Meta-topolin and liquid medium mediated enhanced m in Vanilla planifolia Jacks. ex Andrews

Plant Cell, Tissue and Organ Culture 146, 69-82 DOI: 10.1007/s11240-021-02044-z

Citation Report

#	Article	IF	CITATIONS
1	Application of Plant Extracts in Micropropagation and Cryopreservation of Bleeding Heart: An Ornamental-Medicinal Plant Species. Agriculture (Switzerland), 2021, 11, 542.	1.4	7
2	Cryopreservation of Agronomic Plant Germplasm Using Vitrification-Based Methods: An Overview of Selected Case Studies. International Journal of Molecular Sciences, 2021, 22, 6157.	1.8	28
3	Influence of meta-topolin on in vitro propagation and foliar micro-morpho-anatomical developments of Oxystelma esculentum (L.f.)Sm. Plant Cell, Tissue and Organ Culture, 2021, 147, 325-337.	1.2	21
4	Meta-Topolin mediated improved micropropagation, foliar micro-morphological traits, biochemical profiling, and assessment of genetic fidelity in Santalum album L. Industrial Crops and Products, 2021, 171, 113931.	2.5	15
5	Improved micropropagation, morphometric traits and photosynthetic pigments content using liquid culture system in Spathoglottis plicata Blume. Vegetos, 0, , 1.	0.8	6
6	Validation of meta-Topolin in organogenesis, improved morpho-physio-chemical responses, and clonal fidelity analysis in Dioscorea pentaphylla L. – an underutilized yam species. South African Journal of Botany, 2022, 145, 284-292.	1.2	6
7	Gold nanoparticles and electromagnetic irradiation in tissue culture systems of bleeding heart: biochemical, physiological, and (cyto)genetic effects. Plant Cell, Tissue and Organ Culture, 2022, 149, 715-734.	1.2	11
8	Photosynthetic Parameters and Oxidative Stress during Acclimation of Crepe-Myrtle (Lagerstroemia) Tj ETQq1 1 Regenerated Plants. Plants, 2022, 11, 1163.	0.784314 1.6	rgBT /Overlo 4
9	Amelioration of Morpho-structural and Physiological Disorders in Micropropagation of Aloe vera L. by Use of an Aromatic Cytokinin 6-(3-Hydroxybenzylamino) Purine. Journal of Plant Growth Regulation, 2023, 42, 4751-4763.	2.8	4
10	Gamma Radiation (60Co) Induces Mutation during In Vitro Multiplication of Vanilla (Vanilla planifolia) Tj ETQq1 1	0.784314 1.2	l rgBT /Over
11	Assessing the Genetic Stability of In Vitro Raised Plants. , 2022, , 245-276.		6
12	6-Benzylaminopurine and kinetin modulations during in vitro propagation of Quercus robur (L.): an assessment of anatomical, biochemical, and physiological profiling of shoots. Plant Cell, Tissue and Organ Culture, 2022, 151, 149-164.	1.2	10
13	Biotechnological interventions and indole alkaloid production in Rauvolfia serpentina. Applied Microbiology and Biotechnology, 2022, 106, 4867-4883.	1.7	7
14	High-throughput in vitro propagation and evaluation of foliar micro-morpho-anatomical stability in Musa acuminata cv. †Grand Nain' using 6-benzoyladenine (BOA) in the nutrient medium. Scientia Horticulturae, 2022, 304, 111334.	1.7	4
15	Exogenous implications of silver nitrate on direct and indirect somatic embryogenesis and germination of cold stored synseeds of Vanilla planifolia Jacks. ex Andrews. South African Journal of Botany, 2022, 150, 129-138.	1.2	2
16	In vitro propagation and secondary metabolite production in Gloriosa superba L. Applied Microbiology and Biotechnology, 2022, 106, 5399-5414.	1.7	3
17	Advances in Somatic Embryogenesis in Vanilla (Vanilla planifolia Jacks.). Methods in Molecular Biology, 2022, , 29-40.	0.4	2
18	Genetic diversity assessment and biotechnological aspects in Aristolochia spp Applied Microbiology and Biotechnology, 0, , .	1.7	1

CITATION REPORT

#	Article	IF	CITATIONS
19	In vitro regeneration of Caralluma stalagmifera var. stalagmifera through LCT and ex vitro rooting: a cost effective approach for conservation of succulents. Vegetos, 0, , .	0.8	0
20	Start codon targeted (SCoT) polymorphism marker in plant genome analysis: current status and prospects. Planta, 2023, 257, .	1.6	23
21	Effect of Soil Type and In Vitro Proliferation Conditions on Acclimation and Growth of Willow Shoots Micropropagated in Continuous Immersion Bioreactors. Plants, 2023, 12, 132.	1.6	0
22	Improved organogenesis and micro-structural traits in micropropagated plantlets of Caralluma umbellata Haw. in response to Meta-Topolin. Plant Cell, Tissue and Organ Culture, 0, , .	1.2	2
23	Efficient utilization of phytohormones for the in vitro proliferation of Paphiopedilum villosum Lindl. Stein - a Lady's Slipper orchid. South African Journal of Botany, 2023, 154, 387-393.	1.2	0
24	Seismic stress-mediated improvements in morphometry, foliar anatomy and biochemistry of <i>in vitro</i> grown plants of <i>Gardenia jasminoides</i> J. Ellis. Journal of Horticultural Science and Biotechnology, 0, , 1-13.	0.9	2
25	Structural alterations of Cymbopogon citratus (DC.) Stapf leaves and roots caused by silicon nanoparticles during in vitro propagation. Industrial Crops and Products, 2023, 197, 116648.	2.5	4
30	Temporary Immersion Systems in Plant Micropropagation. Methods in Molecular Biology, 2024, , 3-8.	0.4	0