Towards real-time photorealistic 3D holography with de

Nature 591, 234-239

DOI: 10.1038/s41586-020-03152-0

Citation Report

#	Article	IF	CITATIONS
1	GPU-accelerated calculation of computer-generated holograms for line-drawn objects. Optics Express, 2021, 29, 12849.	1.7	8
3	Monocular Stereo Vision of Image Feature-aware Interactive Generation. , 2021, , .		O
4	Multicolor Holographic Display of 3D Scenes Using Referenceless Phase Holography (RELPH). Photonics, 2021, 8, 247.	0.9	2
5	High-speed computer-generated holography using an autoencoder-based deep neural network. Optics Letters, 2021, 46, 2908.	1.7	96
6	Computing 3D Phase-Type Holograms Based on Deep Learning Method. Photonics, 2021, 8, 280.	0.9	9
7	Fast Low-Precision Computer-Generated Holography on GPU. Applied Sciences (Switzerland), 2021, 11, 6235.	1.3	4
8	Implementation of the real–virtual 3D scene-fused full-parallax holographic stereogram. Optics Express, 2021, 29, 25979.	1.7	5
9	Fusion Coding of 3D Real and Virtual Scenes Information for Augmented Reality-Based Holographic Stereogram. Frontiers in Physics, 2021, 9, .	1.0	2
10	Large field-of-view holographic display by gapless splicing of multisegment cylindrical holograms. Applied Optics, 2021, 60, 7381.	0.9	3
11	Computer-Generated Hologram Based on Reference Light Multiplexing for Holographic Display. Applied Sciences (Switzerland), 2021, 11, 7199.	1.3	2
12	Wide-viewing full-color depthmap computer-generated holograms. Optics Express, 2021, 29, 26793.	1.7	12
13	Research on Information Visualization Graphic Design Teaching Based on DBN Algorithm. Computational Intelligence and Neuroscience, 2021, 2021, 1-10.	1.1	2
14	Warming climate challenges breeding. Nature Plants, 2021, 7, 1164-1165.	4.7	3
15	Human Skeleton Detection and Extraction in Dance Video Based on PSO-Enabled LSTM Neural Network. Computational Intelligence and Neuroscience, 2021, 2021, 1-10.	1.1	5
16	Hologram computation using the radial point spread function. Applied Optics, 2021, 60, 8829.	0.9	3
17	Surface-enhanced Raman scattering holography chip for rapid, sensitive and multiplexed detection of human breast cancer-associated MicroRNAs in clinical samples. Biosensors and Bioelectronics, 2021, 190, 113470.	5.3	25
18	Gaze-Contingent Retinal Speckle Suppression for Perceptually-Matched Foveated Holographic Displays. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 4194-4203.	2.9	22
19	Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light: Science and Applications, 2021, 10, 216.	7.7	404

#	ARTICLE	IF	CITATIONS
20	Acceleration of polygon-based computer-generated holograms using look-up tables and reduction of the table size via principal component analysis. Optics Express, 2021, 29, 35442.	1.7	17
21	Conjugate wavefront encoding: an efficient eyebox extension approach for holographic Maxwellian near-eye display. Optics Letters, 2021, 46, 5623.	1.7	11
22	International Trade Path with Multi-Polarization based on Multidirectional Mutation Genetic Algorithm Enabled Neural Network. Computational Intelligence and Neuroscience, 2021, 2021, 1-9.	1.1	1
23	HoloAR: On-the-fly Optimization of 3D Holographic Processing for Augmented Reality., 2021,,.		5
24	Channeled imaging spectropolarimeter reconstruction by neural networks. Optics Express, 2021, 29, 35556.	1.7	5
25	Holograms on the horizon?. Communications of the ACM, 2021, 64, 14-16.	3.3	4
26	Curved hologram generation method for speckle noise suppression based on the stochastic gradient descent algorithm. Optics Express, 2021, 29, 42650.	1.7	13
27	Unfiltered holography: optimizing high diffraction orders without optical filtering for compact holographic displays. Optics Letters, 2021, 46, 5822.	1.7	24
28	Towards Holographic Flat Panel Displays. , 2021, , .		0
29	Computer-generated holograms: algorithms and related topics. , 2021, , .		0
30	Machine learning accelerated holographic near-eye display system based on three-step diffraction. , 2021, , .		0
31	3D displays in augmented and virtual realities with holographic optical elements [Invited]. Optics Express, 2021, 29, 42696.	1.7	31
32	Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration. Science Advances, 2021, 7, eabg5040.	4.7	65
33	Dual-comb hyperspectral digital holography. Nature Photonics, 2021, 15, 890-894.	15.6	51
34	Coal Wall and Roof Segmentation in the Coal Mine Working Face Based on Dynamic Graph Convolution Neural Networks. ACS Omega, 2021, 6, 31699-31715.	1.6	5
35	Real-Time Computation of 3D Wireframes in Computer-Generated Holography. IEEE Transactions on Image Processing, 2021, 30, 9418-9428.	6.0	13
36	Holography, and the future of 3D display. Light Advanced Manufacturing, 2021, 2, 1.	2.2	23
37	Color curved hologram calculation method based on angle multiplexing. Optics Express, 2022, 30, 3157-3171.	1.7	6

#	ARTICLE	IF	CITATIONS
38	Learning-based compensation of spatially varying aberrations for holographic display [Invited]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, A86.	0.8	5
39	Phase dual-resolution networks for a computer-generated hologram. Optics Express, 2022, 30, 2378.	1.7	14
40	Deep Learning Approach for Computer-Generated Holography. , 2021, , .		0
41	Real-Time Dance Posture Tracking Method Based on Lightweight Network. Wireless Communications and Mobile Computing, 2022, 2022, 1-9.	0.8	2
42	Computer-generated full-color phase-only hologram using a multiplane iterative algorithm with dynamic compensation. Applied Optics, 2022, 61, B262.	0.9	12
43	Optimization of phase-only holograms calculated with scaled diffraction calculation through deep neural networks. Applied Physics B: Lasers and Optics, 2022, 128, 1.	1.1	7
44	Toward the Standardization of High-Quality Computer-Generated Holography Media Production Workflow. Smpte Motion Imaging Journal, 2022, 131, 48-58.	0.2	0
45	Holographic techniques for augmented reality and virtual reality near-eye displays. Light Advanced Manufacturing, 2022, 3, $1.$	2.2	34
46	Speckle Noise Suppression Algorithm of Holographic Display Based on Spatial Light Modulator. Frontiers in Photonics, 2022, 2, .	1.1	8
47	Orbital angular momentum deep multiplexing holography via an optical diffractive neural network. Optics Express, 2022, 30, 5569.	1.7	16
48	Double amplitude freedom Gerchberg–Saxton algorithm for generation of phase-only hologram with speckle suppression. Applied Physics Letters, 2022, 120, .	1.5	11
49	Automotive Holographic Headâ€Up Displays. Advanced Materials, 2022, 34, e2110463.	11.1	19
50	Neural 3D holography. ACM Transactions on Graphics, 2021, 40, 1-12.	4.9	72
51	Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years. Journal of Information Display, 2022, 23, 1-17.	2.1	80
52	Deep holography. Light Advanced Manufacturing, 2022, 3, 1.	2.2	17
53	Continuous Depth Control of Phase-Only Hologram With Depth Embedding Block. IEEE Photonics Journal, 2022, 14, 1-7.	1.0	1
54	Bioâ€Inspired 3D Artificial Neuromorphic Circuits. Advanced Functional Materials, 2022, 32, .	7.8	45
55	Comprehensive deep learning model for 3D color holography. Scientific Reports, 2022, 12, 2487.	1.6	4

#	Article	IF	Citations
56	High-contrast, speckle-free, true 3D holography via binary CGH optimization. Scientific Reports, 2022, 12, 2811.	1.6	34
57	Pincushion point-spread function for computer-generated holography. Optics Letters, 2022, 47, 2077-2080.	1.7	2
58	Recent Advances in Planar Optics-Based Glasses-Free 3D Displays. Frontiers in Nanotechnology, 2022, 4,	2.4	8
59	Hogel-Free Holography. ACM Transactions on Graphics, 2022, 41, 1-16.	4.9	9
60	Wide-viewing holographic stereogram based on self-interference incoherent digital holography. Optics Express, 2022, 30, 12760.	1.7	7
61	Deep-Learning Computational Holography: A Review. Frontiers in Photonics, 2022, 3, .	1.1	32
62	Deep-learning-based computer-generated hologram from a stereo image pair. Optics Letters, 2022, 47, 1482.	1.7	11
63	Pipeline 3D Modeling Based on High-Definition Rendering Intelligent Calculation. Mathematical Problems in Engineering, 2022, 2022, 1-11.	0.6	1
64	Traditional Artificial Neural Networks Versus Deep Learning in Optimization of Material Aspects of 3D Printing. Materials, 2021, 14, 7625.	1.3	5
65	Human Action Recognition in Smart Cultural Tourism Based on Fusion Techniques of Virtual Reality and SOM Neural Network. Computational Intelligence and Neuroscience, 2021, 2021, 1-12.	1.1	11
66	Three-dimensional hologram calculations using blocked radial and windmill point spread functions. Optics Express, 2021, 29, 44283.	1.7	2
67	Metameric Varifocal Holograms. , 2022, , .		7
68	Efficient Computer-Generated Holography Based on Mixed Linear Convolutional Neural Networks. Applied Sciences (Switzerland), 2022, 12, 4177.	1.3	1
69	Cimmino Simultaneously Iterative Holographic Projection. , 0, , .		0
70	Towards a modular and scalable holographic display. Light: Science and Applications, 2022, 11, 100.	7.7	2
71	Expansion of Image Space in Enhanced-NA Fresnel Holographic Display. Applied Sciences (Switzerland), 2022, 12, 4148.	1.3	1
72	Sparse Nanophotonic Phased Arrays for Energy-Efficient Holographic Displays. , 2022, , .		0
73	Perceptually motivated loss functions for computer generated holographic displays. Scientific Reports, 2022, 12, 7709.	1.6	1

#	ARTICLE	IF	Citations
74	Application of Business Intelligence Based on the Deep Neural Network in Credit Scoring. Security and Communication Networks, 2022, 2022, 1-6.	1.0	1
7 5	The state-of-the-art in computer generated holography for 3D display. , 2022, 3, 1.		22
76	A Quantitative Model of International Trade Based on Deep Neural Network. Computational Intelligence and Neuroscience, 2022, 2022, 1-11.	1.1	1
77	Reconfigurable Metasurface Hologram of Dynamic Distance via Deep Learning. Frontiers in Materials, 2022, 9, .	1.2	2
78	Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light: Science and Applications, 2022, 11 , .	7.7	154
79	Predicting Laser-Induced Colors of Random Plasmonic Metasurfaces and Optimizing Image Multiplexing Using Deep Learning. ACS Nano, 2022, 16, 9410-9419.	7.3	7
81	Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size. Light: Science and Applications, 2022, 11, .	7.7	78
82	(Retracted) Algorithm of generating music melody based on single-exposure high dynamic range digital image using convolutional neural network. Journal of Electronic Imaging, 2022, 31, .	0.5	0
83	Advances in computer-generated holography for targeted neuronal modulation. Neurophotonics, 2022, 9, .	1.7	6
84	Fully Analytic Shading Model with Specular Reflections for Polygon-Based Hologram. SSRN Electronic Journal, 0, , .	0.4	0
85	37â€5: <i>Invited Paper:</i> Flatâ€Panel Holographic Display. Digest of Technical Papers SID International Symposium, 2022, 53, 470-473.	0.1	0
86	37â€1: ⟨i⟩Invited Paper:⟨ i⟩ Advances in Neural Holographic Displays for Virtual and Augmented Reality. Digest of Technical Papers SID International Symposium, 2022, 53, 454-457.	0.1	0
87	Upcoming and urgent challenges in critical care research based on COVID-19 pandemic experience. Anaesthesia, Critical Care & Car	0.6	2
88	37â€2: <i>Invited Paper:</i> Enabling Augmentedâ€Reality Nearâ€Eye and Headâ€Up Displays with Neural Holography. Digest of Technical Papers SID International Symposium, 2022, 53, 458-461.	0.1	0
89	Variable-intensity line 3D images drawn using kinoform-type electroholography superimposed with phase error. Optics Express, 2022, 30, 27884.	1.7	3
90	Spectral-envelope modulated double-phase method for computer-generated holography. Optics Express, 2022, 30, 30552.	1.7	16
91	Deep-learning based reconstruction in optical scanning holography. Optics and Lasers in Engineering, 2022, 158, 107161.	2.0	3
92	Deep-learning-assisted communication capacity enhancement by non-orthogonal state recognition of structured light. Optics Express, 2022, 30, 29781.	1.7	14

#	Article	IF	CITATIONS
93	Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display. Light: Science and Applications, 2022, 11 , .	7.7	88
94	Convolutional Neural Network for Phase-Only Hologram Optimization Based on the Point Source Method With the Holographic Viewing-Window. IEEE Photonics Journal, 2022, 14, 1-7.	1.0	1
95	End-to-end learning of 3D phase-only holograms for holographic display. Light: Science and Applications, 2022, 11 , .	7.7	44
96	Analyzing point cloud of coal mining process in much dust environment based on dynamic graph convolution neural network. Environmental Science and Pollution Research, 2023, 30, 4044-4061.	2.7	8
97	Three-dimensional holographic communication system for the metaverse. Optics Communications, 2023, 526, 128894.	1.0	20
98	Phase-only hologram generated by a convolutional neural network trained using low-frequency mixed noise. Optics Express, 2022, 30, 35189.	1.7	5
99	Spherical crown diffraction model by occlusion utilizing for a curved holographic display. Optics Express, 2022, 30, 31685.	1.7	2
100	Color dynamic holographic display based on complex amplitude modulation with bandwidth constraint strategy. Optics Letters, 2022, 47, 4379.	1.7	11
101	Fast hologram calculation method using wavelet transform: WASABI-2. Optics Communications, 2022, 525, 128836.	1.0	5
102	Accelerating hologram generation using oriented-separable convolution and wavefront recording planes. Optics Express, 2022, 30, 36564.	1.7	4
103	Fully analytic shading model with specular reflections for polygon-based hologram. Optics and Lasers in Engineering, 2023, 160, 107235.	2.0	11
104	100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution., 2022, 1, 220004-220004.		22
105	Resolution-Improved Holographic Stereogram for Dual-View 3d Display Based on Integral Imaging. SSRN Electronic Journal, 0, , .	0.4	0
106	Partially-Coherent Neural Holography with Fast Spatial Light Modulators. , 2022, , .		0
107	Progress of the Computer-Generated Holography Based on Deep Learning. Applied Sciences (Switzerland), 2022, 12, 8568.	1.3	3
108	Exponentially-wide etendue displays using a tilting cascade. , 2022, , .		3
109	Analyzing phase masks for wide \tilde{A} ©tendue holographic displays. , 2022, , .		4
110	Artificial Intelligence for Metaverse: A Framework. , 2022, 1, 54-67.		10

#	ARTICLE	IF	Citations
111	A Scoping Review of Deep Learning in Cancer Nursing Combined with Augmented Reality: the Era of Intelligent Nursing is Coming. Asia-Pacific Journal of Oncology Nursing, 2022, , 100135.	0.7	4
112	High-Precision Depth Map Estimation from Missing Viewpoints for 360-Degree Digital Holography. Applied Sciences (Switzerland), 2022, 12, 9432.	1.3	2
113	Non-hogel-based computer generated hologram with occlusion processing between the foreground light field and background hologram. Optics Express, 2022, 30, 38339.	1.7	2
114	Steganographic optical image encryption based on single-pixel imaging and an untrained neural network. Optics Express, 2022, 30, 36144.	1.7	15
115	Real-time realistic computer-generated hologram with accurate depth precision and a large depth range. Optics Express, 2022, 30, 40087.	1.7	10
116	The U-Net-based phase-only CGH using the two-dimensional phase grating. Optics Express, 2022, 30, 41624.	1.7	3
117	Hologram Super-Resolution Using Dual-Generator GAN. , 2022, , .		0
118	High-performance full-color imaging system based on end-to-end joint optimization of computer-generated holography and metalens. Optics Express, 2022, 30, 40871.	1.7	3
119	Neural compression for hologram images and videos. Optics Letters, 2022, 47, 6013.	1.7	4
120	Diffraction-engineered holography: Beyond the depth representation limit of holographic displays. Nature Communications, 2022, 13, .	5.8	18
121	Advantages of Phase Modulating MEMS for Full 3D Hologram Scene Reconstruction., 2022,,.		1
122	Resolution-improved holographic stereogram for dual-view 3D display based on integral imaging. Optics and Lasers in Engineering, 2023, 161, 107378.	2.0	2
123	Magnification and quality improvement for optical cylindrical holographic display. Applied Optics, 0, ,	0.9	0
124	Diffraction model-informed neural network for unsupervised layer-based computer-generated holography. Optics Express, 2022, 30, 44814.	1.7	12
125	Visual perception of noise in a simulated holographic display—A user study. Displays, 2023, 76, 102333.	2.0	4
126	Smoothing of inter-layer edge artifacts in depth-map computer-generated holograms. Optics Letters, 2022, 47, 6421.	1.7	1
127	Deep neural network and its training strategy for converting computer-generated hologram between different display systems. , 2022, , .		0
128	A novel feed-forward neural network-based method for fast hologram generation. Optics Communications, 2023, 530, 129162.	1.0	2

#	Article	IF	CITATIONS
129	Zooming optimization for fractional Fourier holographic parallel laser microprocessing. Optics and Laser Technology, 2023, 159, 108995.	2.2	0
130	Agricultural Digital Twins. , 2022, , 37-44.		0
131	Lensless magnified holographic projection based on an unsupervised neural network technology. , 2022, , .		0
132	Multi-depth Hologram Generation with Unsupervised-learning Based Computer-generated Holography. , 2022, , .		0
133	Dynamic complex opto-magnetic holography. Nature Communications, 2022, 13, .	5.8	8
134	Image Segmentation Method on Quartz Particle-Size Detection by Deep Learning Networks. Minerals (Basel, Switzerland), 2022, 12, 1479.	0.8	2
135	Generation of phase-only holograms with high-diffraction-order reconstruction by a U-Net-based neural network: A phase grating perspective. Frontiers in Physics, 0, 10 , .	1.0	0
136	Fourier-inspired neural module for real-time and high-fidelity computer-generated holography. Optics Letters, 2023, 48, 759.	1.7	6
137	High-speed rendering pipeline for polygon-based holograms. Photonics Research, 2023, 11, 313.	3.4	10
138	Strategies for the next generation of special-purpose computers for holography. , 2022, , .		0
139	Implementation of a full-color holographic system using RGB-D salient object detection and divided point cloud gridding. Optics Express, 2023, 31, 1641.	1.7	6
140	High-Quality Holographic 3D Display System Based on Virtual Splicing of Spatial Light Modulator. ACS Photonics, 2023, 10, 2297-2307.	3.2	16
141	Super-resolution image display using diffractive decoders. Science Advances, 2022, 8, .	4.7	15
142	Weighted constraint stochastic gradient descent algorithm for computational holographic near-eye display. , 2022, , .		0
143	Speckle-free compact holographic near-eye display using camera-in-the-loop optimization with phase constraint. Optics Express, 2022, 30, 46649.	1.7	7
144	4K-DMDNet: diffraction model-driven network for 4K computer-generated holography. Opto-Electronic Advances, 2023, 6, 220135-220135.	6.4	28
145	Three-dimensional spline-based computer-generated holography. Optics Express, 2023, 31, 3072.	1.7	4
146	The Optics of Augmented Reality Displays. Springer Handbooks, 2023, , 187-209.	0.3	2

#	Article	IF	CITATIONS
147	Calculation of Computer-Generated Hologram based on Frequency Domain., 2022,,.		0
148	From picture to 3D hologram: end-to-end learning of real-time 3D photorealistic hologram generation from 2D image input. Optics Letters, 2023, 48, 851.	1.7	5
149	Recent Advances and Prospects of Optical Metasurfaces. ACS Photonics, 2023, 10, 2045-2063.	3.2	9
150	Binocular full-color holographic three-dimensional near eye display using a single SLM. Optics Express, 2023, 31, 2552.	1.7	4
151	Deep hologram converter from low-precision to middle-precision holograms. Applied Optics, 2023, 62, 1723.	0.9	1
152	A Tutorial on Immersive Video Delivery: From Omnidirectional Video to Holography. IEEE Communications Surveys and Tutorials, 2023, 25, 1336-1375.	24.8	2
153	Super-resolution orbital angular momentum holography. Nature Communications, 2023, 14, .	5. 8	17
154	Magnetic/conductive/elastic multi-material 3D-printed self-powered sensing gloves for underwater/smoke environmental Human-Computer Interaction. Chemical Engineering Journal, 2023, 463, 142388.	6.6	24
155	Off-Axis Layered Displays: Hybrid Direct-View/Near-Eye Mixed Reality with Focus Cues. IEEE Transactions on Visualization and Computer Graphics, 2023, 29, 2816-2825.	2.9	1
156	Reducing crosstalk of a multi-plane holographic display by the time-multiplexing stochastic gradient descent. Optics Express, 2023, 31, 7413.	1.7	7
157	Intelligent optoelectronic processor for orbital angular momentum spectrum measurement. PhotoniX, 2023, 4, .	5. 5	26
158	End-to-end real-time holographic display based on real-time capture of real scenes. Optics Letters, 2023, 48, 1850.	1.7	1
159	Polarization Multiplexing Bifunctional Metalens Designed by Deep Neural Networks., 2023, 2, .		0
160	JPEG Pleno holography presents the numerical reconstruction software for holograms: an excursion in holographic views. Applied Optics, 2023, 62, 2462.	0.9	0
161	Encoding scattered wavefronts through spectral-envelope modulated double-phase method., 2023,,.		0
162	Enabling ultra-compact, high-quality 3D displays with neural holography. , 2023, , .		0
163	Analysis of phase masks for wide \tilde{A} ©tendue holographic displays. , 2023, , .		0
164	Vision transformer-based, high-fidelity, computer-generated holography. , 2023, , .		0

#	Article	IF	CITATIONS
165	Michelson interferometric methods for full optical complex convolution. , 2023, , .		2
166	Partially coherent neural holography with fast spatial light modulators. , 2023, , .		0
167	Deep optics: learning cameras and optical computing systems. , 2023, , .		0
168	Low-dose imaging denoising with one pair of noisy images. Optics Express, 2023, 31, 14159.	1.7	1
169	Computer holography using deep neural network with Fourier basis. Optics Letters, 0, , .	1.7	2
170	Finite-time topology identification of stochastic delayed coupled systems on multi-weighted networks based on graph-theoretic method. Journal of Computational Science, 2023, 69, 102009.	1.5	1
171	Light sheets for continuous-depth holography and three-dimensional volumetric displays. Nature Photonics, 2023, 17, 427-434.	15.6	13
172	Realistic Defocus Blur for Multiplane Computer-Generated Holography. , 2023, , .		2
174	Comparative Study of Depth Estimation for 2D Scene Using Deep Learning Model. Lecture Notes in Networks and Systems, 2023, , 319-330.	0.5	0
185	HoloBeam: Paper-Thin Near-Eye Displays. , 2023, , .		2
192	Real-time Acoustic Holography with Iterative Unsupervised Learning for Acoustic Robotic Manipulation. , 2023, , .		0
193	The Path Exploration of University Ideological and Political Courses Based on the Concept of Metaverse., 2023,,.		0
194	Efficient andÂCorrect Numerical Reconstructions. , 2023, , 271-301.		0
195	Hologram Calculation Using Layer Methods. , 2023, , 193-206.		0
196	Open access dataset of holographic videos for codec analysis and machine learning applications. , 2023, , .		0
211	Rapid Generation of Physical Holograms Based on Light Fields. , 2023, , .		0
212	Stochastic Light Field Holography. , 2023, , .		0
218	Time-aware Fourier optics: modeling implications and device performance predictions. , 2023, , .		0

#	ARTICLE	IF	CITATIONS
229	Computer-Generated Holography. Series in Display Science and Technology, 2023, , 53-67.	0.6	0
235	Physics informed neural network with Fourier basis for computer-generated hologram synthesizing. , 2023, , .		0
236	High-speed 3D hologram generation method via convolutional neural network., 2023,,.		0
237	Phase Response Measurement of Gradient Descent Phase-only Hologram Optimization., 2023,,.		0
239	Joint color optimization for holographic displays. , 2023, , .		0
240	Perceptually Optimized Model for Near-Eye Light Field Reconstruction. , 2023, , .		0
243	Foveated holographic displays based on gaze-contingent hologram generation., 2023,,.		0
244	Ultrafast Acoustic Holography with Physics-Reinforced Self-Supervised Learning for Precise Robotic Manipulation. , 2023, , .		0
254	Deep optics. , 2024, , 295-317.		0
255	Interaction in Metaverse: A Survey. , 2023, , .		0
264	Dataset enhancement training of diffraction model-driven neural networks and extension to generate multi-depth computer-generated holograms. , 2024, , .		0