Machine Learning Force Fields

Chemical Reviews 121, 10142-10186 DOI: 10.1021/acs.chemrev.0c01111

Citation Report

#	Article	IF	Citations
1	Mean-field density matrix decompositions. Journal of Chemical Physics, 2020, 153, 214109.	3.0	10
2	Catalyst deep neural networks (Cat-DNNs) in singlet fission property prediction. Physical Chemistry Chemical Physics, 2021, 23, 20835-20840.	2.8	2
3	Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature. Nature Communications, 2021, 12, 442.	12.8	25
4	Biomolecular QM/MM Simulations: What Are Some of the "Burning Issues�. Journal of Physical Chemistry B, 2021, 125, 689-702.	2.6	68
5	Machine learning of solvent effects on molecular spectra and reactions. Chemical Science, 2021, 12, 11473-11483.	7.4	47
6	Choosing the right molecular machine learning potential. Chemical Science, 2021, 12, 14396-14413.	7.4	72
7	Higher-Order Explanations of Graph Neural Networks via Relevant Walks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 7581-7596.	13.9	58
8	Physically inspired deep learning of molecular excitations and photoemission spectra. Chemical Science, 2021, 12, 10755-10764.	7.4	35
9	Improving molecular force fields across configurational space by combining supervised and unsupervised machine learning. Journal of Chemical Physics, 2021, 154, 124102.	3.0	19
10	A Force Field for a Manganese-Vanadium Water Oxidation Catalyst: Redox Potentials in Solution as Showcase. Catalysts, 2021, 11, 493.	3.5	8
11	Machine Learning for Chemical Reactions. Chemical Reviews, 2021, 121, 10218-10239.	47.7	166
12	Perspective on integrating machine learning into computational chemistry and materials science. Journal of Chemical Physics, 2021, 154, 230903.	3.0	107
13	Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks. Journal of Physical Chemistry Letters, 2021, 12, 6070-6077.	4.6	29
14	Accelerated Atomistic Modeling of Solid-State Battery Materials With Machine Learning. Frontiers in Energy Research, 2021, 9, .	2.3	25
15	Machine learned Hückel theory: Interfacing physics and deep neural networks. Journal of Chemical Physics, 2021, 154, 244108.	3.0	25
16	Benchmarking graph neural networks for materials chemistry. Npj Computational Materials, 2021, 7,	8.7	113
17	Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems. Chemical Reviews, 2021, 121, 9816-9872.	47.7	287
18	Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations. Machine Learning: Science and Technology, 2021, 2, 031001.	5.0	42

TION RE

#	Article	IF	CITATIONS
19	Machine Learning Force Fields: Recent Advances and Remaining Challenges. Journal of Physical Chemistry Letters, 2021, 12, 6551-6564.	4.6	58
20	Impact of the Characteristics of Quantum Chemical Databases on Machine Learning Prediction of Tautomerization Energies. Journal of Chemical Theory and Computation, 2021, 17, 4769-4785.	5.3	12
21	Physics-Inspired Structural Representations for Molecules and Materials. Chemical Reviews, 2021, 121, 9759-9815.	47.7	247
22	The Rise of Neural Networks for Materials and Chemical Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 6227-6243.	4.6	39
23	Genesis of Polyatomic Molecules in Dark Clouds: CO2 Formation on Cold Amorphous Solid Water. Journal of Physical Chemistry Letters, 2021, 12, 6781-6787.	4.6	7
24	Theory-Guided Discovery of Novel Materials. Journal of Physical Chemistry Letters, 2021, 12, 6499-6513.	4.6	11
25	Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling, 2021, 61, 4210-4223.	5.4	6
26	Towards modeling spatiotemporal processes in metal–organic frameworks. Trends in Chemistry, 2021, 3, 605-619.	8.5	31
27	Theoretical Study of Chemical Vapor Deposition Synthesis of Graphene and Beyond: Challenges and Perspectives. Journal of Physical Chemistry Letters, 2021, 12, 7942-7963.	4.6	15
28	Gaussian Process Regression for Materials and Molecules. Chemical Reviews, 2021, 121, 10073-10141.	47.7	384
29	Machine Learning Directed Optimization of Classical Molecular Modeling Force Fields. Journal of Chemical Information and Modeling, 2021, 61, 4400-4414.	5.4	29
30	Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport. Physical Review B, 2021, 104, .	3.2	101
31	From mechanism-based to data-driven approaches in materials science. Materials Theory, 2021, 5, .	4.3	5
32	Can force fields developed for carbon nanomaterials describe the isomerization energies of fullerenes?. Chemical Physics Letters, 2021, 779, 138853.	2.6	11
33	Molecular Dynamics and Machine Learning in Catalysts. Catalysts, 2021, 11, 1129.	3.5	15
34	Increasing Efficiency of Nonadiabatic Molecular Dynamics by Hamiltonian Interpolation with Kernel Ridge Regression. Journal of Physical Chemistry A, 2021, 125, 9191-9200.	2.5	8
35	Efficient and transferable machine learning potentials for the simulation of crystal defects in bcc Fe and W. Physical Review Materials, 2021, 5, .	2.4	21
36	Molecular simulations of interfacial systems: challenges, applications and future perspectives. Molecular Simulation, 2023, 49, 1229-1266.	2.0	14

#	Article	IF	CITATIONS
37	Physically Motivated Recursively Embedded Atom Neural Networks: Incorporating Local Completeness and Nonlocality. Physical Review Letters, 2021, 127, 156002.	7.8	32
38	Spectroscopic Signatures of Hydrogen-Bonding Motifs in Protonic Ionic Liquid Systems: Insights from Diethylammonium Nitrate in the Solid State. Journal of Physical Chemistry C, 2021, 125, 24463-24476.	3.1	4
39	Artificial intelligence: A powerful paradigm for scientific research. Innovation(China), 2021, 2, 100179.	9.1	200
40	Strategies for the Development of Conjugated Polymer Molecular Dynamics Force Fields Validated with Neutron and X-ray Scattering. ACS Polymers Au, 2021, 1, 134-152.	4.1	15
41	Hybrid QM/classical models: Methodological advances and new applications. Chemical Physics Reviews, 2021, 2, .	5.7	26
42	Machine learning and materials informatics approaches in the analysis of physical properties of carbon nanotubes: A review. Computational Materials Science, 2022, 201, 110939.	3.0	41
43	Transfer learned potential energy surfaces: accurate anharmonic vibrational dynamics and dissociation energies for the formic acid monomer and dimer. Physical Chemistry Chemical Physics, 2022, 24, 5269-5281.	2.8	15
44	Speeding up quantum dissipative dynamics of open systems with kernel methods. New Journal of Physics, 2021, 23, 113019.	2.9	20
45	Modeling Catalysis in Allosteric Enzymes: Capturing Conformational Consequences. Topics in Catalysis, 0, , 1.	2.8	3
46	A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination. Journal of Chemical Theory and Computation, 2021, 17, 7827-7849.	5.3	10
47	Targeted design of advanced electrocatalysts by machine learning. Chinese Journal of Catalysis, 2022, 43, 11-32.	14.0	63
48	Theoretical Studies on Triplet-state Driven Dissociation of Formaldehyde by Quasi-classical Molecular Dynamics Simulation on Machine-Learning Potential Energy Surface. Journal of Chemical Physics, 2021, 155, 214105.	3.0	3
49	Training algorithm matters for the performance of neural network potential: A case study of Adam and the Kalman filter optimizers. Journal of Chemical Physics, 2021, 155, 204108.	3.0	5
51	Coming of Age of Computational Chemistry from a Resilient Past to a Promising Future. Israel Journal of Chemistry, 0, , .	2.3	2
52	Gradient domain machine learning with composite kernels: improving the accuracy of PES and force fields for large molecules. Machine Learning: Science and Technology, 2022, 3, 015005.	5.0	4
53	Computational and data driven molecular material design assisted by low scaling quantum mechanics calculations and machine learning. Chemical Science, 2021, 12, 14987-15006.	7.4	16
54	Efficient selection of linearly independent atomic features for accurate machine learning potentials. Chinese Journal of Chemical Physics, 2021, 34, 695-703.	1.3	12
55	Permutationally invariant polynomial regression for energies and gradients, using reverse differentiation, achieves orders of magnitude speed-up with high precision compared to other machine learning methods. Journal of Chemical Physics, 2022, 156, 044120.	3.0	24

#	Article	IF	CITATIONS
57	SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects. Nature Communications, 2021, 12, 7273.	12.8	108
58	Efficient parametrization of the atomic cluster expansion. Physical Review Materials, 2022, 6, .	2.4	23
59	Advances in Molecular Modeling of Ion-Protein Interaction Systems Towards Accurate Electrostatics: Methods and Applications. Journal of Computational Biophysics and Chemistry, 0, , 1-11.	1.7	2
60	Recent Advances in First-Principles Based Molecular Dynamics. Accounts of Chemical Research, 2022, 55, 221-230.	15.6	22
61	Neural Network Potentials: A Concise Overview of Methods. Annual Review of Physical Chemistry, 2022, 73, 163-186.	10.8	69
62	Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry. Environmental Science & Technology, 2022, 56, 2115-2123.	10.0	22
63	Energy- and Local-Gradient-Based Neural Network Method for Accurately Describing Long-Range Interaction: Application to the H ₂ + CO ⁺ Reaction. Journal of Physical Chemistry A, 2022, 126, 352-363.	2.5	1
64	<i>ChemSpaX</i> : exploration of chemical space by automated functionalization of molecular scaffold. , 2022, 1, 8-25.		5
65	Modeling the Solid Electrolyte Interphase: Machine Learning as a Game Changer?. Advanced Materials Interfaces, 2022, 9, .	3.7	34
66	The chemical origin of temperature-dependent lithium-ion concerted diffusion in sulfide solid electrolyte Li10GeP2S12. Journal of Energy Chemistry, 2022, 70, 59-66.	12.9	22
67	Improving the accuracy of the neuroevolution machine learning potential for multi-component systems. Journal of Physics Condensed Matter, 2022, 34, 125902.	1.8	28
68	Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Inverse Fast Fourier Transform. Journal of Physical Chemistry Letters, 2022, 13, 331-338.	4.6	8
69	Evaluating quantum alchemy of atoms with thermodynamic cycles: Beyond ground electronic states. Journal of Chemical Physics, 2022, 156, 064106.	3.0	5
70	Perspectives on manufacturing simulations of Li-S battery cathodes. JPhys Energy, 2022, 4, 011002.	5.3	6
71	Applications of machine learning in computational nanotechnology. Nanotechnology, 2022, 33, 162501.	2.6	3
72	Along the road to crystal structure prediction (CSP) of pharmaceutical-like molecules. CrystEngComm, 2022, 24, 1665-1678.	2.6	11
73	Property Map Collective Variable as a Useful Tool for a Force Field Correction. Journal of Chemical Information and Modeling, 2022, 62, 567-576.	5.4	2
74	Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins. Biochemical Society Transactions, 2022, 50, 541-554.	3.4	49

#	Article	IF	CITATIONS
75	Molecular Simulations of Aqueous Electrolytes: Role of Explicit Inclusion of Charge Transfer into Force Fields. Journal of Physical Chemistry B, 2021, 125, 13069-13076.	2.6	6
76	Geometric deep learning on molecular representations. Nature Machine Intelligence, 2021, 3, 1023-1032.	16.0	98
77	Pushing the frontiers of density functionals by solving the fractional electron problem. Science, 2021, 374, 1385-1389.	12.6	174
78	Empirical optimization of molecular simulation force fields by Bayesian inference. European Physical Journal B, 2021, 94, 1.	1.5	16
79	Chemical Bonding in Homogenous Catalysis $\hat{a} \in$ $``$ Seen Through the Eyes of Vibrational Spectroscopy. , 2024, , 622-648.		0
80	Multiscale molecular modelling: from electronic structure to dynamics of nanosystems and beyond. Physical Chemistry Chemical Physics, 2022, 24, 9051-9081.	2.8	10
81	Providing direction for mechanistic inferences in radical cascade cyclization using a Transformer model. Organic Chemistry Frontiers, 2022, 9, 2498-2508.	4.5	6
82	SPA ^H M: the spectrum of approximated Hamiltonian matrices representations. , 2022, 1, 286-294.		7
83	Modeling Electronic Response Properties with an Explicit-Electron Machine Learning Potential. Journal of Chemical Theory and Computation, 2022, 18, 1672-1691.	5.3	10
84	Molecular Dynamics with Constrained Nuclear Electronic Orbital Density Functional Theory: Accurate Vibrational Spectra from Efficient Incorporation of Nuclear Quantum Effects. Journal of the American Chemical Society, 2022, 144, 4039-4046.	13.7	14
85	Learning Matter: Materials Design with Machine Learning and Atomistic Simulations. Accounts of Materials Research, 2022, 3, 343-357.	11.7	31
86	Inverse design of 3d molecular structures with conditional generative neural networks. Nature Communications, 2022, 13, 973.	12.8	70
87	Local Kernel Regression and Neural Network Approaches to the Conformational Landscapes of Oligopeptides. Journal of Chemical Theory and Computation, 2022, 18, 1467-1479.	5.3	8
88	Machine Learning Approaches for Metalloproteins. Molecules, 2022, 27, 1277.	3.8	5
89	Machine Learning-Assisted Discovery of Hidden States in Expanded Free Energy Space. Journal of Physical Chemistry Letters, 2022, 13, 1797-1805.	4.6	7
90	Phase transitions of zirconia: Machine-learned force fields beyond density functional theory. Physical Review B, 2022, 105, .	3.2	21
91	Machine Learning for Shape Memory Graphene Nanoribbons and Applications in Biomedical Engineering. Bioengineering, 2022, 9, 90.	3.5	6
92	Finite-field coupling via learning the charge response kernel. Electronic Structure, 2022, 4, 014012.	2.8	6

#	Article	IF	CITATIONS
93	Kernel charge equilibration: efficient and accurate prediction of molecular dipole moments with a machine-learning enhanced electron density model. Machine Learning: Science and Technology, 2022, 3, 015032.	5.0	15
94	Development and Validation of Fluorinated, Aromatic Amino Acid Parameters for Use with the AMBER ff15ipq Protein Force Field. Journal of Physical Chemistry A, 2022, 126, 2286-2297.	2.5	6
95	Accurate, affordable, and generalizable machine learning simulations of transition metal x-ray absorption spectra using the XANESNET deep neural network. Journal of Chemical Physics, 2022, 156, 164102.	3.0	17
96	Evaluation of performance of machine learning methods in mining structure–property data of halide perovskite materials. Chinese Physics B, 2022, 31, 056302.	1.4	8
97	VIB5 database with accurate ab initio quantum chemical molecular potential energy surfaces. Scientific Data, 2022, 9, 84.	5.3	3
98	Transferable Neural Network Potential Energy Surfaces for Closed-Shell Organic Molecules: Extension to Ions. Journal of Chemical Theory and Computation, 2022, 18, 2354-2366.	5.3	16
99	Photodissociation dynamics of N3+. Journal of Chemical Physics, 2022, 156, 124307.	3.0	0
100	REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems. Journal of Chemical Physics, 2022, 156, 114801.	3.0	19
101	Simulations of molecular photodynamics in long timescales. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200382.	3.4	14
102	Atomistic Simulations for Reactions and Vibrational Spectroscopy in the Era of Machine Learning─ <i>Quo Vadis?</i> . Journal of Physical Chemistry B, 2022, 126, 2155-2167.	2.6	8
103	mad-GP: automatic differentiation of Gaussian processes for molecules and materials. Journal of Mathematical Chemistry, 0, , 1.	1.5	7
104	Geometry meta-optimization. Journal of Chemical Physics, 2022, 156, 134109.	3.0	4
105	Absence of isotope effects in the photo-induced desorption of CO from saturated Pd(111) at high laser fluence. Chemical Physics, 2022, 558, 111518.	1.9	3
106	Coarse-grained molecular dynamics study based on TorchMD. Chinese Journal of Chemical Physics, 2021, 34, 957-969.	1.3	1
107	A generalizable machine learning potential of Ag–Au nanoalloys and its application to surface reconstruction, segregation and diffusion. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 025003.	2.0	8
108	Molecular representations for machine learning applications in chemistry. International Journal of Quantum Chemistry, 2022, 122, .	2.0	26
109	Current State and Perspectives of Simulation and Modeling of Aliphatic Isocyanates and Polyisocyanates. Polymers, 2022, 14, 1642.	4.5	10
110	Deep potentials for materials science. Materials Futures, 2022, 1, 022601.	8.4	61

#	Article	IF	CITATIONS
111	Graph neural networks accelerated molecular dynamics. Journal of Chemical Physics, 2022, 156, 144103.	3.0	19
112	BuRNN: Buffer Region Neural Network Approach for Polarizable-Embedding Neural Network/Molecular Mechanics Simulations. Journal of Physical Chemistry Letters, 2022, 13, 3812-3818.	4.6	18
113	Δ-Quantum machine-learning for medicinal chemistry. Physical Chemistry Chemical Physics, 2022, 24, 10775-10783.	2.8	21
114	Quantitative molecular simulations. Physical Chemistry Chemical Physics, 2022, 24, 12767-12786.	2.8	3
115	Exploring the robust extrapolation of high-dimensional machine learning potentials. Physical Review B, 2022, 105, .	3.2	17
116	High-fidelity molecular dynamics trajectory reconstruction with bi-directional neural networks. Machine Learning: Science and Technology, 2022, 3, 025011.	5.0	6
117	Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface. Chemical Reviews, 2022, 122, 10651-10674.	47.7	39
118	Machine Learning Interatomic Potential for High-Throughput Screening of High-Entropy Alloys. Jom, 2022, 74, 2908-2920.	1.9	2
119	How to Gain Atomistic Insights on Reactions at the Water/Solid Interface?. ACS Catalysis, 2022, 12, 6294-6301.	11.2	17
120	Atomistic Understanding of Two-dimensional Electrocatalysts from First Principles. Chemical Reviews, 2022, 122, 10675-10709.	47.7	60
121	The 2022 solar fuels roadmap. Journal Physics D: Applied Physics, 2022, 55, 323003.	2.8	58
122	Applying Classical, <i>Ab Initio</i> , and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews, 2022, 122, 10970-11021.	47.7	138
123	Physically Informed Machine Learning Prediction of Electronic Density of States. Chemistry of Materials, 2022, 34, 4848-4855.	6.7	23
124	Solving the electronic SchrĶdinger equation for multiple nuclear geometries with weight-sharing deep neural networks. Nature Computational Science, 2022, 2, 331-341.	8.0	25
125	New challenges for photopharmacology and computational modeling. Trends in Biochemical Sciences, 2022, 47, 822-823.	7.5	1
126	Predicting the failure of two-dimensional silica glasses. Nature Communications, 2022, 13, .	12.8	15
127	Molecular Conformer Search with Low-Energy Latent Space. Journal of Chemical Theory and Computation, 0, , .	5.3	2
128	Scoring Functions for Protein-Ligand Binding Affinity Prediction Using Structure-based Deep Learning: A Review. Frontiers in Bioinformatics, 0, 2, .	2.1	20

#	Article	IF	CITATIONS
129	Machine Learning Accelerates Molten Salt Simulations: Thermal Conductivity of MgCl ₂ â€NaCl Eutectic. Advanced Theory and Simulations, 2022, 5, .	2.8	7
130	Improving the efficiency of ab initio electronic-structure calculations by deep learning. Nature Computational Science, 2022, 2, 418-419.	8.0	3
131	Emerging Era of Biomolecular Membrane Simulations: Automated Physically-Justified Force Field Development and Quality-Evaluated Databanks. Journal of Physical Chemistry B, 2022, 126, 4169-4183.	2.6	6
132	Molecular simulations of complex carbohydrates and glycoconjugates. Current Opinion in Chemical Biology, 2022, 69, 102175.	6.1	17
133	Exploration and validation of force field design protocols through QM-to-MM mapping. Physical Chemistry Chemical Physics, 2022, 24, 17014-17027.	2.8	4
134	Exploring chemical and conformational spaces by batch mode deep active learning. , 2022, 1, 605-620.		13
135	Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective. Frontiers in Molecular Biosciences, 0, 9, .	3.5	24
136	BIGDML—Towards accurate quantum machine learning force fields for materials. Nature Communications, 2022, 13, .	12.8	29
137	Quantum neural networks force fields generation. Machine Learning: Science and Technology, 2022, 3, 035004.	5.0	5
138	Toward Explainable Artificial Intelligence for Regression Models: A methodological perspective. IEEE Signal Processing Magazine, 2022, 39, 40-58.	5.6	30
139	The Prospects of Monte Carlo Antibody Loop Modelling on a Fault-Tolerant Quantum Computer. Frontiers in Drug Discovery, 0, 2, .	2.8	4
140	Opportunities and Challenges for In Silico Drug Discovery at Delta Opioid Receptors. Pharmaceuticals, 2022, 15, 873.	3.8	5
141	Machine-Learning-Assisted Acceleration on High-Symmetry Materials Search: Space Group Predictions from Band Structures. Journal of Physical Chemistry C, 2022, 126, 12264-12273.	3.1	2
142	Al for drug design: From explicit rules to deep learning. Artificial Intelligence in the Life Sciences, 2022, 2, 100041.	2.2	4
143	Equivariant analytical mapping of first principles Hamiltonians to accurate and transferable materials models. Npj Computational Materials, 2022, 8, .	8.7	15
144	GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations. Journal of Chemical Physics, 2022, 157, .	3.0	66
145	Extending machine learning beyond interatomic potentials for predicting molecular properties. Nature Reviews Chemistry, 2022, 6, 653-672.	30.2	33
146	Equivariant graph neural networks for fast electron density estimation of molecules, liquids, and solids. Npj Computational Materials, 2022, 8, .	8.7	12

#	Article	IF	CITATIONS
147	Graph Theoretic Molecular Fragmentation for Multidimensional Potential Energy Surfaces Yield an Adaptive and General Transfer Machine Learning Protocol. Journal of Chemical Theory and Computation, 2022, 18, 5125-5144.	5.3	7
148	Challenges and frontiers of computational modelling of biomolecular recognition. QRB Discovery, 2022, 3, .	1.6	4
149	Artificial Intelligenceâ€Based Material Discovery for Clean Energy Future. Advanced Intelligent Systems, 2022, 4, .	6.1	9
150	Interatomic potentials for oxide glasses: Past, present, and future. Journal of Non-Crystalline Solids: X, 2022, 15, 100115.	1.2	5
151	Molecular structure optimizations with Gaussian process regression. , 2023, , 391-428.		4
152	Learning dipole moments and polarizabilities. , 2023, , 453-465.		1
153	Neural network potentials. , 2023, , 279-294.		1
154	Molecular dynamics analysis of biomolecular systems including nucleic acids. Biophysics and Physicobiology, 2022, 19, n/a.	1.0	2
155	Oxidation and de-alloying of PtMn particle models: a computational investigation. Faraday Discussions, 0, 242, 174-192.	3.2	2
156	Machine Learning-Enabled Optimization of Force Fields for Hydrofluorocarbons. Computer Aided Chemical Engineering, 2022, , 1249-1254.	0.5	1
157	Quantum machine learning for chemistry and physics. Chemical Society Reviews, 2022, 51, 6475-6573.	38.1	40
158	Neural-network-backed evolutionary search for SrTiO ₃ (110) surface reconstructions. , 2022, 1, 703-710.		7
163	Discovery and Design of Radiopharmaceuticals by In silico Methods. Current Radiopharmaceuticals, 2022, 15, 271-319.	0.8	3
164	Understanding the Interaction between Polybutadiene and Alumina via Density Functional Theory Calculations and Machine-Learned Atomistic Simulations. Journal of Physical Chemistry C, 2022, 126, 16792-16803.	3.1	5
165	Xponge: A Python package to perform pre- and post-processing of molecular simulations. Journal of Open Source Software, 2022, 7, 4467.	4.6	0
166	Bottom-up Coarse-Graining: Principles and Perspectives. Journal of Chemical Theory and Computation, 2022, 18, 5759-5791.	5.3	86
167	Metric learning for kernel ridge regression: assessment of molecular similarity. Machine Learning: Science and Technology, 2022, 3, 035015.	5.0	4
168	Data-Driven Many-Body Potential Energy Functions for Generic Molecules: Linear Alkanes as a Proof-of-Concept Application. Journal of Chemical Theory and Computation, 2023, 19, 4494-4509.	5.3	11

#	Article	IF	CITATIONS
169	Orbital Mixer: Using Atomic Orbital Features for Basis-Dependent Prediction of Molecular Wavefunctions. Journal of Chemical Theory and Computation, 0, , .	5.3	2
170	Cheap Turns Superior: A Linear Regression-Based Correction Method to Reaction Energy from the DFT. Journal of Chemical Information and Modeling, 2022, 62, 4727-4735.	5.4	1
171	An online education course recommendation method based on knowledge graphs and reinforcement learning. Journal of Circuits, Systems and Computers, 0, , .	1.5	0
172	Protein Function Analysis through Machine Learning. Biomolecules, 2022, 12, 1246.	4.0	8
173	Predicting accurate ab initio DNA electron densities with equivariant neural networks. Biophysical Journal, 2022, 121, 3883-3895.	0.5	7
174	Producing chemically accurate atomic Gaussian process regression models by active learning for molecular simulation. Journal of Computational Chemistry, 2022, 43, 2084-2098.	3.3	7
175	Bridging Chemical Knowledge and Machine Learning for Performance Prediction of Organic Synthesis. Chemistry - A European Journal, 2023, 29, .	3.3	7
176	Automatic Evolution of Machine-Learning-Based Quantum Dynamics with Uncertainty Analysis. Journal of Chemical Theory and Computation, 2022, 18, 5837-5855.	5.3	6
178	Into the Unknown: How Computation Can Help Explore Uncharted Material Space. Journal of the American Chemical Society, 2022, 144, 18730-18743.	13.7	15
179	Uncertainty quantification for predictions of atomistic neural networks. Chemical Science, 2022, 13, 13068-13084.	7.4	7
180	Can docking scoring functions guarantee success in virtual screening?. Annual Reports in Medicinal Chemistry, 2022, , .	0.9	1
181	Assessing entropy for catalytic processes at complex reactive interfaces. Annual Reports in Computational Chemistry, 2022, , 3-51.	1.7	1
182	Thirty years of molecular dynamics simulations on posttranslational modifications of proteins. Physical Chemistry Chemical Physics, 2022, 24, 26371-26397.	2.8	9
183	No dance, no partner! A tale of receptor flexibility in docking and virtual screening. Annual Reports in Medicinal Chemistry, 2022, , 43-97.	0.9	2
184	ICHOR: a modern pipeline for producing Gaussian process regression models for atomistic simulations. Materials Advances, 2022, 3, 8729-8739.	5.4	6
185	Multiscale modelling of claudin-based assemblies: A magnifying glass for novel structures of biological interfaces. Computational and Structural Biotechnology Journal, 2022, 20, 5984-6010.	4.1	5
186	Towards fully ab initio simulation of atmospheric aerosol nucleation. Nature Communications, 2022, 13, .	12.8	6
187	SELFIES and the future of molecular string representations. Patterns, 2022, 3, 100588.	5.9	49

#	Article	IF	CITATIONS
188	An unconstrained approach to systematic structural and energetic screening of materials interfaces. Nature Communications, 2022, 13, .	12.8	8
189	Machine learning interatomic potentials for aluminium: application to solidification phenomena. Journal of Physics Condensed Matter, 2023, 35, 035402.	1.8	3
190	Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nature Reviews Chemistry, 2022, 6, 761-781.	30.2	21
191	Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields. Journal of Physical Chemistry Letters, 2022, 13, 10183-10189.	4.6	5
192	Developing Classical Interatomic Potentials for Solid Electrolytes. Accounts of Materials Research, 2022, 3, 1101-1105.	11.7	3
193	Polarizable MD and QM/MM investigation of acrylamide-based leads to target the main protease of SARS-CoV-2. Journal of Chemical Physics, 2022, 157, .	3.0	3
194	Quantum dynamics using path integral coarse-graining. Journal of Chemical Physics, 2022, 157, .	3.0	8
195	General Analytical Nuclear Forces and Molecular Potential Energy Surface from Full Configuration Interaction Quantum Monte Carlo. Journal of Chemical Theory and Computation, 2022, 18, 7233-7242.	5.3	3
196	Equation of state of solid parahydrogen using <i>ab initio</i> two-body and three-body interaction potentials. Journal of Chemical Physics, 2022, 157, .	3.0	3
197	Unified representation of molecules and crystals for machine learning. Machine Learning: Science and Technology, 2022, 3, 045017.	5.0	47
198	How robust are modern graph neural network potentials in long and hot molecular dynamics simulations?. Machine Learning: Science and Technology, 2022, 3, 045010.	5.0	24
199	Multi-scale modeling of crystal-fluid interactions: State-of-the-art, challenges and prospects. , 2024, , 760-792.		1
200	Revisiting the structure, interaction, and dynamical property of ionic liquid from the deep learning force field. Journal of Power Sources, 2023, 555, 232350.	7.8	3
201	Molecular Dynamics with Conformationally Dependent, Distributed Charges. Journal of Chemical Theory and Computation, 0, , .	5.3	2
202	Reliable emulation of complex functionals by active learning with error control. Journal of Chemical Physics, 2022, 157, .	3.0	6
203	Atomistic neural network representations for chemical dynamics simulations of molecular, condensed phase, and interfacial systems: Efficiency, representability, and generalization. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	14.6	11
204	Graphene at Liquid Copper Catalysts: Atomicâ€6cale Agreement of Experimental and Firstâ€Principles Adsorption Height. Advanced Science, 2022, 9, .	11.2	7
205	Atomic structure generation from reconstructing structural fingerprints. Machine Learning: Science and Technology, 2022, 3, 045018.	5.0	3

#	Article	IF	CITATIONS
206	The Local Vibrational Mode Theory and Its Place in the Vibrational Spectroscopy Arena. Journal of Physical Chemistry A, 2022, 126, 8781-8798.	2.5	28
207	Understanding and Modeling Polymers: The Challenge of Multiple Scales. ACS Polymers Au, 2023, 3, 28-58.	4.1	28
208	Predictive Molecular Models for Charged Materials Systems: From Energy Materials to Biomacromolecules. Advanced Materials, 2023, 35, .	21.0	2
209	Extending the reach of quantum computing for materials science with machine learning potentials. AIP Advances, 2022, 12, 115321.	1.3	1
210	High-dimensional neural network potentials for accurate vibrational frequencies: the formic acid dimer benchmark. Physical Chemistry Chemical Physics, 2022, 24, 29381-29392.	2.8	7
211	FEREBUS: a high-performance modern Gaussian process regression engine. , 2023, 2, 152-164.		9
212	Neural network potentials for chemistry: concepts, applications and prospects. , 2023, 2, 28-58.		17
213	Machine learning in computational chemistry: interplay between (non)linearity, basis sets, and dimensionality. Physical Chemistry Chemical Physics, 2023, 25, 1546-1555.	2.8	8
214	Grain boundary sliding and distortion on a nanosecond timescale induce trap states in CsPbBr ₃ : <i>ab initio</i> investigation with machine learning force field. Nanoscale, 2022, 15, 285-293.	5.6	14
215	Data science techniques in biomolecular force field development. Current Opinion in Structural Biology, 2023, 78, 102502.	5.7	10
216	A self-adapting first-principles exploration on the dissociation mechanism in sodiated aldohexose pyranoses assisted with neural network potentials. Physical Chemistry Chemical Physics, 2023, 25, 3332-3342.	2.8	1
217	Recent advances in machine learning for electronic excited state molecular dynamics simulations. Chemical Modelling, 2022, , 178-200.	0.4	0
218	Hierarchical Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis B Virus-Like Particles. International Journal of Molecular Sciences, 2022, 23, 14699.	4.1	2
219	Coupled Cluster Molecular Dynamics of Condensed Phase Systems Enabled by Machine Learning Potentials: Liquid Water Benchmark. Physical Review Letters, 2022, 129, .	7.8	25
220	Dataâ€Đriven Machine Learning for Understanding Surface Structures of Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2023, 62, .	13.8	26
221	Multiscale Modeling of Phosphate···π Contacts in RNA U-Turns Exposes Differences between Quantum-Chemical and AMBER Force Field Descriptions. Journal of Chemical Information and Modeling, 2022, 62, 6182-6200.	5.4	1
222	Dataâ€Ðriven Machine Learning for Understanding Surface Structures of Heterogeneous Catalysts. Angewandte Chemie, 2023, 135, .	2.0	5
223	Quantum Free Energy Profiles for Molecular Proton Transfers. Journal of Chemical Theory and Computation, 0, , .	5.3	1

#	Article	IF	CITATIONS
224	Transition1x - a dataset for building generalizable reactive machine learning potentials. Scientific Data, 2022, 9, .	5.3	17
225	Caught in Action: Visualizing Dynamic Nanostructures Within Supramolecular Systems Chemistry. Angewandte Chemie - International Edition, 0, , .	13.8	3
226	A high-dimensional neural network potential for molecular dynamics simulations of condensed phase nickel and phase transitions. Molecular Simulation, 2023, 49, 263-270.	2.0	2
227	Caught in Action: Visualizing Dynamic Nanostructures Within Supramolecular Systems Chemistry. Angewandte Chemie, 0, , .	2.0	0
228	Strain data augmentation enables machine learning of inorganic crystal geometry optimization. Patterns, 2023, 4, 100663.	5.9	0
229	A recipe for cracking the quantum scaling limit with machine learned electron densities. Machine Learning: Science and Technology, 2023, 4, 015027.	5.0	10
230	Regularized by Physics: Graph Neural Network Parametrized Potentials for the Description of Intermolecular Interactions. Journal of Chemical Theory and Computation, 2023, 19, 562-579.	5.3	4
231	Accurate global machine learning force fields for molecules with hundreds of atoms. Science Advances, 2023, 9, .	10.3	27
232	Species-selective nanoreactor molecular dynamics simulations based on linear-scaling tight-binding quantum chemical calculations. Journal of Chemical Physics, 2023, 158, .	3.0	3
233	Treating Polarization Effects in Charged and Polar Bio-Molecules Through Variable Electrostatic Parameters. Journal of Chemical Theory and Computation, 2023, 19, 396-411.	5.3	3
234	Incorporating Nuclear Quantum Effects in Molecular Dynamics with a Constrained Minimized Energy Surface. Journal of Physical Chemistry Letters, 2023, 14, 279-286.	4.6	7
235	Benchmarking general neural network potential <scp>ANI</scp> â€2x on aerosol nucleation molecular clusters. International Journal of Quantum Chemistry, 2023, 123, .	2.0	3
236	Water dissociation at the water–rutile TiO ₂ (110) interface from abÂinitio-based deep neural network simulations. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	10
237	Learning pair potentials using differentiable simulations. Journal of Chemical Physics, 2023, 158, .	3.0	8
238	From atomistic modeling to materials design: computation-driven material development in lithium-ion batteries. Science China Chemistry, 2024, 67, 276-290.	8.2	2
239	An Imbalance in the Force: The Need for Standardized Benchmarks for Molecular Simulation. Journal of Chemical Information and Modeling, 2023, 63, 412-431.	5.4	4
240	Machine Learning Techniques inÂReactive Atomistic Simulations. Lecture Notes in Energy, 2023, , 15-52.	0.3	0
241	Computational Design and Manufacturing of Sustainable Materials through First-Principles and Materiomics. Chemical Reviews, 2023, 123, 2242-2275.	47.7	16

#	Article	IF	CITATIONS
242	Predicting Structural Properties of Pure Silica Zeolites Using Deep Neural Network Potentials. Journal of Physical Chemistry C, 2023, 127, 1455-1463.	3.1	5
243	Chemical reaction networks and opportunities for machine learning. Nature Computational Science, 2023, 3, 12-24.	8.0	16
244	Data-driven many-body potentials from density functional theory for aqueous phase chemistry. Chemical Physics Reviews, 2023, 4, .	5.7	4
245	Transfer learning for chemically accurate interatomic neural network potentials. Physical Chemistry Chemical Physics, 2023, 25, 5383-5396.	2.8	6
246	Surrogate Based Genetic Algorithm Method for Efficient Identification of Low-Energy Peptide Structures. Journal of Chemical Theory and Computation, 2023, 19, 1080-1097.	5.3	2
247	Unified graph neural network force-field for the periodic table: solid state applications. , 2023, 2, 346-355.		11
248	Atomistic molecular modeling methods. , 2023, , 37-73.		0
249	Can molecular dynamics simulations improve predictions of protein-ligand binding affinity with machine learning?. Briefings in Bioinformatics, 2023, 24, .	6.5	9
250	Machine learning potentials for metal-organic frameworks using an incremental learning approach. Npj Computational Materials, 2023, 9, .	8.7	29
251	Drug discovery: Standing on the shoulders of giants. , 2023, , 207-338.		0
253	Temperatureâ€Dependent Anharmonic Phonons in Quantum Paraelectric KTaO ₃ by First Principles and Machineâ€Learned Force Fields. Advanced Quantum Technologies, 2023, 6, .	3.9	6
254	Gaussian Process Regression Models for Predicting Atomic Energies and Multipole Moments. Journal of Chemical Theory and Computation, 2023, 19, 1370-1380.	5.3	4
255	Deep language models for interpretative and predictive materials science. , 2023, 1, .		24
256	Application of molecular dynamics simulation for exploring the roles of plant biomolecules in promoting environmental health. Science of the Total Environment, 2023, 869, 161871.	8.0	4
257	Ab initio molecular dynamics benchmarking study of machine-learned potential energy surfaces for the HBr+Â+ÂHCl reaction. Carbon Trends, 2023, 11, 100257.	3.0	0
258	Lithium Batteries and the Solid Electrolyte Interphase (SEI)—Progress and Outlook. Advanced Energy Materials, 2023, 13, .	19.5	98
259	Machine learned coarse-grained protein force-fields: Are we there yet?. Current Opinion in Structural Biology, 2023, 79, 102533.	5.7	24
260	Universal <scp>QM</scp> / <scp>MM</scp> approaches for general nanoscale applications. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	14.6	10

#	Article	IF	CITATIONS
261	Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water. Journal of Physical Chemistry B, 2023, 127, 1422-1428.	2.6	0
262	A "short blanket―dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions?. Journal of Chemical Physics, 2023, 158, .	3.0	25
263	Calculation of dislocation binding to helium-vacancy defects in tungsten using hybrid ab initio-machine learning methods. Acta Materialia, 2023, 247, 118734.	7.9	10
264	A general force field by machine learning on experimental crystal structures. Calculations of intermolecular Gibbs energy with <i>FlexCryst</i> . Acta Crystallographica Section A: Foundations and Advances, 2023, 79, 132-144.	0.1	0
265	Molecular Understanding and Practical In Silico Catalyst Design in Computational Organocatalysis and Phase Transfer Catalysis—Challenges and Opportunities. Molecules, 2023, 28, 1715.	3.8	2
267	Accurate Prediction of Three-Body Intermolecular Interactions via Electron Deformation Density-Based Machine Learning. Journal of Chemical Theory and Computation, 2023, 19, 1466-1475.	5.3	2
268	Reshaping the material research paradigm of electrochemical energy storage and conversion by machine learning. EcoMat, 2023, 5, .	11.9	5
269	A neural network potential with self-trained atomic fingerprints: A test with the mW water potential. Journal of Chemical Physics, 2023, 158, .	3.0	3
270	Combining Machine Learning and Many-Body Calculations: Coverage-Dependent Adsorption of CO on Rh(111). Physical Review Letters, 2023, 130, .	7.8	11
271	Understanding ligand-protected noble metal nanoclusters at work. Nature Reviews Materials, 2023, 8, 372-389.	48.7	40
272	Elucidating the Sorption Mechanisms of Environmental Pollutants Using Molecular Simulation. Industrial & Engineering Chemistry Research, 2023, 62, 3373-3393.	3.7	7
273	WS22 database, Wigner Sampling and geometry interpolation for configurationally diverse molecular datasets. Scientific Data, 2023, 10, .	5.3	8
274	Anisotropic van der Waals dispersion forces in polymers: Structural symmetry breaking leads to enhanced conformational search. Physical Review Research, 2023, 5, .	3.6	5
275	Machine Learning Assisted Simulations of Electrochemical Interfaces: Recent Progress and Challenges. Journal of Physical Chemistry Letters, 2023, 14, 2308-2316.	4.6	9
276	Machine learning coarse-grained models of dissolutive wetting: a droplet on soluble surfaces. Physical Chemistry Chemical Physics, 2023, 25, 7487-7495.	2.8	2
277	Semiclassical Dynamics on Machine-Learned Coupled Multireference Potential Energy Surfaces: Application to the Photodissociation of the Simplest Criegee Intermediate. Journal of Physical Chemistry A, 2023, 127, 2376-2387.	2.5	2
278	How to validate machine-learned interatomic potentials. Journal of Chemical Physics, 2023, 158, .	3.0	17
279	Insights into the Polymerization Reactions on Solid Surfaces Provided by Scanning Tunneling Microscopy, Journal of Physical Chemistry Letters, 2023, 14, 2463-2472.	4.6	1

#	Article	IF	CITATIONS
280	Innate dynamics and identity crisis of a metal surface unveiled by machine learning of atomic environments. Journal of Chemical Physics, 2023, 158, .	3.0	6
281	Uncertainty-driven dynamics for active learning of interatomic potentials. Nature Computational Science, 2023, 3, 230-239.	8.0	19
282	Integrating Machine Learning in the Coarse-Grained Molecular Simulation of Polymers. Journal of Physical Chemistry B, 2023, 127, 2302-2322.	2.6	5
283	Potential Energy Surfaces Sampled in Cremer–Pople Coordinates and Represented by Common Force Field Functionals for Small Cyclic Molecules. Journal of Physical Chemistry A, 2023, 127, 2646-2663.	2.5	0
284	Scienceâ€Ðriven Atomistic Machine Learning. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
285	Scienceâ€Driven Atomistic Machine Learning. Angewandte Chemie, 2023, 135, .	2.0	0
286	Symbolic Regression in Materials Science: Discovering Interatomic Potentials from Data. Genetic and Evolutionary Computation, 2023, , 1-30.	1.0	1
287	Neural network potentials for accelerated metadynamics of oxygen reduction kinetics at Au–water interfaces. Chemical Science, 2023, 14, 3913-3922.	7.4	8
288	Frontiers, challenges, and solutions in modeling of swift heavy ion effects in materials. Journal of Applied Physics, 2023, 133, .	2.5	5
290	Decomposing Chemical Space: Applications to the Machine Learning of Atomic Energies. Journal of Chemical Theory and Computation, 2023, 19, 2029-2038.	5.3	3
291	Fill in the Blank: Transferrable Deep Learning Approaches to Recover Missing Physical Field Information. Advanced Materials, 2023, 35, .	21.0	6
292	MicMec: Developing the Micromechanical Model to Investigate the Mechanics of Correlated Node Defects in UiO-66. Journal of Physical Chemistry C, 2023, 127, 6060-6070.	3.1	1
293	SchNetPack 2.0: A neural network toolbox for atomistic machine learning. Journal of Chemical Physics, 2023, 158, .	3.0	8
294	Combining Machine Learning with Physical Knowledge in Thermodynamic Modeling of Fluid Mixtures. Annual Review of Chemical and Biomolecular Engineering, 2023, 14, 31-51.	6.8	9
295	A local Gaussian Processes method for fitting potential surfaces that obviates the need to invert large matrices. Journal of Molecular Spectroscopy, 2023, 393, 111774.	1.2	2
296	Convolution, aggregation and attention based deep neural networks for accelerating simulations in mechanics. Frontiers in Materials, 0, 10, .	2.4	6
297	Machine learning transferable atomic forces for large systems from underconverged molecular fragments. Physical Chemistry Chemical Physics, 2023, 25, 12979-12989.	2.8	5
298	Biomass carbon mining to develop nature-inspired materials for a circular economy. IScience, 2023, 26, 106549.	4.1	4

ARTICLE IF CITATIONS Effect of Force Field Resolution on Membrane Mechanical Response and Mechanoporation Damage 299 2.4 2 under Deformation Simulations. Molecular Biotechnology, 0, , Atomistic modeling of the mechanical properties: the rise of machine learning interatomic potentials. 12.2 Materials Horizons, 2023, 10, 1956-1968. Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte 301 12.8 12 Li0.375Sr0.4375Ta0.75Zr0.25O3. Nature Communications, 2023, 14, . Nonequilibrium molecular dynamics for accelerated computation of ion–ion correlated conductivity beyond Nernst–Einstein limitation. Npj Computational Materials, 2023, 9, . Explicit Learning of Derivatives with the KREG and pKREG Models on the Example of Accurate Representation of Molecular Potential Energy Surfaces. Journal of Chemical Theory and Computation, 303 5.3 2 2023, 19, 2369-2379. On the potentially transformative role of auxiliary-field quantum Monte Carlo in quantum chemistry: 3.0 A highly accurate method for transition metals and beyond. Journal of Chemical Physics, 2023, 158, . Monitoring the melting behavior of boron nanoparticles using a neural network potential. Physical 305 2.8 3 Chemistry Chemical Physics, 2023, 25, 12841-12853. Hierarchical biopolymerâ€based materials and composites. Journal of Polymer Science, 2023, 61, 306 3.8 2585-2632. Solving the SchrAqdinger Equation in the Configuration Space with Generative Machine Learning. 307 5.3 5 Journal of Chemical Theory and Computation, 2023, 19, 2484-2490. Multifidelity Neural Network Formulations for Prediction of Reactive Molecular Potential Energy 5.4 Surfaces. Journal of Chemical Information and Modeling, 2023, 63, 2281-2295. Machine Learning Frontier Orbital Energies of Nanodiamonds. Journal of Chemical Theory and 309 2 5.3Computation, 2023, 19, 4461-4473. Non-Adiabatic Dynamics in Condensed Matter and Nanoscale Systems., 2024, , 394-412. Does a Machine-Learned Potential Perform Better Than an Optimally Tuned Traditional Force Field? A 311 5.4 0 Case Study on Fluorohydrins. Journal of Chemical Information and Modeling, 0, , . Representations of Materials for Machine Learning. Annual Review of Materials Research, 2023, 53, 399-426. Implicit Chain Particle Model for Polymer-Grafted Nanoparticles. Macromolecules, 2023, 56, 3259-3271. 313 2 4.8 Deep-learning electronic-structure calculation of magnetic superstructures. Nature Computational 314 Science, 2023, 3, 321-327. \tilde{A} | net-PyTorch: A GPU-supported implementation for machine learning atomic potentials training. 315 3.06 Journal of Chemical Physics, 2023, 158, . Reconstructing Kernel-Based Machine Learning Force Fields with Superlinear Convergence. Journal of 5.3 Chemical Theory and Computation, 0, , .

#	Article	IF	CITATIONS
317	Accelerating discrete dislocation dynamics simulations with graph neural networks. Journal of Computational Physics, 2023, 487, 112180.	3.8	2
318	Computational approach for plasma process optimization combined with deep learning model. Journal Physics D: Applied Physics, 2023, 56, 344001.	2.8	2
319	Computational Approaches for Organic Semiconductors: From Chemical and Physical Understanding to Predicting New Materials. Chemical Reviews, 2023, 123, 7498-7547.	47.7	11
320	Hybrid Machine Learning-Enabled Potential Energy Model for Atomistic Simulation of Lithium Intercalation into Graphite from Plating to Overlithiation. Journal of Chemical Theory and Computation, 0, , .	5.3	1
321	Theoretical and Data-Driven Approaches for Biomolecular Condensates. Chemical Reviews, 2023, 123, 8988-9009.	47.7	2
322	Neural-network-backed effective harmonic potential study of the ambient pressure phases of hafnia. Physical Review B, 2023, 107, .	3.2	2
323	Computational investigations of stable multiple-cage-occupancy He clathrate-like hydrostructures. Physical Chemistry Chemical Physics, 2023, 25, 16844-16855.	2.8	2
324	Perspective: Reference-Potential Methods for the Study of Thermodynamic Properties in Chemical Processes: Theory, Applications, and Pitfalls. Journal of Physical Chemistry Letters, 2023, 14, 4866-4875.	4.6	2
325	Modeling molecular ensembles with gradient-domain machine learning force fields. , 2023, 2, 871-880.		3
326	Development of a neuroevolution machine learning potential of Pd-Cu-Ni-P alloys. Materials and Design, 2023, 231, 112012.	7.0	3
327	Challenges in modelling dynamic processes in realistic nanostructured materials at operating conditions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2023, 381, .	3.4	7
328	Linear Jacobi-Legendre expansion of the charge density for machine learning-accelerated electronic structure calculations. Npj Computational Materials, 2023, 9, .	8.7	4
329	Structure and thermodynamics of liquid ruthenium and ruthenium-based alloys from ab initio and classical molecular dynamics with embedded atom model potentials. Modelling and Simulation in Materials Science and Engineering, 2023, 31, 065001.	2.0	0
330	Fitting Force Field Parameters to NMR Relaxation Data. Journal of Chemical Theory and Computation, 2023, 19, 3741-3751.	5.3	3
331	Determination of hyper-parameters in the atomic descriptors for efficient and robust molecular dynamics simulations with machine learning forces. Physical Chemistry Chemical Physics, 2023, 25, 17978-17986.	2.8	1
332	Dual Atom Catalysts for Energy and Environmental Applications. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
333	Dual Atom Catalysts for Energy and Environmental Applications. Angewandte Chemie, 0, , .	2.0	0

334 ç›æŸ¥æŒä¹...性ã€ç"Ÿç‰©è""ç§⁻性有æ⁻'化å¦å"çš"çŽ⁻å¢fè®_iç®—æ⁻'ç†å¦ï¼šè¿›å±•ä,Žå±•望. Chines**ø.5**cience ðulletin,

#	Article	IF	CITATIONS
335	Lifelong Machine Learning Potentials. Journal of Chemical Theory and Computation, 2023, 19, 3509-3525.	5.3	4
336	A machine learning potential for simulating infrared spectra of nanosilicate clusters. Journal of Chemical Physics, 2023, 158, .	3.0	3
337	Black box vs gray box: Comparing GAP and GPrep-DFTB for ruthenium and ruthenium oxide. Journal of Chemical Physics, 2023, 158, .	3.0	3
338	Efficient interatomic descriptors for accurate machine learning force fields of extended molecules. Nature Communications, 2023, 14, .	12.8	2
339	Using classifiers to understand coarse-grained models and their fidelity with the underlying all-atom systems. Journal of Chemical Physics, 2023, 158, .	3.0	0
340	Machine learning molecular dynamics simulation identifying weakly negative effect of polyanion rotation on Li-ion migration. Npj Computational Materials, 2023, 9, .	8.7	5
341	A computational view on nanomaterial intrinsic and extrinsic features for nanosafety and sustainability. Materials Today, 2023, 67, 344-370.	14.2	1
342	Semiclassical electron and phonon transport from first principles: application to layered thermoelectrics. Journal of Computational Electronics, 0, , .	2.5	Ο
343	Neural network potentials for reactive chemistry: CASPT2 quality potential energy surfaces for bond breaking. , 2023, 2, 1058-1069.		2
344	Effective permeability of an immiscible fluid in porous media determined from its geometric state. Physical Review Fluids, 2023, 8, .	2.5	3
345	High-Throughput Condensed-Phase Hybrid Density Functional Theory for Large-Scale Finite-Gap Systems: The <tt>SeA</tt> Approach. Journal of Chemical Theory and Computation, 2023, 19, 4182-4201.	5.3	2
346	An Overview on Transport Phenomena within Solid Electrolyte Interphase and Their Impact on the Performance and Durability of Lithium-Ion Batteries. Energies, 2023, 16, 5003.	3.1	2
347	Exploring the Stability and Disorder in the Polymorphs of <scp>L</scp> -Cysteine through Density Functional Theory and Vibrational Spectroscopy. Crystal Growth and Design, 0, , .	3.0	1
348	Machine Learning Methods for Small Data Challenges in Molecular Science. Chemical Reviews, 2023, 123, 8736-8780.	47.7	36
349	Toward Data-Driven Many-Body Simulations of Biomolecules in Solution: <i>N</i> -Methyl Acetamide as a Proxy for the Protein Backbone. Journal of Chemical Theory and Computation, 2023, 19, 4308-4321.	5.3	1
350	Conformational and state-specific effects in reactions of 2,3-dibromobutadiene with Coulomb-crystallized calcium ions. Physical Chemistry Chemical Physics, 2023, 25, 13933-13945.	2.8	2
351	Automatic characterization of drug/amino acid interactions by energy decomposition analysis. Theoretical Chemistry Accounts, 2023, 142, .	1.4	0
352	Solubility-consistent force field simulations for aqueous metal carbonate systems using graphical processing units. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2023, 381, .	3.4	5

#	Article	IF	CITATIONS
353	Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case. Molecules, 2023, 28, 4477.	3.8	0
354	Transfer-learned potential energy surfaces: Toward microsecond-scale molecular dynamics simulations in the gas phase at CCSD(T) quality. Journal of Chemical Physics, 2023, 158, .	3.0	4
355	Rapid Prediction of a Liquid Structure from a Single Molecular Configuration Using Deep Learning. Journal of Chemical Information and Modeling, 2023, 63, 3742-3750.	5.4	1
356	Engineering Transferable Atomic Force Fields: Empirical Optimization of Hydrocarbon Lennard–Jones Interactions by Direct Mapping of Parameter Space. Journal of Chemical Theory and Computation, 2023, 19, 4074-4087.	5.3	1
357	Machine learning-assisted investigation of the impact of lithium-ion de-embedding on the thermal conductivity of LiFePO4. Applied Physics Letters, 2023, 122, .	3.3	1
358	Al in drug discovery and its clinical relevance. Heliyon, 2023, 9, e17575.	3.2	23
359	Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials. Journal of Chemical Theory and Computation, 2023, 19, 5077-5087.	5.3	4
361	Efficient generation of stable linear machine-learning force fields with uncertainty-aware active learning. Machine Learning: Science and Technology, 2023, 4, 035005.	5.0	0
362	Predicting the electronic density response of condensed-phase systems to electric field perturbations. Journal of Chemical Physics, 2023, 159, .	3.0	1
363	Crystal binding (interatomic forces): Ionic bonding and crystals. , 2024, , 208-216.		Ο
363 364	Crystal binding (interatomic forces): Ionic bonding and crystals. , 2024, , 208-216. A unified framework for machine learning collective variables for enhanced sampling simulations: <tt>mlcolvar</tt>	3.0	0 9
363 364 365	Crystal binding (interatomic forces): Ionic bonding and crystals., 2024, , 208-216. A unified framework for machine learning collective variables for enhanced sampling simulations: <tt>mlcolvar</tt> Journal of Chemical Physics, 2023, 159, . Application of computational approaches in biomembranes: From structure to function. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	3.0 14.6	0 9 2
363 364 365 366	Crystal binding (interatomic forces): Ionic bonding and crystals., 2024, , 208-216. A unified framework for machine learning collective variables for enhanced sampling simulations: <tt>>mlcolvar A unified framework for machine learning collective variables for enhanced sampling simulations: <tt>>mlcolvar Application of computational approaches in biomembranes: From structure to function. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, . Anisotropic molecular coarse-graining by force and torque matching with neural networks. Journal of Chemical Physics, 2023, 159, .</tt></tt>	3.0 14.6 3.0	0 9 2 3
363 364 365 366	Crystal binding (interatomic forces): Ionic bonding and crystals. , 2024, , 208-216.A unified framework for machine learning collective variables for enhanced sampling simulations: <tbr></tbr> <tbr></tbr> Aunified framework for machine learning collective variables for enhanced sampling simulations: Application of computational approaches in biomembranes: From structure to function. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .Anisotropic molecular coarse-graining by force and torque matching with neural networks. Journal of Chemical Physics, 2023, 159, .Imbibition Mechanisms of Fracturing Fluid in Shale Oil Formation: A Review from the Multiscale Perspective. Energy & amp; Fuels, 2023, 37, 9822-9840.	3.0 14.6 3.0 5.1	0 9 2 3
 363 364 365 366 367 368 	Crystal binding (interatomic forces): lonic bonding and crystals., 2024,, 208-216. A unified framework for machine learning collective variables for enhanced sampling simulations:	3.0 14.6 3.0 5.1 3.0	0 9 2 3 5 3
 363 364 365 366 367 368 369 	Crystal binding (interatomic forces): Ionic bonding and crystals., 2024, 208-216. A unified framework for machine learning collective variables for enhanced sampling simulations:	3.0 14.6 3.0 5.1 3.0 3.0	0 9 2 3 3 3 3
 363 364 365 366 367 368 369 370 	Crystal binding (interatomic forces): Ionic bonding and crystals., 2024, , 208-216. A unified framework for machine learning collective variables for enhanced sampling simulations:	3.0 14.6 3.0 5.1 3.0 3.0 3.0	0 9 2 3 3 3 3 3 3

#	Article	IF	CITATIONS
372	Active-learning accelerated computational screening of A2B@NG catalysts for CO2 electrochemical reduction. Nano Energy, 2023, 115, 108695.	16.0	2
373	An overview on modelling approaches for photochemical and photoelectrochemical solar fuels processes and technologies. Energy Conversion and Management, 2023, 292, 117366.	9.2	3
374	Recent Advances and Applications of Machine Learning in Experimental Solid Mechanics: A Review. Applied Mechanics Reviews, 2023, 75, .	10.1	9
375	Machine Learning in Molecular Dynamics Simulations of Biomolecular Systems. , 2024, , 475-492.		1
376	Performance of two complementary machine-learned potentials in modelling chemically complex systems. Npj Computational Materials, 2023, 9, .	8.7	2
377	Machine-learned acceleration for molecular dynamics in CASTEP. Journal of Chemical Physics, 2023, 159, .	3.0	2
378	Data scheme and data format for transferable force fields for molecular simulation. Scientific Data, 2023, 10, .	5.3	2
379	Computational Framework Combining Quantum Mechanics, Molecular Dynamics, and Deep Neural Networks to Evaluate the Intrinsic Properties of Materials. Journal of Physical Chemistry A, 2023, 127, 6603-6613.	2.5	1
380	High Mechanical Energy Storage Capacity of Ultranarrow Carbon Nanowires Bundles by Machine Learning Driving Predictions. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	3
381	Exploring Configurations of Nanocrystal Ligands Using Machine-Learned Force Fields. Journal of Physical Chemistry Letters, 2023, 14, 7215-7222.	4.6	0
382	Caracal: A Versatile Ring Polymer Molecular Dynamics Simulation Package. Journal of Chemical Theory and Computation, 2023, 19, 5334-5355.	5.3	0
383	Ab initio quantum chemistry with neural-network wavefunctions. Nature Reviews Chemistry, 2023, 7, 692-709.	30.2	8
384	Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. ACS Catalysis, 2023, 13, 11455-11493.	11.2	8
385	Data efficiency and extrapolation trends in neural network interatomic potentials. Machine Learning: Science and Technology, 2023, 4, 035031.	5.0	4
386	Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials—A Review. Advanced Materials, 0, , .	21.0	0
387	PANNA 2.0: Efficient neural network interatomic potentials and new architectures. Journal of Chemical Physics, 2023, 159, .	3.0	3
388	Automatic identification of chemical moieties. Physical Chemistry Chemical Physics, 2023, 25, 26370-26379.	2.8	4
389	Toward a simple yet efficient cost function for the optimization of Gaussian process regression model hyperparameters. AIP Advances, 2023, 13, .	1.3	1

#	Article	IF	CITATIONS
390	Perspectives on Ligand/Protein Binding Kinetics Simulations: Force Fields, Machine Learning, Sampling, and User-Friendliness. Journal of Chemical Theory and Computation, 2023, 19, 6047-6061.	5.3	1
391	Synergy of semiempirical models and machine learning in computational chemistry. Journal of Chemical Physics, 2023, 159, .	3.0	2
392	Thermodynamic and kinetic modeling of electrocatalytic reactions using a first-principles approach. Journal of Chemical Physics, 2023, 159, .	3.0	0
393	Effect of Flattened Structures of Molecules and Materials on Machine Learning Model Training. Journal of Chemical Information and Modeling, 2023, 63, 5446-5456.	5.4	0
394	Theoretical and Experimental Advances in High-Pressure Behaviors of Nanoparticles. Chemical Reviews, 2023, 123, 10206-10257.	47.7	4
395	Energy-conserving molecular dynamics is not energy conserving. Physical Chemistry Chemical Physics, 2023, 25, 23467-23476.	2.8	2
396	Treating Semiempirical Hamiltonians as Flexible Machine Learning Models Yields Accurate and Interpretable Results. Journal of Chemical Theory and Computation, 2023, 19, 6185-6196.	5.3	1
397	Four-Dimensional-Spacetime Atomistic Artificial Intelligence Models. Journal of Physical Chemistry Letters, 2023, 14, 7732-7743.	4.6	2
398	How to train a neural network potential. Journal of Chemical Physics, 2023, 159, .	3.0	9
399	Ultra-fast interpretable machine-learning potentials. Npj Computational Materials, 2023, 9, .	8.7	3
400	A Review of Nano and Microscale Heat Transfer: An Experimental and Molecular Dynamics Perspective. Processes, 2023, 11, 2769.	2.8	1
401	Atomistic simulations of nucleation and growth of CaCO ₃ with the influence of inhibitors: A review. , 2023, 1, .		1
402	Neural Network with Optimal Neuron Activation Functions Based on Additive Gaussian Process Regression. Journal of Physical Chemistry A, 2023, 127, 7823-7835.	2.5	5
403	Unraveling pyrolysis mechanisms of lignin dimer model compounds: Neural network-based molecular dynamics simulation investigations. Fuel, 2024, 357, 129909.	6.4	1
404	Transforming Cl-Containing Waste Plastics into Carbon Resource for Steelmaking: Theoretical Insight. ACS Engineering Au, 2023, 3, 285-291.	5.1	0
405	DeePMD-kit v2: A software package for deep potential models. Journal of Chemical Physics, 2023, 159, .	3.0	39
406	Computational modelling of bionano interface. Europhysics Letters, 2023, 143, 57001.	2.0	0
407	Mechanical properties of TiO ₂ /carboxylic-acid interfaces from first-principles calculations. Nanoscale, 0, , .	5.6	0

#	Article	IF	CITATIONS
408	Photodynamics With Neural Networks and Kernel Ridge Regression. , 2024, , 413-426.		0
409	Equivariant Graph Neural Networks for Toxicity Prediction. Chemical Research in Toxicology, 0, , .	3.3	4
410	Advancing Accurate and Efficient Surface Behavior Modeling of Al Clusters with Machine Learning Potential. Journal of Physical Chemistry C, 2023, 127, 19115-19126.	3.1	0
411	Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Bidirectional Long Short-Term Memory Networks. Journal of Physical Chemistry Letters, 2023, 14, 7092-7099.	4.6	2
412	Discrepancies and error evaluation metrics for machine learning interatomic potentials. Npj Computational Materials, 2023, 9, .	8.7	3
413	Universal machine learning for the response of atomistic systems to external fields. Nature Communications, 2023, 14, .	12.8	3
414	<tt>q-pac</tt> : A Python package for machine learned charge equilibration models. Journal of Chemical Physics, 2023, 159, .	3.0	2
415	DFT-assisted low-dimensional carbon-based electrocatalysts design and mechanism study: a review. Frontiers in Chemistry, 0, 11, .	3.6	Ο
416	2023 Roadmap on molecular modelling of electrochemical energy materials. JPhys Energy, 2023, 5, 041501.	5.3	3
417	Atom-centered machine-learning force field package. Computer Physics Communications, 2023, 292, 108883.	7.5	2
418	Accuracy evaluation of different machine learning force field features. New Journal of Physics, 2023, 25, 093007.	2.9	2
419	Multiobjective Hyperparameter Optimization for Deep Learning Interatomic Potential Training Using NSGA-II. , 2023, , .		0
420	Cluster expansion constructed over Jacobi-Legendre polynomials for accurate force fields. Physical Review B, 2023, 108, .	3.2	2
421	Exploring the role of microbial proteins in controlling environmental pollutants based on molecular simulation. Science of the Total Environment, 2023, 905, 167028.	8.0	0
422	Heat flux for semilocal machine-learning potentials. Physical Review B, 2023, 108, .	3.2	3
423	Challenges of high-fidelity virtual reactor for exascale computing and research progress of China Virtual Reactor. Nuclear Engineering and Design, 2023, 413, 112566.	1.7	1
424	An Artificial Neural Network for Predicting Groundnut Yield Using Climatic Data. AgriEngineering, 2023, 5, 1713-1736.	3.2	2
425	Going against the Grain: Atomistic Modeling of Grain Boundaries in Solid Electrolytes for Solid-State Batteries. ACS Materials Au, 0, , .	6.0	2

#	Article	IF	Citations
426	Machine Learning in Molecular Dynamics Simulation. Lecture Notes in Electrical Engineering, 2023, , 635-640.	0.4	0
427	Capturing the interactions in the BaSnF4 ionic conductor: Comparison between a machine-learning potential and a polarizable force field. Journal of Chemical Physics, 2023, 159, .	3.0	0
428	Global Neural Network Potential with Explicit Many-Body Functions for Improved Descriptions of Complex Potential Energy Surface. Journal of Chemical Theory and Computation, 0, , .	5.3	0
429	Combining Force Fields and Neural Networks for an Accurate Representation of Chemically Diverse Molecular Interactions. Journal of the American Chemical Society, 2023, 145, 23620-23629.	13.7	3
430	Toward Explainable Artificial Intelligence for Precision Pathology. Annual Review of Pathology: Mechanisms of Disease, 2024, 19, 541-570.	22.4	4
431	Molecular Dynamics. The Materials Research Society Series, 2024, , 217-247.	0.2	0
432	Modeling Exchange Reactions in Covalent Adaptable Networks with Machine Learning Force Fields. Macromolecules, 0, , .	4.8	0
433	Nanosecond MD of battery cathode materials with electron density description. Energy Storage Materials, 2023, 63, 103023.	18.0	0
434	Hybrid classical/machine-learning force fields for the accurate description of molecular condensed-phase systems. Chemical Science, 2023, 14, 12661-12675.	7.4	1
435	Gaussian attractive potential for carboxylate/cobalt surface interactions. Journal of Chemical Physics, 2023, 159, .	3.0	0
436	Deciphering Photoreceptors Through Atomistic Modeling from Light Absorption to Conformational Response. Journal of Molecular Biology, 2024, 436, 168358.	4.2	2
437	Catalyst Cluster-Induced Support Restructuring. Journal of Physical Chemistry C, 2023, 127, 22277-22286.	3.1	1
438	Stress and heat flux via automatic differentiation. Journal of Chemical Physics, 2023, 159, .	3.0	0
439	Predicting crystal form stability under real-world conditions. Nature, 2023, 623, 324-328.	27.8	4
440	libMBD: A general-purpose package for scalable quantum many-body dispersion calculations. Journal of Chemical Physics, 2023, 159, .	3.0	1
441	Harness the power of atomistic modeling and deep learning in biofuel separation. Annual Reports in Computational Chemistry, 2023, , 121-165.	1.7	0
442	Review of deep learning algorithms in molecular simulations and perspective applications on petroleum engineering. Geoscience Frontiers, 2024, 15, 101735.	8.4	3
443	High-Dimensional Neural Network Potentials for Accurate Prediction of Equation of State: A Case Study of Methane. Journal of Chemical Theory and Computation, 2023, 19, 7825-7832.	5.3	0

#	Article	IF	CITATIONS
444	A machine learning framework for predicting physical properties in configuration space of gate alloys. Materials Today Communications, 2023, 37, 107526.	1.9	1
445	On (not) deriving the entropy of barocaloric phase transitions from crystallography and neutron spectroscopy. JPhys Energy, 2024, 6, 011001.	5.3	1
446	How the Acidity of Water Droplets and Films Is Controlled by the Air–Water Interface. Journal of the American Chemical Society, 2023, 145, 25186-25194.	13.7	3
447	Molecules in Environments: Toward Systematic Quantum Embedding of Electrons and Drude Oscillators. Physical Review Letters, 2023, 131, .	7.8	3
448	Biomolecular dynamics in the 21st century. Biochimica Et Biophysica Acta - General Subjects, 2024, 1868, 130534.	2.4	0
449	Machine-learning-accelerated simulations to enable automatic surface reconstruction. Nature Computational Science, 2023, 3, 1034-1044.	8.0	2
450	Simple, near-universal relationships between bond lengths, strengths, and anharmonicities. AIP Advances, 2023, 13, .	1.3	0
451	Capturing Weak Interactions in Surface Adsorbate Systems at Coupled Cluster Accuracy: A Graph-Theoretic Molecular Fragmentation Approach Improved through Machine Learning. Journal of Chemical Theory and Computation, 2023, 19, 8541-8556.	5.3	1
452	Calibration of uncertainty in the active learning of machine learning force fields. Machine Learning: Science and Technology, 2023, 4, 045034.	5.0	1
453	Force Field Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields under the Microscope. Journal of Chemical Theory and Computation, 2023, 19, 8706-8717.	5.3	0
454	The design and optimization of heterogeneous catalysts using computational methods. Catalysis Science and Technology, 2024, 14, 515-532.	4.1	0
455	MEnTaT: A machine-learning approach for the identification of mutations to increase protein stability. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0
456	Phase Stability of Large-Size Nanoparticle Alloy Catalysts at Ab Initio Quality Using a Nearsighted Force-Training Approach. Journal of Physical Chemistry C, 2023, 127, 24360-24372.	3.1	1
457	Machine learning is funny but physics makes the money: How machine-learning potentials can advance computer-aided materials design in metallurgy. Computational Materials Science, 2024, 233, 112715.	3.0	0
458	The role of dynamics in heterogeneous catalysis: Surface diffusivity and N ₂ decomposition on Fe(111). Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
459	Effects of Aleatoric and Epistemic Errors in Reference Data on the Learnability and Quality of NN-based Potential Energy Surfaces. , 2023, , 100033.		0
460	Characterizing the Mechanisms of Ca and Mg Carbonate Ion-Pair Formation with Multi-Level Molecular Dynamics/Quantum Mechanics Simulations. Journal of Physical Chemistry B, O, , .	2.6	0
461	Concluding remarks for <i>Faraday Discussion</i> on Water at Interfaces. Faraday Discussions, 0, 249, 521-525.	3.2	0

#	Article	IF	CITATIONS
462	Developing an Implicit Solvation Machine Learning Model for Molecular Simulations of Ionic Media. Journal of Chemical Theory and Computation, 0, , .	5.3	0
463	Data Efficient and Stability Indicated Sampling for Developing Reactive Machine Learning Potential to Achieve Ultralong Simulation in Lithium-Metal Batteries. Journal of Physical Chemistry C, 2023, 127, 24106-24117.	3.1	0
464	Hydrogen atom scattering at the Al ₂ O ₃ (0001) surface: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2024, 26, 1696-1708.	2.8	0
465	A machine learning-based high-precision density functional method for drug-like molecules. , 2024, 2, 100037.		0
466	Synthetic pre-training for neural-network interatomic potentials. Machine Learning: Science and Technology, 0, , .	5.0	1
467	PotentialMind: Graph Convolutional Machine Learning Potential for Sb–Te Binary Compounds of Multiple Stoichiometries. Journal of Physical Chemistry C, 0, , .	3.1	0
468	Activation Energies of Heterogeneous Electrocatalysis: A Theoretical Perspective. ACS Materials Au, 0,	6.0	1
469	Accurate fundamental invariant-neural network representation of <i>ab initio</i> potential energy surfaces. National Science Review, 0, , .	9.5	4
470	Molecular Simulation Meets Machine Learning. Journal of Chemical & Engineering Data, 0, , .	1.9	1
471	Neural-network force field backed nested sampling: Study of the silicon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p </mml:mi> <mml:mtext>â^' phase diagram. Physical Review Materials, 2023, 7, .</mml:mtext></mml:mrow></mml:math 	l:mztext><1	mr ol: mi>T
471 472	Neural-network force field backed nested sampling: Study of the silicon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mtext>â^' phase diagram. Physical Review Materials, 2023, 7, . Kohn–Sham accuracy from orbital-free density functional theory via Δ-machine learning. Journal of Chemical Physics, 2023, 159, .</mml:mtext></mml:mrow></mml:math 	l:n 2t.e xt><1 3.0	nrol:mi>T< m
471 472 473	 Neural-network force field backed nested sampling: Study of the silicon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mtext>â°' Kohnâ€"Sham accuracy from orbital-free density functional theory via Î"-machine learning. Journal of Chemical Physics, 2023, 159, . Molecular Simulation for Atmospheric Reactions: Non-Equilibrium Dynamics, Roaming, and Glycolaldehyde Formation following Photoinduced Decomposition of <i>syn-</i> Acetaldehyde Oxide. Journal of Physical Chemistry Letters, 2024, 15, 90-96. </mml:mtext></mml:mrow></mml:math>	l:n⊉æxt><1 3.0 4.6	nrol:mi>T <im 0 0</im
471 472 473 474	Neural-network force field backed nested sampling: Study of the silicon <mml:math< td=""> xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mtext>â°' phase diagram. Physical Review Materials, 2023, 7, . Kohnâ€"Sham accuracy from orbital-free density functional theory via î"-machine learning. Journal of Chemical Physics, 2023, 159, . Molecular Simulation for Atmospheric Reactions: Non-Equilibrium Dynamics, Roaming, and Glycolaldehyde Formation following Photoinduced Decomposition of <i>syn-</i>Acetaldehyde Oxide. Journal of Physical Chemistry Letters, 2024, 15, 90-96. NICE-FF: A non-empirical, intermolecular, consistent, and extensible force field for nucleic acids and beyond. Journal of Chemical Physics, 2023, 159, .</mml:mtext></mml:mrow></mml:math<>	l:mŁ@xt> <n 3.0 4.6 3.0</n 	mrol:mi>T <im 0 0</im
 471 472 473 474 475 	Neural-network force field backed nested sampling: Study of the silicon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>â^{-,} Kohnâ€"Sham accuracy from orbital-free density functional theory via Î"-machine learning. Journal of Chemical Physics, 2023, 159, . Molecular Simulation for Atmospheric Reactions: Non-Equilibrium Dynamics, Roaming, and Glycolaldehyde Formation following Photoinduced Decomposition of <i>syn-</i>Acetaldehyde Oxide. Journal of Physical Chemistry Letters, 2024, 15, 90-96. NICE-FF: A non-empirical, intermolecular, consistent, and extensible force field for nucleic acids and beyond. Journal of Chemical Physics, 2023, 159, . Urea Electrosynthesis Accelerated by Theoretical Simulations. Advanced Functional Materials, 2024, 34, .</mml:mtext></mml:mrow></mml:math>	l:m2text> <1 3.0 4.6 3.0 14.9	mrol:mi>T < im 0 0 0
 471 472 473 474 475 476 	 Neural-network force field backed nested sampling: Study of the silicon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi>ppp<td>l:m2t.ext> < 1 3.0 4.6 3.0 14.9 9.5</td><td>mrol:mi>T < im 0 0 0 1 1</td></mml:math>	l:m2t.ext> < 1 3.0 4.6 3.0 14.9 9.5	mrol:mi>T < im 0 0 0 1 1
 471 472 473 474 475 476 477 	 Neural-network force field backed nested sampling: Study of the silicon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi> p</mml:mi> <mml:mtext> â⁻ </mml:mtext> â⁻ a⁻ a⁻ </mml:mrow></mml:math>	l:n2Lext> <1 3.0 4.6 3.0 14.9 9.5 8.2	mmol:mi>T< m 0 0 0 1 1 1
 471 472 473 474 475 476 477 478 	 Neural-network force field backed nested sampling: Study of the silicon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mi><mml:mtext>â° Kohnâ€"Sham accuracy from orbital-free density functional theory via ΰ-machine learning. Journal of Chemical Physics, 2023, 159, . Molecular Simulation for Atmospheric Reactions: Non-Equilibrium Dynamics, Roaming, and Glycolaldehyde Formation following Photoinduced Decomposition of <i>syn-</i> NICE-FF: A non-empirical, intermolecular, consistent, and extensible force field for nucleic acids and beyond. Journal of Chemical Physics, 2023, 159, . UIrea Electrosynthesis Accelerated by Theoretical Simulations. Advanced Functional Materials, 2024, 34, . Deep Learning for Complex Chemical systems. National Science Review, 0, , . Roadmap for rechargeable batteries: present and beyond. Science China Chemistry, 0, , . The emergence of machine learning force fields in drug design. Medicinal Research Reviews, 2024, 44, 1147-1182. </mml:mtext></mml:mi></mml:mrow></mml:math>	l:nzt.ext> < 1 3.0 4.6 3.0 14.9 9.5 8.2 10.5	mmol:mi>T< in 0 0 0 1 1 0 1

#	Article	IF	CITATIONS
480	Computational insights into carbon dots: Evolution of structural models and structure–activity relationships. Chemical Engineering Journal, 2024, 481, 148779.	12.7	1
481	Development of a machine learning finite-range nonlocal density functional. Journal of Chemical Physics, 2024, 160, .	3.0	0
482	Theoretical trends in the dynamics simulations of molecular machines across multiple scales. Physical Chemistry Chemical Physics, 2024, 26, 4828-4839.	2.8	0
483	Implementation and Validation of an OpenMM Plugin for the Deep Potential Representation of Potential Energy. International Journal of Molecular Sciences, 2024, 25, 1448.	4.1	0
484	Degeneration of kernel regression with Matern kernels into low-order polynomial regression in high dimension. Journal of Chemical Physics, 2024, 160, .	3.0	0
485	Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications. Nature Energy, 2024, 9, 121-133.	39.5	1
486	Unravelling abnormal in-plane stretchability of two-dimensional metal–organic frameworks by machine learning potential molecular dynamics. Nanoscale, 2024, 16, 3438-3447.	5.6	0
487	Machine learning for <i>in silico</i> protein research. Wuli Xuebao/Acta Physica Sinica, 2024, 73, 069301.	0.5	0
488	Breakdown of phonon band theory in MgO. Physical Review B, 2024, 109, .	3.2	0
489	Utilizing Wyckoff Sites to Construct Machine-Learning-Driven Interatomic Potentials for Crystalline Materials: A Case Study on α-Alumina. Journal of Physical Chemistry C, 2024, 128, 1746-1754.	3.1	0
490	Applying graph neural network models to molecular property prediction using high-quality experimental data. , 2024, 2, 100050.		0
491	Size dependent lithium-ion conductivity of solid electrolytes in machine learning molecular dynamics simulations. , 2024, 2, 100051.		0
492	MLatom 3: A Platform for Machine Learning-Enhanced Computational Chemistry Simulations and Workflows. Journal of Chemical Theory and Computation, 2024, 20, 1193-1213.	5.3	0
493	Navigating the Frontiers of Machine Learning in Neurodegenerative Disease Therapeutics. Pharmaceuticals, 2024, 17, 158.	3.8	0
494	Machine-Learned Potentials by Active Learning from Organic Crystal Structure Prediction Landscapes. Journal of Physical Chemistry A, 2024, 128, 945-957.	2.5	0
495	Molecular dynamics simulations of liquid gallium alloy Ga–X (X = Pt, Pd, Rh) <i>via</i> machine learning potentials. Inorganic Chemistry Frontiers, 2024, 11, 1573-1582.	6.0	0
496	A neural network potential based on pairwise resolved atomic forces and energies. Journal of Computational Chemistry, 2024, 45, 1143-1151.	3.3	0
497	A kernel-based machine learning potential and quantum vibrational state analysis of the cationic Ar hydride (Ar ₂ H ⁺). Physical Chemistry Chemical Physics, 2024, 26, 7060-7071.	2.8	0

#	Article	IF	CITATIONS
498	Exploring protein–ligand binding affinity prediction with electron density-based geometric deep learning. RSC Advances, 2024, 14, 4492-4502.	3.6	0
499	Machine Learning Potentials with the Iterative Boltzmann Inversion: Training to Experiment. Journal of Chemical Theory and Computation, 2024, 20, 1274-1281.	5.3	0
500	Theory of moment propagation for quantum dynamics in single-particle description. Journal of Chemical Physics, 2024, 160, .	3.0	0
502	Developing Cheap but Useful Machine Learning-Based Models for Investigating High-Entropy Alloy Catalysts. Langmuir, 2024, 40, 3691-3701.	3.5	0
503	Bridging the gap between high-level quantum chemical methods and deep learning models. Machine Learning: Science and Technology, 2024, 5, 015035.	5.0	0
504	Building an ab initio solvated DNA model using Euclidean neural networks. PLoS ONE, 2024, 19, e0297502.	2.5	0
505	Active learning of neural network potentials for rare events. , 2024, 3, 514-527.		0
506	Hellmann-Feynman theorem in non-Hermitian systems. Physical Review A, 2024, 109, .	2.5	0
507	Local-environment-guided selection of atomic structures for the development of machine-learning potentials. Journal of Chemical Physics, 2024, 160, .	3.0	0
508	Cross-Linked Gold Nanoparticle Assemblies: What Can We Learn from Single Flat Interfaces?. Journal of Physical Chemistry C, 2024, 128, 3994-4008.	3.1	0
509	Predictions of Boron Phase Stability Using an Efficient Bayesian Machine Learning Interatomic Potential. Journal of Physical Chemistry Letters, 2024, 15, 2419-2427.	4.6	0
510	Robust training of machine learning interatomic potentials with dimensionality reduction and stratified sampling. Npj Computational Materials, 2024, 10, .	8.7	0
511	Evaluation of Rate Coefficients in the Gas Phase Using Machine-Learned Potentials. Journal of Physical Chemistry A, 2024, 128, 1958-1971.	2.5	0
512	Machine Learning Integrating Protein Structure, Sequence, and Dynamics to Predict the Enzyme Activity of Bovine Enterokinase Variants. Journal of Chemical Information and Modeling, 2024, 64, 2681-2694.	5.4	0
513	A Vision for the Future of Multiscale Modeling. ACS Physical Chemistry Au, 0, , .	4.0	0
514	Incorporating Neural Networks into the AMOEBA Polarizable Force Field. Journal of Physical Chemistry B, 2024, 128, 2381-2388.	2.6	0
515	calorine: A Python package for constructing and sampling neuroevolution potential models. Journal of Open Source Software, 2024, 9, 6264.	4.6	0
516	Adsorbate-Dependent Electronic Structure Descriptors for Machine Learning-Driven Binding Energy Predictions in Diverse Single Atom Alloys: A Reductionist Approach. Journal of Physical Chemistry C, 2024, 128, 4483-4496.	3.1	0

ARTICLE IF CITATIONS # Exploring the development and applications of sustainable natural fiber composites: A review from a 517 12.0 0 nanoscale perspective. Composites Part B: Engineering, 2024, 276, 111369. How Poisoning Is Avoided in a Step of Relevance to the Haber–Bosch Catalysis. ACS Catalysis, 2024, 14, 11.2 4944-4950. Ab Initio Driven Exploration on the Thermal Properties of Al–Li Alloy. ACS Applied Materials & amp; 519 8.0 0 Interfaces, 2024, 16, 14954-14964. Decoding Electrochemical Processes of Lithiumâ€lon Batteries by Classical Molecular Dynamics Simulations. Advanced Energy Materials, 0, , . Automated learning data-driven potential models for spectroscopic characterization of astrophysical interest noble gas-containing <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0030.svg"><mml:msubsup><mml:mrow><mml:mi 521 0 mathvariant="normal">NgH</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml molecules. , 2024, 2, 100059. Using machine learning to find exact analytic solutions to analytically posed physics problems. Heliyon, 2024, 10, e28124. 3.2 Computational Design of Inorganic Solid-State Electrolyte Materials for Lithium-Ion Batteries. 523 11.7 0 Accounts of Materials Research, 0, , . CRESTâ€"A program for the exploration of low-energy molecular chemical space. Journal of Chemical 524 Physics, 2024, 160, . Multilevel Framework for Analysis of Protein Folding Involving Disulfide Bond Formation. Journal of 525 2.6 0 Physical Chemistry B, 2024, 128, 3145-3156. A globally accurate neural network potential energy surface and quantum dynamics study of Mg+(2S)Â+ÂH2Ââ†'ÂMgH+ + H reaction. Chemical Physics Letters, 2024, 842, 141223. 2.6 Numerical Accuracy Matters: Applications of Machine Learned Potential Energy Surfaces. Journal of 527 0 4.6 Physical Chemistry Letters, 2024, 15, 3419-3424. Enhancing the Quality and Reliability of Machine Learning Interatomic Potentials through Better 3.1 Reporting Practices. Journal of Physical Chemistry C, 2024, 128, 6524-6537.