Cytosolic delivery of nucleic acids: The case of ionizable

Bioengineering and Translational Medicine 6, e10213 DOI: 10.1002/btm2.10213

Citation Report

#	Article	IF	CITATIONS
1	Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioengineering and Translational Medicine, 2021, 6, e10213.	3.9	142
2	Inflammatory microenvironment-targeted nanotherapies. Journal of Controlled Release, 2021, 334, 114-126.	4.8	26
3	Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles. Journal of Controlled Release, 2021, 335, 465-480.	4.8	55
4	Synergies between therapeutic ultrasound, gene therapy and immunotherapy in cancer treatment. Advanced Drug Delivery Reviews, 2021, 178, 113906.	6.6	20
5	WRAP-based nanoparticles for siRNA delivery: a SAR study and a comparison with lipid-based transfection reagents. Journal of Nanobiotechnology, 2021, 19, 236.	4.2	6
6	Strategies to deliver RNA by nanoparticles for therapeutic potential. Molecular Aspects of Medicine, 2022, 83, 100991.	2.7	5
7	The hydrophobic tail of a pH-sensitive cationic lipid influences siRNA transfection activity and toxicity in human NK cell lines. International Journal of Pharmaceutics, 2021, 609, 121140.	2.6	17
8	Escaping to silence using an endosome-disrupting polymer. Molecular Therapy, 2021, 29, 2893-2894.	3.7	0
9	Clinical progress of nanomedicine-based RNA therapies. Bioactive Materials, 2022, 12, 203-213.	8.6	23
10	Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing. Accounts of Chemical Research, 2021, 54, 4001-4011.	7.6	59
11	Lipid Nanoparticles for Organ-Specific mRNA Therapeutic Delivery. Pharmaceutics, 2021, 13, 1675.	2.0	33
12	Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs, 2021, 35, 643-671.	2.2	8
14	Design and development of topical liposomal formulations in a regulatory perspective. Drug Delivery and Translational Research, 2022, 12, 1811-1828.	3.0	6
15	New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics, 2021, 13, 2053.	2.0	14
16	Chemistry of Lipid Nanoparticles for RNA Delivery. Accounts of Chemical Research, 2022, 55, 2-12.	7.6	230
17	Modulating microRNAs in cancer: Next-generation therapies. Cancer Biology and Medicine, 2021, , 1-1.	1.4	9
18	Evolution of drug delivery systems: From 1950 to 2020 and beyond. Journal of Controlled Release, 2022, 342, 53-65.	4.8	134
19	Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID-19 using 3D bioprinting. Nano Today, 2022, 43, 101403.	6.2	26

# 20	ARTICLE A Unique Core–Shell Structured, Glycol Chitosan-Based Nanoparticle Achieves Cancer-Selective Gene	IF 2.0	CITATIONS 8
20	Delivery with Reduced Off-Target Effects. Pharmaceutics, 2022, 14, 373. Curvature effects in charge-regulated lipid bilayers. Soft Matter, 2022, 18, 2597-2610.	1.2	8
22	Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. International Journal of Molecular Sciences, 2022, 23, 2408.	1.8	13
23	Nonviral Delivery Systems of mRNA Vaccines for Cancer Gene Therapy. Pharmaceutics, 2022, 14, 512.	2.0	19
24	Targeted Drug Delivery for Chronic Lymphocytic Leukemia. Pharmaceutical Research, 2022, 39, 441-461.	1.7	8
25	Advanced molecular imaging for the characterisation of complex medicines. Drug Discovery Today, 2022, 27, 1716-1723.	3.2	3
26	Importance of Process Parameters Influencing the Mean Diameters of siRNA-Containing Lipid Nanoparticles (LNPs) on the <i>in Vitro</i> Activity of Prepared LNPs. Biological and Pharmaceutical Bulletin, 2022, 45, 497-507.	0.6	1
27	A nanovaccine for enhancing cellular immunity via cytosolic co-delivery of antigen and polyIC RNA. Journal of Controlled Release, 2022, 345, 354-370.	4.8	14
28	Acid-Sensitive Surfactants Enhance the Delivery of Nucleic Acids. Molecular Pharmaceutics, 2022, 19, 67-79.	2.3	4
29	RNA Drug Delivery Using Biogenic Nanovehicles for Cancer Therapy. Frontiers in Pharmacology, 2021, 12, 734443.	1.6	6
31	Pre-clinical non-viral vectors exploited for <i>in vivo</i> CRISPR/Cas9 gene editing: an overview. Biomaterials Science, 2022, 10, 3410-3432.	2.6	9
32	Evaluation of liver specific ionizable lipid nanocarrier in the delivery of siRNA. Chemistry and Physics of Lipids, 2022, 246, 105207.	1.5	1
33	Engineering of Extracellular Vesicles for Small Molecule-Regulated Cargo Loading and Cytoplasmic Delivery of Bioactive Proteins. Molecular Pharmaceutics, 2022, 19, 2495-2505.	2.3	10
34	Nanoparticle-based medicines in clinical cancer therapy. Nano Today, 2022, 45, 101512.	6.2	59
35	Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components. Molecular Pharmaceutics, 2022, 19, 1669-1686.	2.3	58
36	Lipid Nanoparticle Technologies for Nucleic Acid Delivery: A Nanoarchitectonics Perspective. Advanced Functional Materials, 2022, 32, .	7.8	36
37	mRNA delivery technologies: Toward clinical translation. International Review of Cell and Molecular Biology, 2022, , 207-293.	1.6	5
38	Nucleic Acid-Loaded Lipid Nanoparticle Interactions with Model Endosomal Membranes. ACS Applied Materials & Interfaces, 2022, 14, 30371-30384.	4.0	18

#	Article	IF	Citations
39	Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications. Pharmaceutical Fronts, 2022, 04, e43-e60.	0.4	2
40	New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics, 2022, 14, 1700.	2.0	22
41	Material Design for Next-Generation mRNA Vaccines Using Lipid Nanoparticles. Polymer Reviews, 2023, 63, 394-436.	5.3	5
42	The Delivery of mRNA Vaccines for Therapeutics. Life, 2022, 12, 1254.	1.1	23
43	Genome editing in cancer: Challenges and potential opportunities. Bioactive Materials, 2023, 21, 394-402.	8.6	3
44	Transformable nanoparticles to bypass biological barriers in cancer treatment. Nanoscale Advances, 0, , .	2.2	3
45	Messenger RNA for Prophylaxis. RNA Technologies, 2022, , 17-40.	0.2	0
46	Synergetic Thermal Therapy for Cancer: State-of-the-Art and the Future. Bioengineering, 2022, 9, 474.	1.6	2
47	Nonviral nanoparticle gene delivery into the <scp>CNS</scp> for neurological disorders and brain cancer applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 0, , .	3.3	4
48	Cancerous pHâ€responsive polycarboxybetaineâ€coated lipid nanoparticle for smart delivery of siRNA against subcutaneous tumor model in mice. Cancer Science, 2022, 113, 4339-4349.	1.7	5
49	Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of <i>in vivo</i> imaging. Theranostics, 2022, 12, 7509-7531.	4.6	43
50	Towards design of drugs and delivery systems with the Martini coarse-grained model. QRB Discovery, 2022, 3, .	0.6	8
51	Delivery of RNAs to Specific Organs by Lipid Nanoparticles for Gene Therapy. Pharmaceutics, 2022, 14, 2129.	2.0	15
52	Lipophilic poly(glycolide) blocks in morpholin-2-one-based CARTs for plasmid DNA delivery: Polymer regioregularity, sequence of lipophilic/polyamine blocks, and nanoparticle stability as factors of transfection efficiency. European Polymer Journal, 2022, 181, 111644.	2.6	1
58	Perspective Chapter: Liposome Mediated Delivery of Immunotherapeutics for Cancer. , 0, , .		0
59	Lipid nanoparticle-assisted miR29a delivery based on core-shell nanofibers improves tendon healing by cross-regulation of the immune response and matrix remodeling. Biomaterials, 2022, 291, 121888.	5.7	6
60	CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood–Brain Barrier and Towards Specific Cellular Targeting. Pharmaceutical Research, 2023, 40, 77-105.	1.7	9
61	A Triazoliumâ€Anchored Selfâ€Immolative Linker Enables Selfâ€Assemblyâ€Driven siRNA Binding and Esteraseâ€Induced Release. Chemistry - A European Journal, 2023, 29, .	1.7	4

#	Article	IF	CITATIONS
62	Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. Journal of Controlled Release, 2022, 352, 970-993.	4.8	19
63	Relative risk reduction: Misinformative measure in clinical trials and COVID-19 vaccine efficacy. , 2022, 1, 100074.		2
64	Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	12
65	Using nanomaterials to address SARS-CoV-2 variants through development of vaccines and therapeutics. Frontiers in Materials, 0, 9, .	1.2	0
66	A tale of nucleic acid–ionizable lipid nanoparticles: Design and manufacturing technology and advancement. Expert Opinion on Drug Delivery, 2023, 20, 75-91.	2.4	6
67	Therapeutic and diagnostic applications of nanoparticles in the management of COVID-19: a comprehensive overview. Virology Journal, 2022, 19, .	1.4	14
68	Antitumor Activity of Antiâ€niRâ€21 Delivered through Lipid Nanoparticles. Advanced Healthcare Materials, 0, , 2202412.	3.9	2
69	The therapeutic prospects of N-acetylgalactosamine-siRNA conjugates. Frontiers in Pharmacology, 0, 13, .	1.6	6
70	Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharmaceutical Research, 2023, 40, 27-46.	1.7	31
71	Acidification-Induced Structure Evolution of Lipid Nanoparticles Correlates with Their <i>In Vitro</i> Gene Transfections. ACS Nano, 2023, 17, 979-990.	7.3	15
72	Overcoming Pharmaceutical Bottlenecks for Nucleic Acid Drug Development. Accounts of Chemical Research, 2023, 56, 224-236.	7.6	10
73	Bioinspired Lipid Nanocarriers for RNA Delivery. ACS Bio & Med Chem Au, 2023, 3, 114-136.	1.7	8
74	Use of soft nanoparticles as delivery agents in anticancer therapy. Systems Biology and Physiology Reports, 2022, 1, 21-31.	0.4	0
75	Lipid Nanoparticles for Nucleic Acid Delivery to Endothelial Cells. Pharmaceutical Research, 2023, 40, 3-25.	1.7	11
76	Lipid Nanoparticles Deliver the Therapeutic VEGFA mRNA In Vitro and In Vivo and Transform Extracellular Vesicles for Their Functional Extensions. Advanced Science, 2023, 10, .	5.6	21
77	The potential role and mechanism of circRNAs in foam cell formation. Non-coding RNA Research, 2023, 8, 315-325.	2.4	3
78	Design of lipid-based nanoparticles for delivery of therapeutic nucleic acids. Drug Discovery Today, 2023, 28, 103505.	3.2	14
79	Highâ€Precision Synthesis of RNA‣oaded Lipid Nanoparticles for Biomedical Applications. Advanced Healthcare Materials, 2023, 12, .	3.9	11

#	Article	IF	CITATIONS
80	Potential of siRNA in COVID-19 therapy: Emphasis on in silico design and nanoparticles based delivery. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	3
81	Development of Novel siRNA Therapeutics: A Review with a Focus on Inclisiran for the Treatment of Hypercholesterolemia. International Journal of Molecular Sciences, 2023, 24, 4019.	1.8	11
82	Ionizable drug delivery systems for efficient and selective gene therapy. Military Medical Research, 2023, 10, .	1.9	2
83	Recent Progress of Lipid Nanoparticles-Based Lipophilic Drug Delivery: Focus on Surface Modifications. Pharmaceutics, 2023, 15, 772.	2.0	16
84	Use of a Liver-Targeting Immune-Tolerogenic mRNA Lipid Nanoparticle Platform to Treat Peanut-Induced Anaphylaxis by Single- and Multiple-Epitope Nucleotide Sequence Delivery. ACS Nano, 2023, 17, 4942-4957.	7.3	19
85	Increasing the siRNA knockdown efficiency of lipid nanoparticles by morphological transformation with the use of dihydrosphingomyelin as a helper lipid. Biomaterials Science, 2023, 11, 3269-3277.	2.6	2
86	mRNA therapeutics for disease therapy: principles, delivery, and clinical translation. Journal of Materials Chemistry B, 0, , .	2.9	0
87	Intracellular trafficking kinetics of nucleic acid escape from lipid nanoparticles via fluorescence imaging. Current Pharmaceutical Biotechnology, 2023, 24, .	0.9	0
88	RNA interference therapy in acute hepatic porphyrias. Blood, 2023, 142, 1589-1599.	0.6	0
89	Key Design Features of Lipid Nanoparticles and Electrostatic Charge-Based Lipid Nanoparticle Targeting. Pharmaceutics, 2023, 15, 1184.	2.0	4
90	A Straightforward Method for the Development of Positively Charged Gold Nanoparticle-Based Vectors for Effective siRNA Delivery. Molecules, 2023, 28, 3318.	1.7	3
91	A fluorinated ionizable lipid improves the mRNA delivery efficiency of lipid nanoparticles. Journal of Materials Chemistry B, 2023, 11, 4171-4180.	2.9	6
92	Rational design and combinatorial chemistry of ionizable lipids for RNA delivery. Journal of Materials Chemistry B, 2023, 11, 6527-6539.	2.9	4
96	Structural and componential design: new strategies regulating the behavior of lipid-based nanoparticles <i>in vivo</i> . Biomaterials Science, 2023, 11, 4774-4788.	2.6	2
99	Strategies for targeted gene delivery using lipid nanoparticles and cell-derived nanovesicles. Nanoscale Advances, 2023, 5, 3834-3856.	2.2	3
103	Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chemical Society Reviews, 2023, 52, 5172-5254.	18.7	7
130	Pulmonary Delivery of Nucleic Acids. AAPS Introductions in the Pharmaceutical Sciences, 2023, , 93-122.	0.1	0