energy calculations. Frontiers in Pharmacology, 0, 14, .	3.5	0
279	Novel Omicron Variants Enhance Anchored Recognition of TMEM106B: A New Pathway for SARS-CoV-2 Cellular Invasion. Journal of Physical Chemistry Letters, 2024, 15, 671-680.	4.6	0
280	Elucidating the binding mechanism of SARS-CoV-2 NSP6-TBK1 and structure-based designing of phytocompounds inhibitors for instigating the host immune response. Frontiers in Chemistry, 0, 11, .	3.6	0
281	Improving the substrate binding of acetyl oA carboxylase (AccB) from <i>Streptomyces antibioticus</i> through computational enzyme engineering. Biotechnology and Applied Biochemistry, 2024, 71, 402-413.	3.1	0
282	Within-host evolution of SARS-CoV-2: how often are <i>de novo</i> mutations transmitted from symptomatic infections?. Virus Evolution, 2024, 10, .	4.9	0