Recent Advances in Functionalization of Pyrroles and the

Chemical Record 21, 715-780 DOI: 10.1002/tcr.202100010

Citation Report

#	Article	IF	CITATIONS
1	C–H activation reactions of nitroarenes: current status and outlook. Organic and Biomolecular Chemistry, 2021, 19, 8409-8424.	1.5	8
2	Nitrogen release and pore formation through KOH activation of nitrogen-doped carbon materials: an evaluation of the literature. Carbon Letters, 2021, 31, 581-592.	3.3	29
3	K ₂ S ₂ O ₈ mediated synthesis of 5-aryldipyrromethanes and <i>meso</i> -substituted A ₄ -tetraarylporphyrins. Journal of Porphyrins and Phthalocyanines, 2021, 25, 664-673.	0.4	1
4	Free Amine, Hydroxyl and Sulfhydryl Directed Câ^'H Functionalization and Annulation: Application to Heterocycle Synthesis. Chemical Record, 2022, 22, .	2.9	8
5	Chemical Reactivity and Skin Sensitization Studies on a Series of Chloro- and Fluoropyrroles—A Computational Approach. ACS Omega, 2021, 6, 21514-21524.	1.6	1
6	Recent Advances in Metal―and Organocatalyzed Asymmetric Functionalization of Pyrroles. Asian Journal of Organic Chemistry, 2021, 10, 2709-2762.	1.3	28
7	The direct C(sp2)-H functionalization and coupling of aromatic N-heterocycles with (hetero)aryl bromides by [PdX2(imidazolidin-2-ylidene)(Py)] catalysts. Journal of Organometallic Chemistry, 2021, 951, 122013.	0.8	8
8	Sterically controlled C–H alkenylation of pyrroles and thiophenes. Chemical Communications, 2021, 57, 11791-11794.	2.2	10
9	Pyrroleâ€Fused Benzoxazinones/Quinoxalinones: Molecular Dynamic Simulation, Antiproliferative and Antibacterial Activities. ChemistrySelect, 2021, 6, 10872-10882.	0.7	2
10	Trifluoroethanol as a Unique Additive for the Chemoselective Electrooxidation of Enamines to Access Unsymmetrically Substituted NHâ€Pyrroles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
11	Trifluoroethanol as a Unique Additive for the Chemoselective Electrooxidation of Enamines to Access Unsymmetrically Substituted NHâ€Pyrroles. Angewandte Chemie, 2022, 134, .	1.6	2
12	Microwave-assisted palladium catalysed C–H acylation with aldehydes: synthesis and diversification of 3-acylthiophenes. Organic and Biomolecular Chemistry, 2022, 20, 852-861.	1.5	2
13	Silver-Catalyzed Asymmetric Desymmetrization of Cyclohexadienones via Van Leusen Pyrrole Synthesis. Organic Letters, 2022, 24, 1812-1816.	2.4	13
14	N-Heterocyclic Carbene-Photocatalyzed Tricomponent Regioselective 1,2-Diacylation of Alkenes Illuminates the Mechanistic Details of the Electron Donor–Acceptor Complex-Mediated Radical Relay Processes . ACS Catalysis, 2022, 12, 285-294.	5.5	41
15	Synthesis of Unsymmetrical Biheteroarenes <i>via</i> Dehydrogenative and Decarboxylative Coupling: a Decade Update. Chemical Record, 2022, 22, e202100288.	2.9	7
16	Recent Advances for the Synthesis of Nâ€Unsubstituted Pyrroles. ChemistrySelect, 2021, 6, 13740-13772.	0.7	7
17	Catalyst-free direct regiospecific multicomponent synthesis of C3-functionalized pyrroles. Organic and Biomolecular Chemistry, 2022, 20, 5747-5758.	1.5	3
18	Regioselective oxidative C–H heptafluoroisopropylation of heteroarenes with heptafluoroisopropyl silver. Organic Chemistry Frontiers, 2022, 9, 4435-4440.	2.3	6

#	Article	IF	CITATIONS
19	Tandem Asymmetric Cycloaromatization/intramolecular Pictet‧penglerâ€ŧype Reaction. An Entry to Polycyclic Pyrroles. Advanced Synthesis and Catalysis, 0, , .	2.1	0
20	Regioselective C3-Fluoroalcoholation of Indoles with Heptafluoroisopropyl lodide via Palladium-Catalyzed C(sp ²)–C(sp ³) Cross-Coupling in the Presence of O ₂ . Journal of Organic Chemistry, 2022, 87, 9128-9138.	1.7	1
21	Catalytic Friedel–Crafts Alkylative Desymmetrization of Cyclohexa-2,5-dienones: Access to Linear and Bridged Polycyclic Pyrroles and 3-Arylpyrroles. Organic Letters, 2022, 24, 5422-5427.	2.4	3
22	Prediction of Antileishmanial Compounds: General Model, Preparation, and Evaluation of 2-Acylpyrrole Derivatives. Journal of Chemical Information and Modeling, 2022, 62, 3928-3940.	2.5	3
23	Cooperative NHC and Photoredox Catalysis for the Synthesis of 1,4-Dicarbonyl Compounds via Diacylation of Alkenes. Organic Letters, 2022, 24, 5710-5714.	2.4	20
25	[3+2] Cycloaddition Reactions of 2‥lidene Acenaphthylenones with 3â€Benzylidene Succinimides and 1,4â€Benzoxazinone Derivatives. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
26	Enantioselective Direct Synthesis of C3-Hydroxyalkylated Pyrrole via an Amine-Catalyzed Aldol/Paal–Knorr Reaction Sequence. Organic Letters, 2022, 24, 7549-7554.	2.4	3
27	Click reaction inspired synthesis, antimicrobial evaluation and in silico docking of some pyrrole-chalcone linked 1,2,3-triazole hybrids. Journal of Molecular Structure, 2023, 1273, 134321.	1.8	14
28	Synthesis, Characterization and Thermal Behavior of N‣ubstituted Pyrrole Esters. ChemistrySelect, 2022, 7, .	0.7	2
29	Synthesis and odor characteristics of <scp> <i>N</i> â€substituted </scp> pyrrolyl ketones derived from <scp> <i>N</i> â€substituted </scp> acetylpyrroles and alcohols. Journal of Heterocyclic Chemistry, 0, , .	1.4	0
30	Reaction of 1â€Phenacylidene pyrrolo[3,2,1â€ <i>ij</i>]quinolinâ€2â€ones with Cyclic/Acyclic Enaminones and the Anticoagulant Activity of Synthesized Pyrroleâ€Quinoline Derivatives. ChemistrySelect, 2022, 7, .	0.7	2
31	Indolizine: A Promising Framework for Developing a Diverse Array of Câ^'H Functionalized Hybrids. ChemistrySelect, 2023, 8, .	0.7	5
32	Synthesis, odor characteristics and thermal behaviors of pyrrole esters. Journal of Saudi Chemical Society, 2023, , 101600.	2.4	0
34	Modular synthesis of 1,4-diketones through regioselective bis-acylation of olefins by merging NHC and photoredox catalysis. Chinese Chemical Letters, 2023, 34, 108271.	4.8	6
35	Chiral phosphoric acid-catalyzed Friedel–Crafts reaction of 2,5-disubstituted and 2-monosubstituted pyrroles with isoindolinone-derived ketimines. Organic and Biomolecular Chemistry, 2023, 21, 3381-3387.	1.5	0
36	Four-Component Ring-Opening Reaction of Pyrroles via C–N Bond Cleavage under Multiple Functions of Elemental Sulfur. Organic Letters, 2023, 25, 3094-3098.	2.4	2
38	Catalyst-free mechanochemistry as a versatile tool in synthetic chemistry: a review. Green Chemistry, 2023, 25, 6120-6148.	4.6	2
40	The literature of heterocyclic chemistry, Part XXI, 2021. Advances in Heterocyclic Chemistry, 2024, , 139-226.	0.9	0

ARTICLE

IF CITATIONS