Four Generations of High-Dimensional Neural Network

Chemical Reviews 121, 10037-10072 DOI: 10.1021/acs.chemrev.0c00868

Citation Report

#	Article	IF	CITATIONS
1	Accelerated Atomistic Modeling of Solid-State Battery Materials With Machine Learning. Frontiers in Energy Research, 2021, 9, .	2.3	25
2	The Middle Science: Traversing Scale In Complex Many-Body Systems. ACS Central Science, 2021, 7, 1271-1287.	11.3	16
3	Physics-Inspired Structural Representations for Molecules and Materials. Chemical Reviews, 2021, 121, 9759-9815.	47.7	247
4	Nucleating a Different Coordination in a Crystal under Pressure: A Study of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>B</mml:mi><mml:mn>1</mml:mn><mml:mtext>â^²</mml:mtext><mml:n Transition in NaCl by Metadynamics. Physical Review Letters. 2021. 127. 105701.</mml:n </mml:mrow></mml:math 	ni <mark>7∙8</mark> <td>l:mi><mm< td=""></mm<></td>	l:mi> <mm< td=""></mm<>
5	Gaussian Process Regression for Materials and Molecules. Chemical Reviews, 2021, 121, 10073-10141.	47.7	384
6	Adsorbate Partition Functions via Phase Space Integration: Quantifying the Effect of Translational Anharmonicity on Thermodynamic Properties. Journal of Physical Chemistry C, 2021, 125, 20249-20260.	3.1	9
7	MB-Fit: Software infrastructure for data-driven many-body potential energy functions. Journal of Chemical Physics, 2021, 155, 124801.	3.0	18
8	Machine learning potentials for complex aqueous systems made simple. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	82
9	Exploring Librational Pathways with on-the-Fly Machine-Learning Force Fields: Methylammonium Molecules in MAPbX ₃ (X = I, Br, Cl) Perovskites. Journal of Physical Chemistry C, 2021, 125, 21077-21086.	3.1	14
10	High-dimensional neural network potentials for magnetic systems using spin-dependent atom-centered symmetry functions. Npj Computational Materials, 2021, 7, .	8.7	30
11	Physically Motivated Recursively Embedded Atom Neural Networks: Incorporating Local Completeness and Nonlocality. Physical Review Letters, 2021, 127, 156002.	7.8	32
12	Dynamics of Heterogeneous Catalytic Processes at Operando Conditions. Jacs Au, 2021, 1, 2100-2120.	7.9	30
13	Theoretical Studies on Triplet-state Driven Dissociation of Formaldehyde by Quasi-classical Molecular Dynamics Simulation on Machine-Learning Potential Energy Surface. Journal of Chemical Physics, 2021, 155, 214105.	3.0	3
14	Training algorithm matters for the performance of neural network potential: A case study of Adam and the Kalman filter optimizers. Journal of Chemical Physics, 2021, 155, 204108.	3.0	5
15	A New Many-Body Expansion Scheme for Atomic Clusters: Application to Nitrogen Clusters. Chinese Journal of Chemical Physics, 0, , .	1.3	0
16	Accelerating the structure search of catalysts with machine learning. Current Opinion in Chemical Engineering, 2022, 35, 100771.	7.8	20
17	BenchML: an extensible pipelining framework for benchmarking representations of materials and molecules at scale. Machine Learning: Science and Technology, 2022, 3, 040501.	5.0	2
18	Neural Network Potentials: A Concise Overview of Methods. Annual Review of Physical Chemistry, 2022, 73, 163-186.	10.8	69

#	Article	IF	Citations
19	Machine learned interatomic potentials using random features. Npj Computational Materials, 2022, 8, .	8.7	11
20	Modeling the Solid Electrolyte Interphase: Machine Learning as a Game Changer?. Advanced Materials Interfaces, 2022, 9, .	3.7	34
21	The chemical origin of temperature-dependent lithium-ion concerted diffusion in sulfide solid electrolyte Li10GeP2S12. Journal of Energy Chemistry, 2022, 70, 59-66.	12.9	22
22	Critical assessment of machine-learned repulsive potentials for the density functional based tight-binding method: A case study for pure silicon. Journal of Chemical Physics, 2022, 156, 064101.	3.0	4
23	Quality of uncertainty estimates from neural network potential ensembles. Physical Review E, 2022, 105, 015311.	2.1	11
24	Equivariant representations for molecular Hamiltonians and <i>N</i> -center atomic-scale properties. Journal of Chemical Physics, 2022, 156, 014115.	3.0	26
25	NNAIMQ: A neural network model for predicting QTAIM charges. Journal of Chemical Physics, 2022, 156, 014112.	3.0	5
26	A nearsighted force-training approach to systematically generate training data for the machine learning of large atomic structures. Journal of Chemical Physics, 2022, 156, 064104.	3.0	5
27	Machine Learning at the Interface of Polymer Science and Biology: How Far Can We Go?. Biomacromolecules, 2022, 23, 576-591.	5.4	10
28	Effective medium theory for bcc metals: electronically non-adiabatic H atom scattering in full dimensions. Physical Chemistry Chemical Physics, 2022, 24, 8738-8748.	2.8	5
29	Multiscale molecular modelling: from electronic structure to dynamics of nanosystems and beyond. Physical Chemistry Chemical Physics, 2022, 24, 9051-9081.	2.8	10
30	Validating experiments for the reaction H ₂ + NH ₂ ^{â^'} by dynamical calculations on an accurate full-dimensional potential energy surface. Physical Chemistry Chemical Physics, 2022, 24, 10160-10167.	2.8	9
31	Modeling Electronic Response Properties with an Explicit-Electron Machine Learning Potential. Journal of Chemical Theory and Computation, 2022, 18, 1672-1691.	5.3	10
32	Perspective on Theoretical Models for CO ₂ Electrochemical Reduction. Journal of Physical Chemistry C, 2022, 126, 3820-3829.	3.1	28
33	Phase transitions of zirconia: Machine-learned force fields beyond density functional theory. Physical Review B, 2022, 105, .	3.2	21
34	A Hessian-based assessment of atomic forces for training machine learning interatomic potentials. Journal of Chemical Physics, 2022, 156, 114106.	3.0	6
35	Finite-field coupling via learning the charge response kernel. Electronic Structure, 2022, 4, 014012.	2.8	6
36	Kernel charge equilibration: efficient and accurate prediction of molecular dipole moments with a machine-learning enhanced electron density model. Machine Learning: Science and Technology, 2022, 3, 015032.	5.0	15

#	Article	IF	CITATIONS
37	Kinetic Monte Carlo simulations for heterogeneous catalysis: Fundamentals, current status, and challenges. Journal of Chemical Physics, 2022, 156, 120902.	3.0	29
38	Accurate, affordable, and generalizable machine learning simulations of transition metal x-ray absorption spectra using the XANESNET deep neural network. Journal of Chemical Physics, 2022, 156, 164102.	3.0	17
39	Self-consistent determination of long-range electrostatics in neural network potentials. Nature Communications, 2022, 13, 1572.	12.8	38
40	Evaluation of performance of machine learning methods in mining structure–property data of halide perovskite materials. Chinese Physics B, 2022, 31, 056302.	1.4	8
41	Transferable Neural Network Potential Energy Surfaces for Closed-Shell Organic Molecules: Extension to Ions. Journal of Chemical Theory and Computation, 2022, 18, 2354-2366.	5.3	16
42	Machine learning in computational chemistry. Scientia Sinica Chimica, 2022, 52, 858-868.	0.4	2
43	REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems. Journal of Chemical Physics, 2022, 156, 114801.	3.0	19
44	Atomistic Simulations for Reactions and Vibrational Spectroscopy in the Era of Machine Learning─ <i>Quo Vadis?</i> . Journal of Physical Chemistry B, 2022, 126, 2155-2167.	2.6	8
45	A Benchmark Protocol for DFT Approaches and Data-Driven Models for Halide-Water Clusters. Molecules, 2022, 27, 1654.	3.8	5
46	Absence of isotope effects in the photo-induced desorption of CO from saturated Pd(111) at high laser fluence. Chemical Physics, 2022, 558, 111518.	1.9	3
47	Insights into lithium manganese oxide–water interfaces using machine learning potentials. Journal of Chemical Physics, 2021, 155, 244703.	3.0	18
48	Ring-Polymer Molecular Dynamics Calculations of Thermal Rate Coefficients and Branching Ratios for the Interstellar H ₃ ⁺ + CO â†' H ₂ + HCO ⁺ /HOC ⁺ Reaction and Its Deuterated Analogue. Journal of Physical Chemistry A. 2021, 125, 10750-10756.	2.5	6
49	A Differentiable Neural-Network Force Field for Ionic Liquids. Journal of Chemical Information and Modeling, 2022, 62, 88-101.	5.4	17
50	Artificial intelligence-enhanced quantum chemical method with broad applicability. Nature Communications, 2021, 12, 7022.	12.8	52
51	Machine learning potential era of zeolite simulation. Chemical Science, 2022, 13, 5055-5068.	7.4	15
52	A neural network potential for the IRMOF series and its application for thermal and mechanical behaviors. Physical Chemistry Chemical Physics, 2022, 24, 11882-11897.	2.8	8
53	<i>Ab initio</i> neural network MD simulation of thermal decomposition of a high energy material CL-20/TNT. Physical Chemistry Chemical Physics, 2022, 24, 11801-11811.	2.8	13
54	Deep potentials for materials science. Materials Futures, 2022, 1, 022601.	8.4	61

#	Article	IF	CITATIONS
55	Binding of polar and hydrophobic molecules at the LiCoO ₂ (001)-water interface: force field development and molecular dynamics simulations. Nanoscale, 2022, , .	5.6	2
56	Perspectives in the new era of materials intelligent design. , 0, 1, .		2
57	Quantitative molecular simulations. Physical Chemistry Chemical Physics, 2022, 24, 12767-12786.	2.8	3
58	Mode Specificity Dynamics of the Prototypical Multi-Channel H+CH ₃ OH Reaction on a Globally Accurate Potential Energy Surface. Chinese Journal of Chemical Physics, 0, , .	1.3	2
59	Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface. Chemical Reviews, 2022, 122, 10651-10674.	47.7	39
60	Neural Network-Based Dynamic Segmentation and Weighted Integrated Matching of Cross-Media Piano Performance Audio Recognition and Retrieval Algorithm. Computational Intelligence and Neuroscience, 2022, 2022, 1-13.	1.7	3
61	Applying Classical, <i>Ab Initio</i> , and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews, 2022, 122, 10970-11021.	47.7	138
62	Flexible machine-learning interatomic potential for simulating structural disordering behavior of Li7La3Zr2O12 solid electrolytes. Journal of Chemical Physics, 2022, 156, .	3.0	8
63	Review on the lithium transport mechanism in solidâ€state battery materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	14.6	11
64	MolE8: finding DFT potential energy surface minima values from force-field optimised organic molecules with new machine learning representations. Chemical Science, 2022, 13, 7204-7214.	7.4	1
65	Mechanistic Insights into Enzyme Catalysis from Explaining Machine-Learned Quantum Mechanical and Molecular Mechanical Minimum Energy Pathways. ACS Physical Chemistry Au, 2022, 2, 316-330.	4.0	5
66	Solving the electronic SchrĶdinger equation for multiple nuclear geometries with weight-sharing deep neural networks. Nature Computational Science, 2022, 2, 331-341.	8.0	25
67	Machine learning for metallurgy IV: A neural network potential for Al-Cu-Mg and Al-Cu-Mg-Zn. Physical Review Materials, 2022, 6, .	2.4	6
68	Deep learning study of tyrosine reveals that roaming can lead to photodamage. Nature Chemistry, 2022, 14, 914-919.	13.6	21
69	Long-range dispersion-inclusive machine learning potentials for structure search and optimization of hybrid organic–inorganic interfaces. , 2022, 1, 463-475.		16
70	Chemical Domain Structure and its Formation Kinetics in CrCoNi Medium-Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0
71	Developing Potential Energy Surfaces for Graphene-Based 2D–3D Interfaces From Modified High-Dimensional Neural Networks for Applications in Energy Storage. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	2.1	4
72	Water Flow in Single-Wall Nanotubes: Oxygen Makes It Slip, Hydrogen Makes It Stick. ACS Nano, 2022, 16, 10775-10782.	14.6	25

#	Article	IF	CITATIONS
73	Elucidation of Cu–Zn Surface Alloying on Cu(997) by Machine-Learning Molecular Dynamics. ACS Physical Chemistry Au, 0, , .	4.0	4
74	Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks. Journal of Physical Chemistry A, 2022, 126, 3926-3936.	2.5	11
75	Applying neural network force field on water nucleation. , 2022, , .		0
76	A Look Inside the Black Box of Machine Learning Photodynamics Simulations. Accounts of Chemical Research, 2022, 55, 1972-1984.	15.6	12
77	Artificial neural network-based path integral simulations of hydrogen isotope diffusion in palladium. JPhys Energy, 2022, 4, 034004.	5.3	10
78	Equilibrium and Dynamical Characteristics of Hydrogen Bond Bifurcations in Water–Water and Water–Ammonia Dimers: A Path Integral Molecular Dynamics Study. Journal of Physical Chemistry A, 2022, 126, 4721-4733.	2.5	5
79	Ephemeral data derived potentials for random structure search. Physical Review B, 2022, 106, .	3.2	15
80	Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chemical Reviews, 2022, 122, 13478-13515.	47.7	120
81	Equivariant analytical mapping of first principles Hamiltonians to accurate and transferable materials models. Npj Computational Materials, 2022, 8, .	8.7	15
82	Extending machine learning beyond interatomic potentials for predicting molecular properties. Nature Reviews Chemistry, 2022, 6, 653-672.	30.2	33
83	Infrared Spectra at Coupled Cluster Accuracy from Neural Network Representations. Journal of Chemical Theory and Computation, 2022, 18, 5492-5501.	5.3	12
84	High-Dimensional Neural Network Potential for Liquid Electrolyte Simulations. Journal of Physical Chemistry B, 2022, 126, 6271-6280.	2.6	16
85	Equivariant graph neural networks for fast electron density estimation of molecules, liquids, and solids. Npj Computational Materials, 2022, 8, .	8.7	12
86	Neural network interaction potentials for <i>para</i> -hydrogen with flexible molecules. Journal of Chemical Physics, 2022, 157, .	3.0	2
87	Machine Learning: A New Paradigm in Computational Electrocatalysis. Journal of Physical Chemistry Letters, 2022, 13, 7920-7930.	4.6	42
88	Graph Theoretic Molecular Fragmentation for Multidimensional Potential Energy Surfaces Yield an Adaptive and General Transfer Machine Learning Protocol. Journal of Chemical Theory and Computation, 2022, 18, 5125-5144.	5.3	7
89	Interatomic potentials for oxide glasses: Past, present, and future. Journal of Non-Crystalline Solids: X, 2022, 15, 100115.	1.2	5
90	Chemical domain structure and its formation kinetics in CrCoNi medium-entropy alloy. Acta Materialia, 2022, 240, 118314.	7.9	25

#	Article	IF	CITATIONS
91	Neural network potentials. , 2023, , 279-294.		1
92	Density-functional theory. , 2023, , 27-65.		Ο
93	Towards predictive design of electrolyte solutions by accelerating <i>ab initio</i> simulation with neural networks. Journal of Materials Chemistry A, 2022, 10, 19560-19571.	10.3	7
94	Comparison of Multi-task Approaches on Molecular Property Prediction. Chinese Journal of Chemical Physics, 0, , .	1.3	0
95	Bottom-up Coarse-Graining: Principles and Perspectives. Journal of Chemical Theory and Computation, 2022, 18, 5759-5791.	5.3	86
96	Computational Advances of Protein/Neurotransmitter-membrane Interactions Involved in Vesicle Fusion and Neurotransmitter Release. Journal of Molecular Biology, 2022, , 167818.	4.2	1
97	Reduction pathway of glutaredoxin 1 investigated with QM/MM molecular dynamics using a neural network correction. Journal of Chemical Physics, 2022, 157, .	3.0	4
98	The first-principles phase diagram of monolayer nanoconfined water. Nature, 2022, 609, 512-516.	27.8	66
99	Producing chemically accurate atomic Gaussian process regression models by active learning for molecular simulation. Journal of Computational Chemistry, 2022, 43, 2084-2098.	3.3	7
100	Automatic Evolution of Machine-Learning-Based Quantum Dynamics with Uncertainty Analysis. Journal of Chemical Theory and Computation, 2022, 18, 5837-5855.	5.3	6
101	Effects of orbital angles on the modeling of conjugated systems with curvature. Physical Chemistry Chemical Physics, 2022, 24, 27467-27473.	2.8	1
102	ICHOR: a modern pipeline for producing Gaussian process regression models for atomistic simulations. Materials Advances, 2022, 3, 8729-8739.	5.4	6
103	Towards fully ab initio simulation of atmospheric aerosol nucleation. Nature Communications, 2022, 13, .	12.8	6
104	SELFIES and the future of molecular string representations. Patterns, 2022, 3, 100588.	5.9	49
105	When not to use machine learning: A perspective on potential and limitations. MRS Bulletin, 2022, 47, 968-974.	3.5	14
106	Fewest-Switches Surface Hopping with Long Short-Term Memory Networks. Journal of Physical Chemistry Letters, 2022, 13, 10377-10387.	4.6	5
107	Comment on "Manifolds of quasi-constant SOAP and ACSF fingerprints and the resulting failure to machine learn four-body interactions―[J. Chem. Phys. 156, 034302 (2022)]. Journal of Chemical Physics, 2022, 157, .	3.0	6
108	Atomistic neural network representations for chemical dynamics simulations of molecular, condensed phase, and interfacial systems: Efficiency, representability, and generalization. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	14.6	11

#	Article	IF	CITATIONS
109	Graphene at Liquid Copper Catalysts: Atomicâ€Scale Agreement of Experimental and Firstâ€Principles Adsorption Height. Advanced Science, 2022, 9, .	11.2	7
110	A generalizable, uncertainty-aware neural network potential for GeSbTe with Monte Carlo dropout. Solid-State Electronics, 2023, 199, 108508.	1.4	2
111	High-dimensional neural network potentials for accurate vibrational frequencies: the formic acid dimer benchmark. Physical Chemistry Chemical Physics, 2022, 24, 29381-29392.	2.8	7
112	FEREBUS: a high-performance modern Gaussian process regression engine. , 2023, 2, 152-164.		9
113	Neural network potentials for chemistry: concepts, applications and prospects. , 2023, 2, 28-58.		17
114	How machine learning can accelerate electrocatalysis discovery and optimization. Materials Horizons, 2023, 10, 393-406.	12.2	24
115	Recent advances in machine learning for electronic excited state molecular dynamics simulations. Chemical Modelling, 2022, , 178-200.	0.4	0
116	Machine Learning Accelerated Nonadiabatic Dynamics at Metal Surfaces. , 2024, , 427-448.		0
117	Coupled Cluster Molecular Dynamics of Condensed Phase Systems Enabled by Machine Learning Potentials: Liquid Water Benchmark. Physical Review Letters, 2022, 129, .	7.8	25
118	Atomistic Insights into the Oxidation of Flat and Stepped Platinum Surfaces Using Large-Scale Machine Learning Potential-Based Grand-Canonical Monte Carlo. ACS Catalysis, 2022, 12, 14812-14824.	11.2	7
119	Dataâ€Ðriven Machine Learning for Understanding Surface Structures of Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2023, 62, .	13.8	26
120	Dataâ€Driven Machine Learning for Understanding Surface Structures of Heterogeneous Catalysts. Angewandte Chemie, 2023, 135, .	2.0	5
121	Recent advances in quantum fragmentation approaches to complex molecular and condensedâ€phase systems. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	14.6	10
122	Transition1x - a dataset for building generalizable reactive machine learning potentials. Scientific Data, 2022, 9, .	5.3	17
123	Configuration Space Integration for Adsorbate Partition Functions: The Effect of Anharmonicity on the Thermophysical Properties of CO–Pt(111) and CH ₃ OH–Cu(111). ACS Catalysis, 2023, 13, 19-32.	11.2	2
124	Phase diagrams-why they matter and how to predict them. Journal of Chemical Physics, 0, , .	3.0	7
125	Beyond potentials: Integrated machineÂlearning models for materials. MRS Bulletin, 2022, 47, 1045-1053.	3.5	10
126	Current Trends on Deep Learning Techniques Applied in Iron and Steel Making Field: A Review. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2023, 109, 464-489.	0.4	1

#	Article	IF	CITATIONS
127	Benchmarking general neural network potential <scp>ANI</scp> â€2x on aerosol nucleation molecular clusters. International Journal of Quantum Chemistry, 2023, 123, .	2.0	3
128	Machine-learning atomic simulation for heterogeneous catalysis. Npj Computational Materials, 2023, 9, .	8.7	11
129	Chemical reaction networks and opportunities for machine learning. Nature Computational Science, 2023, 3, 12-24.	8.0	16
130	Data-driven many-body potentials from density functional theory for aqueous phase chemistry. Chemical Physics Reviews, 2023, 4, .	5.7	4
131	Spectroscopy from Machine Learning by Accurately Representing the Atomic Polar Tensor. Journal of Chemical Theory and Computation, 2023, 19, 705-712.	5.3	8
132	Benchmark of general-purpose machine learning-based quantum mechanical method AlQM1 on reaction barrier heights. Journal of Chemical Physics, 2023, 158, .	3.0	4
133	Local Molecular Field Theory for Coulomb Interactions in Aqueous Solutions. Journal of Physical Chemistry B, 2023, 127, 809-821.	2.6	3
134	Machine learning potentials for metal-organic frameworks using an incremental learning approach. Npj Computational Materials, 2023, 9, .	8.7	29
135	Gaussian Process Regression Models for Predicting Atomic Energies and Multipole Moments. Journal of Chemical Theory and Computation, 2023, 19, 1370-1380.	5.3	4
136	Fast proper orthogonal descriptors for many-body interatomic potentials. Physical Review B, 2023, 107,	3.2	1
137	Nature of Catalytic Behavior of Cobalt Oxides for CO ₂ Hydrogenation. Jacs Au, 2023, 3, 508-515.	7.9	11
138	A "short blanket―dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions?. Journal of Chemical Physics, 2023, 158, .	3.0	25
139	Artificial Neural Network-Derived Unified Six-Dimensional Potential Energy Surface for Tetra Atomic Isomers of the Biogenic [H, C, N, O] System. Journal of Chemical Theory and Computation, 2023, 19, 1186-1196.	5.3	0
140	Molecular Understanding and Practical In Silico Catalyst Design in Computational Organocatalysis and Phase Transfer Catalysis—Challenges and Opportunities. Molecules, 2023, 28, 1715.	3.8	2
141	Collective Proton Transfers in Cyclic Water–Ammonia Tetramers: A Path Integral Machine-Learning Study. Journal of Physical Chemistry A, 2023, 127, 1839-1848.	2.5	0
142	A neural network potential with self-trained atomic fingerprints: A test with the mW water potential. Journal of Chemical Physics, 2023, 158, .	3.0	3
143	Combining Machine Learning and Many-Body Calculations: Coverage-Dependent Adsorption of CO on Rh(111). Physical Review Letters, 2023, 130, .	7.8	11
144	Machine Learning Interatomic Potentials and Long-Range Physics. Journal of Physical Chemistry A, 2023, 127, 2417-2431.	2.5	19

#	Article	IF	CITATIONS
145	WS22 database, Wigner Sampling and geometry interpolation for configurationally diverse molecular datasets. Scientific Data, 2023, 10, .	5.3	8
146	Machine learning-inspired battery material innovation. Energy Advances, 2023, 2, 449-464.	3.3	4
147	Electrostatic Embedding of Machine Learning Potentials. Journal of Chemical Theory and Computation, 2023, 19, 1888-1897.	5.3	7
148	Onset of Rotational Decoupling for a Molecular Ion Solvated in Helium: From Tags to Rings and Shells. Physical Review Letters, 2023, 130, .	7.8	4
149	MLRNet: Combining the Physics-Motivated Potential Models with Neural Networks for Intermolecular Potential Energy Surface Construction. Journal of Chemical Theory and Computation, 2023, 19, 1421-1431.	5.3	1
150	The value of negative results in data-driven catalysis research. Nature Catalysis, 2023, 6, 108-111.	34.4	17
151	Toward DMC Accuracy Across Chemical Space with Scalable Δ-QML. Journal of Chemical Theory and Computation, 2023, 19, 1711-1721.	5.3	4
152	How to validate machine-learned interatomic potentials. Journal of Chemical Physics, 2023, 158, .	3.0	17
153	Recent advances in density functional theory approach for optoelectronics properties of graphene. Heliyon, 2023, 9, e14279.	3.2	2
154	Integrating Machine Learning in the Coarse-Grained Molecular Simulation of Polymers. Journal of Physical Chemistry B, 2023, 127, 2302-2322.	2.6	5
155	Scienceâ€Ðriven Atomistic Machine Learning. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
156	Scienceâ€Driven Atomistic Machine Learning. Angewandte Chemie, 2023, 135, .	2.0	0
157	Deciphering the Impact of Helium Tagging on Flexible Molecules: Probing Microsolvation Effects of Protonated Acetylene by Quantum Configurational Entropy. Journal of Physical Chemistry A, 2023, 127, 2460-2471.	2.5	3
158	Uncertainty-aware predictions of molecular x-ray absorption spectra using neural network ensembles. Physical Review Research, 2023, 5, .	3.6	9
159	SchNetPack 2.0: A neural network toolbox for atomistic machine learning. Journal of Chemical Physics, 2023, 158, .	3.0	8
160	Chemistry in the Era of Artificial Intelligence. , 2023, 1, 127-128.		2
161	Machine learning transferable atomic forces for large systems from underconverged molecular fragments. Physical Chemistry Chemical Physics, 2023, 25, 12979-12989.	2.8	5
162	Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects. Chemical Science, 2023, 14, 5438-5452.	7.4	7

#	Article	IF	CITATIONS
163	Explicit Learning of Derivatives with the KREG and pKREG Models on the Example of Accurate Representation of Molecular Potential Energy Surfaces. Journal of Chemical Theory and Computation, 2023, 19, 2369-2379.	5.3	2
164	On the potentially transformative role of auxiliary-field quantum Monte Carlo in quantum chemistry: A highly accurate method for transition metals and beyond. Journal of Chemical Physics, 2023, 158, .	3.0	6
165	Physics-inspired machine learning of localized intensive properties. Chemical Science, 2023, 14, 4913-4922.	7.4	5
166	Multifidelity Neural Network Formulations for Prediction of Reactive Molecular Potential Energy Surfaces. Journal of Chemical Information and Modeling, 2023, 63, 2281-2295.	5.4	2
167	Generative Models as an Emerging Paradigm in the Chemical Sciences. Journal of the American Chemical Society, 2023, 145, 8736-8750.	13.7	36
168	Dielectric Saturation in Water from a Long-Range Machine Learning Model. Journal of Physical Chemistry B, 2023, 127, 3663-3671.	2.6	2
169	Are Neural Network Potentials Trained on Liquid States Transferable to Crystal Nucleation? A Test on Ice Nucleation in the mW Water Model. Journal of Physical Chemistry B, O, , .	2.6	1
170	Ab Initio Molecular Dynamics: A Guide to Applications. , 2024, , 493-517.		0
171	Molecular dynamics calculations: Machine learning. , 2024, , 543-552.		0
172	Many-Body Effects in Aqueous Systems: Synergies Between Interaction Analysis Techniques and Force Field Development. Annual Review of Physical Chemistry, 2023, 74, 337-360.	10.8	4
173	Accelerating discrete dislocation dynamics simulations with graph neural networks. Journal of Computational Physics, 2023, 487, 112180.	3.8	2
174	Development of a neuroevolution machine learning potential of Pd-Cu-Ni-P alloys. Materials and Design, 2023, 231, 112012.	7.0	3
175	Challenges in modelling dynamic processes in realistic nanostructured materials at operating conditions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2023, 381, .	3.4	7
176	A fully quantum-mechanical treatment for kaolinite. Journal of Chemical Physics, 2023, 158, .	3.0	0
177	Structure and thermodynamics of liquid ruthenium and ruthenium-based alloys from ab initio and classical molecular dynamics with embedded atom model potentials. Modelling and Simulation in Materials Science and Engineering, 2023, 31, 065001.	2.0	0
178	Lifelong Machine Learning Potentials. Journal of Chemical Theory and Computation, 2023, 19, 3509-3525.	5.3	4
179	A machine learning potential for simulating infrared spectra of nanosilicate clusters. Journal of Chemical Physics, 2023, 158, .	3.0	3
180	Toward Self-Healing Concrete Infrastructure: Review of Experiments and Simulations across Scales. Chemical Reviews, 2023, 123, 10838-10876.	47.7	6

#	Article	IF	CITATIONS
181	Accurate Fourth-Generation Machine Learning Potentials by Electrostatic Embedding. Journal of Chemical Theory and Computation, 2023, 19, 3567-3579.	5.3	8
182	Applicability of the Fridman–Macheret α-Model to Heterogeneous Processes in the Case of Dissociative Adsorption of N ₂ on the Ru Surface. Journal of Physical Chemistry C, 2023, 127, 11536-11541.	3.1	0
183	Accelerating Non-Empirical Structure Determination of Ziegler–Natta Catalysts with a High-Dimensional Neural Network Potential. Journal of Physical Chemistry C, 2023, 127, 11683-11691.	3.1	1
184	Ultrafast Electronic Coupling Estimators: Neural Networks versus Physics-Based Approaches. Journal of Chemical Theory and Computation, 2023, 19, 4232-4242.	5.3	2
185	Machine Learning Enhanced DFTB Method for Periodic Systems: Learning from Electronic Density of States. Journal of Chemical Theory and Computation, 2023, 19, 3877-3888.	5.3	1
186	Graph Neural Network Potentials forÂMolecular Dynamics Simulations ofÂWater Cluster Anions. Lecture Notes in Computer Science, 2023, , 336-343.	1.3	0
187	Machine learning methods in photochemistry and photophysics. , 2023, , 163-189.		2
188	On the Thermodynamic Stability of Alloys: Combination of Neural Network Potential and Wang-Landau Sampling. Journal of Computer Chemistry Japan, 2022, 21, 111-117.	0.1	1
189	Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case. Molecules, 2023, 28, 4477.	3.8	0
190	Generation-Specific Analysis of Adaptive Self-Driving Technology in Hungary. , 2023, , .		0
191	Transferable and robust machine learning model for predicting stability of Si anodes for multivalent cation batteries. Journal of Materials Science, 2023, 58, 11085-11099.	3.7	1
192	Efficient generation of stable linear machine-learning force fields with uncertainty-aware active learning. Machine Learning: Science and Technology, 2023, 4, 035005.	5.0	0
193	Predicting the electronic density response of condensed-phase systems to electric field perturbations. Journal of Chemical Physics, 2023, 159, .	3.0	1
194	PhysNet meets CHARMM: A framework for routine machine learning/molecular mechanics simulations. Journal of Chemical Physics, 2023, 159, .	3.0	3
195	Interatomic-Potential-Free, Data-Driven Molecular Dynamics. Computer Methods in Applied Mechanics and Engineering, 2023, 415, 116224.	6.6	0
196	Open-Source Machine Learning in Computational Chemistry. Journal of Chemical Information and Modeling, 2023, 63, 4505-4532.	5.4	3
197	A process-level perspective of the impact of molecular force fields on the computational screening of MOFs for carbon capture. Energy and Environmental Science, 0, , .	30.8	2
198	Melting of atomic materials under high pressures using computer simulations. Advances in Physics: X, 2023, 8, .	4.1	0

#	Article	IF	CITATIONS
199	Caracal: A Versatile Ring Polymer Molecular Dynamics Simulation Package. Journal of Chemical Theory and Computation, 2023, 19, 5334-5355.	5.3	0
200	Ab initio quantum chemistry with neural-network wavefunctions. Nature Reviews Chemistry, 2023, 7, 692-709.	30.2	8
201	Induction and Ferroelectric Switching of Flux Closure Domains in Strained PbTiO ₃ with Neural Network Quantum Molecular Dynamics. Nano Letters, 2023, 23, 7456-7462.	9.1	1
202	Quantum Nuclear Delocalization and its Rovibrational Fingerprints. Angewandte Chemie, 2023, 135, .	2.0	0
203	Neural network interatomic potential for laser-excited materials. Communications Materials, 2023, 4, .	6.9	2
204	Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. ACS Catalysis, 2023, 13, 11455-11493.	11.2	8
205	Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials—A Review. Advanced Materials, 0, , .	21.0	0
206	Interpretable delta-learning of GW quasiparticle energies from GGA-DFT. Machine Learning: Science and Technology, 0, , .	5.0	0
207	Recent advances and applications of machine learning in electrocatalysis. , 0, 3, .		1
208	ChecMatE: A workflow package to automatically generate machine learning potentials and phase diagrams for semiconductor alloys. Journal of Chemical Physics, 2023, 159, .	3.0	1
209	Synergy of semiempirical models and machine learning in computational chemistry. Journal of Chemical Physics, 2023, 159, .	3.0	2
210	Four-Dimensional-Spacetime Atomistic Artificial Intelligence Models. Journal of Physical Chemistry Letters, 2023, 14, 7732-7743.	4.6	2
211	How to train a neural network potential. Journal of Chemical Physics, 2023, 159, .	3.0	9
212	Ultra-fast interpretable machine-learning potentials. Npj Computational Materials, 2023, 9, .	8.7	3
213	Computational Chemistry for Photochemical Reactions. , 2024, , 658-698.		0
214	Machine learning accelerated photodynamics simulations. Chemical Physics Reviews, 2023, 4, .	5.7	1
215	Estimating Free Energy Barriers for Heterogeneous Catalytic Reactions with Machine Learning Potentials and Umbrella Integration. Journal of Chemical Theory and Computation, 2023, 19, 6796-6804.	5.3	1
216	Interpretable machine learning for materials design. Journal of Materials Research, 0, , .	2.6	1

#	Article	IF	CITATIONS
217	Photodynamics With Neural Networks and Kernel Ridge Regression. , 2024, , 413-426.		0
218	Data Quality, Data Sampling and Data Fitting: A Tutorial Guide for Constructing Full-Dimensional Accurate Potential Energy Surfaces (PESs) of Molecules and Reactions. Challenges and Advances in Computational Chemistry and Physics, 2023, , 161-201.	0.6	0
219	Advancing Accurate and Efficient Surface Behavior Modeling of Al Clusters with Machine Learning Potential. Journal of Physical Chemistry C, 2023, 127, 19115-19126.	3.1	0
220	Ultrafast Photocontrolled Rotation in a Molecular Motor Investigated by Machine Learning-Based Nonadiabatic Dynamics Simulations. Journal of Physical Chemistry A, 2023, 127, 7682-7693.	2.5	1
221	Discrepancies and error evaluation metrics for machine learning interatomic potentials. Npj Computational Materials, 2023, 9, .	8.7	3
222	Universal machine learning for the response of atomistic systems to external fields. Nature Communications, 2023, 14, .	12.8	3
223	Developments and further applications of ephemeral data derived potentials. Journal of Chemical Physics, 2023, 159, .	3.0	0
224	<tt>q-pac</tt> : A Python package for machine learned charge equilibration models. Journal of Chemical Physics, 2023, 159, .	3.0	2
225	First-principles spectroscopy of aqueous interfaces using machine-learned electronic and quantum nuclear effects. Faraday Discussions, 0, 249, 50-68.	3.2	2
226	Transferability evaluation of the deep potential model for simulating water-graphene confined system. Journal of Chemical Physics, 2023, 159, .	3.0	1
227	Quantum Nuclear Delocalization and its Rovibrational Fingerprints. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
228	2023 Roadmap on molecular modelling of electrochemical energy materials. JPhys Energy, 2023, 5, 041501.	5.3	3
229	Cluster expansion constructed over Jacobi-Legendre polynomials for accurate force fields. Physical Review B, 2023, 108, .	3.2	2
230	DASH: Dynamic Attention-Based Substructure Hierarchy for Partial Charge Assignment. Journal of Chemical Information and Modeling, 2023, 63, 6014-6028.	5.4	1
231	An Introduction to Machine Learning in Molecular Sciences. Challenges and Advances in Computational Chemistry and Physics, 2023, , 1-19.	0.6	0
232	Swarm Smart Meta-Estimator for 2D/2D Heterostructure Design. Journal of Chemical Information and Modeling, 2023, 63, 6212-6223.	5.4	1
233	Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters. Journal of Chemical Information and Modeling, 2023, 63, 6192-6197.	5.4	1
234	Combining Force Fields and Neural Networks for an Accurate Representation of Chemically Diverse Molecular Interactions. Journal of the American Chemical Society, 2023, 145, 23620-23629.	13.7	3

# 235	ARTICLE Exploring the adsorption behavior of molecular hydrogen on CHA-zeolite by comparing the performance of various force field methods. RSC Advances, 2023, 13, 30937-30950.	IF 3.6	CITATIONS 0
236	Nanosecond MD of battery cathode materials with electron density description. Energy Storage Materials, 2023, 63, 103023.	18.0	0
238	High-Dimensional Neural Network Potentials for Accurate Prediction of Equation of State: A Case Study of Methane. Journal of Chemical Theory and Computation, 2023, 19, 7825-7832.	5.3	0
239	Computational and data-driven modelling of solid polymer electrolytes. , 2023, 2, 1660-1682.		0
240	Ring-originated anisotropy of local structural ordering in amorphous and crystalline silicon dioxide. Communications Materials, 2023, 4, .	6.9	0
241	Scope of machine learning in materials research—A review. Applied Surface Science Advances, 2023, 18, 100523.	6.8	4
242	Accuracy Assessment of Atomistic Neural Network Potentials: The Impact of Cutoff Radius and Message Passing. Journal of Physical Chemistry A, 2023, 127, 9874-9883.	2.5	1
243	Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR. Nature Reviews Drug Discovery, 2024, 23, 141-155.	46.4	2
244	Origin of dielectric polarization suppression in confined water from first principles. Chemical Science, 0, , .	7.4	1
245	Capturing Weak Interactions in Surface Adsorbate Systems at Coupled Cluster Accuracy: A Graph-Theoretic Molecular Fragmentation Approach Improved through Machine Learning. Journal of Chemical Theory and Computation, 2023, 19, 8541-8556.	5.3	1
246	Evolutionary Machine Learning in Science and Engineering. Genetic and Evolutionary Computation, 2024, , 535-561.	1.0	0
247	Deep machine learning, molecular dynamics and experimental studies of liquid Al-Cu-Co alloys. Journal of Molecular Liquids, 2024, 393, 123659.	4.9	0
248	Machine Learning Interatomic Potentials for Reactive Hydrogen Dynamics at Metal Surfaces Based on Iterative Refinement of Reaction Probabilities. Journal of Physical Chemistry C, 0, , .	3.1	0
249	Phase Stability of Large-Size Nanoparticle Alloy Catalysts at Ab Initio Quality Using a Nearsighted Force-Training Approach. Journal of Physical Chemistry C, 2023, 127, 24360-24372.	3.1	1
250	Modeling nuclear quantum effects on long-range electrostatics in nonuniform fluids. Journal of Chemical Physics, 2023, 159, .	3.0	2
251	Structure-dynamics relationship in Al-Mg-Si liquid alloys. Physical Review B, 2023, 108, .	3.2	1
252	Hydrogen atom scattering at the Al ₂ O ₃ (0001) surface: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2024, 26, 1696-1708.	2.8	0
253	A machine learning-based high-precision density functional method for drug-like molecules. , 2024, 2, 100037.		0

#	Article	IF	CITATIONS
254	Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles. Npj Computational Materials, 2023, 9, .	8.7	4
255	Transferable Machine Learning Interatomic Potential for Bond Dissociation Energy Prediction of Drug-like Molecules. Journal of Chemical Theory and Computation, 2024, 20, 164-177.	5.3	2
256	A New Full-Dimensional <i>Ab Initio</i> Intermolecular Potential Energy Surface and Rovibrational Energies of the H ₂ O–H ₂ Complex. Journal of Physical Chemistry A, 2024, 128, 170-181.	2.5	0
257	Accurate fundamental invariant-neural network representation of <i>ab initio</i> potential energy surfaces. National Science Review, 0, , .	9.5	4
258	The emergence of machine learning force fields in drug design. Medicinal Research Reviews, 2024, 44, 1147-1182.	10.5	1
259	Theoretical trends in the dynamics simulations of molecular machines across multiple scales. Physical Chemistry Chemical Physics, 2024, 26, 4828-4839.	2.8	0
260	Harvesting Chemical Understanding with Machine Learning and Quantum Computers. ACS Physical Chemistry Au, 2024, 4, 135-142.	4.0	0
261	Degeneration of kernel regression with Matern kernels into low-order polynomial regression in high dimension. Journal of Chemical Physics, 2024, 160, .	3.0	0
262	How Does Structural Disorder Impact Heterogeneous Catalysts? The Case of Ammonia Decomposition on Non-stoichiometric Lithium Imide. ACS Catalysis, 2024, 14, 1252-1256.	11.2	0
263	CoRe optimizer: an all-in-one solution for machine learning. Machine Learning: Science and Technology, 2024, 5, 015018.	5.0	0
264	Utilizing Wyckoff Sites to Construct Machine-Learning-Driven Interatomic Potentials for Crystalline Materials: A Case Study on α-Alumina. Journal of Physical Chemistry C, 2024, 128, 1746-1754.	3.1	0
265	Applying graph neural network models to molecular property prediction using high-quality experimental data. , 2024, 2, 100050.		0
266	Size dependent lithium-ion conductivity of solid electrolytes in machine learning molecular dynamics simulations. , 2024, 2, 100051.		0
267	MLatom 3: A Platform for Machine Learning-Enhanced Computational Chemistry Simulations and Workflows. Journal of Chemical Theory and Computation, 2024, 20, 1193-1213.	5.3	0
268	Artificial intelligence in catalysis. , 2024, , 167-204.		0
269	Machine-Learned Potentials by Active Learning from Organic Crystal Structure Prediction Landscapes. Journal of Physical Chemistry A, 2024, 128, 945-957.	2.5	0
270	Molecular dynamics simulations of liquid gallium alloy Ga–X (X = Pt, Pd, Rh) <i>via</i> machine learning potentials. Inorganic Chemistry Frontiers, 2024, 11, 1573-1582.	6.0	0
271	A neural network potential based on pairwise resolved atomic forces and energies. Journal of Computational Chemistry, 2024, 45, 1143-1151.	3.3	0

ARTICLE Highly efficient and transferable interatomic potentials for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si28.svg" display="inline" id="d1e1011"><mml:mi>α</mml:mi>-iron and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si28.svg" display="inline"</mml:math </mml:math 	IF 3.0	CITATIONS 0
id="d1e1016"> <mml:mi>I±</mml:mi> -iron/hydrogen binary systems using deep neural networks. Computational Materials Science, 2024, 235, 112843. Transferability of atomic energies from alchemical decomposition. Journal of Chemical Physics, 2024, 160, .	3.0	1
Inelastic neutron scattering of hydrogen in palladium studied by semiclassical dynamics. Physical Review B, 2024, 109, .	3.2	0
Atomistic simulations of nuclear fuel <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>UO</mml:mi><mml:mn>2with machine learning interatomic potentials. Physical Review Materials, 2024, 8, .</mml:mn></mml:msub></mml:math 	nn 2.4 /mml	:moub>
Training dependency of neural network interatomic potential for molecular dynamics simulation of Ru-Si-O mixed system. Japanese Journal of Applied Physics, 2024, 63, 03SP88.	1.5	0
Local-environment-guided selection of atomic structures for the development of machine-learning potentials. Journal of Chemical Physics, 2024, 160, .	3.0	0
Revealing the crystallization dynamics of Sb–Te phase change materials by large-scale simulations. Journal of Materials Chemistry C, 2024, 12, 3897-3906.	5.5	0
Development and Practical Applications of Computational Intelligence Technology. BioMedInformatics, 2024, 4, 566-599.	2.0	0
Electrostatics as a Guiding Principle in Understanding and Designing Enzymes. Journal of Chemical Theory and Computation, 2024, 20, 1783-1795.	5.3	0
Uncertainty in Artificial Neural Network Models: Monte-Carlo Simulations Beyond the GUM Boundaries. Measurement, 2024, 22, 141-159.	0.2	0
A Vision for the Future of Multiscale Modeling. ACS Physical Chemistry Au, 0, , .	4.0	0
Incorporating Neural Networks into the AMOEBA Polarizable Force Field. Journal of Physical Chemistry B, 2024, 128, 2381-2388.	2.6	0
Active learning molecular dynamics-assisted insights into ultralow thermal conductivity of two-dimensional covalent organic frameworks. International Journal of Heat and Mass Transfer, 2024, 225, 125404.	4.8	0
Towards atomistic modelling of solid Pb-O formation and dissolution in liquid lead coolant: Interatomic potential development. Journal of Nuclear Materials, 2024, 594, 155016.	2.7	0
Probing the state of hydrogen in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>δ</mml:mi><mml:mtext>â^`</mml:mtext><mm at mantle conditions with machine learning potential. Physical Review Research, 2024, 6, .</mm </mml:math 	ll:mai <i>s</i> 6AlOO	Hq/mml:mi><
Decoding Electrochemical Processes of Lithiumâ€lon Batteries by Classical Molecular Dynamics Simulations. Advanced Energy Materials, 0, , .	19.5	0
Recent advances in machine learning interatomic potentials for cross-scale computational simulation of materials. Science China Materials, 2024, 67, 1082-1100.	6.3	0
interest noble gas-containing <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si0030.svg"><mml:msubsup><mml:mrow><mml:mi< td=""><td>row><mm< td=""><td>0 l:mo>+</td></mm<></td></mml:mi<></mml:mrow></mml:msubsup></mml:math>	row> <mm< td=""><td>0 l:mo>+</td></mm<>	0 l:mo>+
	 xminsmine "http://www.so.gr/1998/Math/Math/Math/M_" altring="628.sog" (display="inline") die 1010 (somikanis) kerninkanis (emailmather) konnal (antimise) altriang="628.sog" (display="inline") die 1010 (somikanis) kerninkanis (emailmather) konnal (antimise) altriang="628.sog" (display="inline") die 1010 (somikanis) kerninkanis (emailmather) konnal (antimise) altriang="628.sog" (display="inline") die 1010 (somikanis) kerninkanis (mailmather) konnal (antimise) kerninkanis (display="inline") die 1010 (somikanis) kerninkanis die 1010 (somikanis) (somikanis) die 1010 (somikanis) die	Imaging emindent and it associated indextomic potentials for communation of the second seco

#ARTICLEIFCITATIONS290Using machine learning to find exact analytic solutions to analytically posed physics problems.3.20291The Potential of Neural Network Potentials. ACS Physical Chemistry Au, 0, ..4.00292Square-pyramidal subsurface oxygen [Ag4OAg] drives selective ethene epoxidation on silver. Nature34.40

CITATION REPORT