Diffusion in dense supercritical methane from quasi-ela measurements

Nature Communications 12, 1958

DOI: 10.1038/s41467-021-22182-4

Citation Report

#	Article	IF	CITATIONS
1	Multiply improved positive matrix factorization for source apportionment of volatile organic compounds during the COVID-19 shutdown in Tianjin, China. Environment International, 2022, 158, 106979.	10.0	31
2	Diffusion, viscosity, and Stokes-Einstein relation in dense supercritical methane. Journal of Molecular Liquids, 2022, 354, 118840.	4.9	12
3	A combined clustering/symbolic regression framework for fluid property prediction. Physics of Fluids, 2022, 34, .	4.0	15
4	Freezing density scaling of fluid transport properties: Application to liquefied noble gases. Journal of Chemical Physics, 2022, 157, .	3.0	9
5	Transfer-Free CVD Growth of High-Quality Wafer-Scale Graphene at 300 \hat{A}° C for Device Mass Fabrication. ACS Applied Materials & Samp; Interfaces, 2022, 14, 53174-53182.	8.0	4
6	Combining Molecular Dynamics and Machine Learning to Analyze Shear Thinning for Alkane and Globular Lubricants in the Low Shear Regime. ACS Applied Materials & Samp; Interfaces, 2023, 15, 8567-8578.	8.0	4
7	Stokes–Einstein relation without hydrodynamic diameter in the TIP4P/Ice water model. Journal of Chemical Physics, 2023, 158, .	3.0	4
8	Noncanonical Relationship between Heterogeneity and the Stokes–Einstein Breakdown in Deep Eutectic Solvents. Journal of Physical Chemistry Letters, 2023, 14, 9766-9773.	4.6	O
9	Elementary vibrational model for transport properties of dense fluids. Physics Reports, 2024, 1050, 1-29.	25.6	3
10	System Size Dependence of the Diffusion Coefficients in MD Simulations: A Simple Correction Formula for Pure Dense Fluids. Journal of Physical Chemistry B, 2024, 128, 287-290.	2.6	O
11	A versatile pressure-cell design for studying ultrafast molecular-dynamics in supercritical fluids using coherent multi-pulse x-ray scattering. Review of Scientific Instruments, 2024, 95, .	1.3	О