High and rising economic costs of biological invasions w

Nature 592, 571-576 DOI: 10.1038/s41586-021-03405-6

Citation Report

#	Article	IF	CITATIONS
1	Integrating mechanical treatment and biological control to improve field treatment efficiency on invasions. Elementa, 2021, 9, .	1.1	2
3	Combining phytochemicals and multitrophic interactions to control forest insect pests. Current Opinion in Insect Science, 2021, 44, 101-106.	2.2	5
4	Survival, Growth, and Reproduction: Comparison of Marbled Crayfish with Four Prominent Crayfish Invaders. Biology, 2021, 10, 422.	1.3	16
5	Are the "100 of the world's worst―invasive species also the costliest?. Biological Invasions, 2022, 24, 1895-1904.	1.2	52
6	Aulacaspis yasumatsui Delivers a Blow to International Cycad Horticulture. Horticulturae, 2021, 7, 147.	1.2	12
7	Non-English languages enrich scientific knowledge: The example of economic costs of biological invasions. Science of the Total Environment, 2021, 775, 144441.	3.9	108
8	Effects of Climate Change on Weeds and Invasive Alien Plants in Sri Lankan Agro-Ecosystems: Policy and Management Implications. Frontiers in Agronomy, 2021, 3, .	1.5	2
9	Wetland Invasion: a Multi-Faceted Challenge during a Time of Rapid Global Change. Wetlands, 2021, 41, 1.	0.7	8
10	The recorded economic costs of alien invasive species in Italy. NeoBiota, 0, 67, 247-266.	1.0	15
11	Economic costs of invasive alien species in Mexico. NeoBiota, 0, 67, 459-483.	1.0	19
12	Detailed assessment of the reported economic costs of invasive species in Australia. NeoBiota, 0, 67, 511-550.	1.0	58
13	Economic costs of invasive species in Germany. NeoBiota, 0, 67, 225-246.	1.0	27
14	First synthesis of the economic costs of biological invasions in Japan. NeoBiota, 0, 67, 79-101.	1.0	22
15	Economic costs of biological invasions in Ecuador: the importance of the Galapagos Islands. NeoBiota, 0, 67, 375-400.	1.0	15
16	The economic costs of biological invasions in Africa: a growing but neglected threat?. NeoBiota, 0, 67, 11-51.	1.0	40
17	Economic costs of invasive alien species in the Mediterranean basin. NeoBiota, 0, 67, 427-458.	1.0	44
18	Economic costs of invasive alien species in Spain. NeoBiota, 0, 67, 267-297.	1.0	31
19	The economic costs of biological invasions in Brazil: a first assessment. NeoBiota, 0, 67, 349-374.	1.0	39

	CITATION	Report	
#	Article	IF	CITATIONS
20	Economic costs of biological invasions within North America. NeoBiota, 0, 67, 485-510.	1.0	55
21	Economic costs of biological invasions in terrestrial ecosystems in Russia. NeoBiota, 0, 67, 103-130.	1.0	18
22	Potential distributional shifts in North America of allelopathic invasive plant species under climate change models. Plant Diversity, 2022, 44, 11-19.	1.8	21
23	Economic costs of biological invasions in the United Kingdom. NeoBiota, 0, 67, 299-328.	1.0	38
24	The economic costs of biological invasions in Central and South America: a first regional assessment. NeoBiota, 0, 67, 401-426.	1.0	40
26	The economic costs of biological invasions around the world. NeoBiota, 0, 67, 1-9.	1.0	55
27	Economic costs of invasive alien species across Europe. NeoBiota, 0, 67, 153-190.	1.0	148
31	Prioritization and thresholds for managing biological invasions in urban ecosystems. Urban Ecosystems, 2022, 25, 253-271.	1.1	6
32	Beyond †Native V. Alien': Critiques of the Native/alien Paradigm in the Anthropocene, and Their Implications. Ethics, Policy and Environment, 0, , 1-31.	0.8	11
33	Predicting non-native insect impact: focusing on the trees to see the forest. Biological Invasions, 2021, 23, 3921-3936.	1.2	5
34	The Genomic Processes of Biological Invasions: From Invasive Species to Cancer Metastases and Back Again. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	9
35	Distribution and establishment of the alien Australian redclaw crayfish, <i>Cherax quadricarinatus</i> , in the Zambezi Basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 3156-3168.	0.9	8
36	Identifying Priorities, Targets, and Actions for the Long-term Social and Ecological Management of Invasive Non-Native Species. Environmental Management, 2022, 69, 140-153.	1.2	8
37	Multiple drivers of invasive lionfish culling efficiency in marine protected areas. Conservation Science and Practice, 2021, 3, e541.	0.9	4
38	An integrated policy framework and plan of action to prevent and control plant invasions in India. Environmental Science and Policy, 2021, 124, 64-72.	2.4	14
39	Controlling invasive alien shrub species, enhancing biodiversity and mitigating flood risk: A win–win–win situation in grazed floodplain plantations. Journal of Environmental Management, 2021, 295, 113053.	3.8	7
40	Managing the invasive plant Carpobrotus edulis: is mechanical control or specialized natural enemy more effective?. Journal of Environmental Management, 2021, 298, 113554.	3.8	4
41	Anthropogenic and environmental determinants of alien plant species spatial distribution on an island scale. Science of the Total Environment, 2022, 805, 150314.	3.9	13

#	Article	IF	CITATIONS
42	Knowledge gaps in economic costs of invasive alien fish worldwide. Science of the Total Environment, 2022, 803, 149875.	3.9	43
44	Recent Immigrant Insect Fauna—Another Look at a Classic Analysis. Journal of Integrated Pest Management, 2021, 12, .	0.9	Ο
45	Planetary Biosecurity: Applying Invasion Science to Prevent Biological Contamination from Space Travel. BioScience, 2022, 72, 247-253.	2.2	5
46	Current and future potential global distribution of the invading species <i>Drosophila nasuta</i> (Diptera: Drosophilidae). Biological Journal of the Linnean Society, 2022, 135, 208-221.	0.7	6
47	Pilot Application of â€~Invasive Alien Species in Europe' Smartphone App in the Danube Region. Water (Switzerland), 2021, 13, 2952.	1.2	3
48	Global costs of plant invasions must not be underestimated. NeoBiota, 0, 69, 75-78.	1.0	21
49	Towards a global list of accepted species II. Consequences of inadequate taxonomic list governance. Organisms Diversity and Evolution, 2021, 21, 623-630.	0.7	16
50	Predicting hotspots for invasive species introduction in Europe. Environmental Research Letters, 2021, 16, 114026.	2.2	8
51	Review of Existing Knowledge and Practices of Tarping for the Control of Invasive Knotweeds. Plants, 2021, 10, 2152.	1.6	4
52	Opportunities and Limitations for Reproductive Science in Species Conservation. Annual Review of Animal Biosciences, 2022, 10, .	3.6	5
53	Scientists' warning to humanity on illegal or unsustainable wildlife trade. Biological Conservation, 2021, 263, 109341.	1.9	50
54	Major environmental factors and traits of invasive alien plants determine their spatial distribution: a case study in Korea. Journal of Ecology and Environment, 2021, 45, .	1.6	4
56	Growing up in a new world: trait divergence between rural, urban, and invasive populations of an amphibian urban invader. NeoBiota, 0, 69, 103-132.	1.0	4
57	Review of the invasive forage Grass, Guinea grass (<i>Megathyrsus maximus</i>): Ecology and potential impacts in arid and semiâ€∎rid regions. Weed Research, 2022, 62, 68-74.	0.8	9
58	Surveillance Studies Reveal Diverse and Potentially Pathogenic-Incriminated Vector Mosquito Species across Major Botswana Touristic Hotspots. Insects, 2021, 12, 913.	1.0	1
59	Human-vectored seed dispersal as a threat to protected areas: Prevention, mitigation and policy. Global Ecology and Conservation, 2021, 31, e01851.	1.0	6
60	Supporting the spatial management of invasive alien plants through assessment of landscape dynamics and connectivity. Restoration Ecology, 0, , e13592.	1.4	0
61	Potential distribution of invasive crop pests under climate change: incorporating mitigation responses of insects into prediction models. Current Opinion in Insect Science, 2022, 49, 15-21.	2.2	18

#	Article	IF	CITATIONS
62	Economic costs of biological invasions in the United States. Science of the Total Environment, 2022, 806, 151318.	3.9	60
63	Life in the fast lane. , 2022, , 11-34.		0
65	Biological Invasions of River Ecosystems: A Flow of Implications, Challenges, and Research Opportunities. , 2022, , 485-498.		3
66	First record of tiger mosquito, Aedes albopictus (Diptera: Culicidae), in La Rioja: Public Health implications. Anales De BiologÃa, 0, 43, 117-122.	0.2	1
67	Harnessing biodiversity and ecosystem services to safeguard multifunctional vineyard landscapes in a global change context. Advances in Ecological Research, 2021, 65, 305-335.	1.4	6
68	Novel genome characteristics contribute to the invasiveness of <i>Phragmites australis</i> (common) Tj ETQq1	1 0,78431 2.0	l4 rgBT /Over
69	Functional responses of an invasive mud crab across a salinity gradient. Science of the Total Environment, 2021, , 151684.	3.9	2
71	Introduction, spread, and impacts of invasive alien mammal species in Europe. Mammal Review, 2022, 52, 252-266.	2.2	19
72	New Approaches on Japanese Knotweed (Fallopia japonica) Bioactive Compounds and Their Potential of Pharmacological and Beekeeping Activities: Challenges and Future Directions. Plants, 2021, 10, 2621.	1.6	13
73	Challenges and opportunities of area-based conservation in reaching biodiversity and sustainability goals. Biodiversity and Conservation, 2022, 31, 325-352.	1.2	42
74	Challenges in the Operationalization of the Concept of Ecosystem Services in Coastal Areas. , 2021, , .		0
75	Biological Invasion Costs Reveal Insufficient Proactive Management Worldwide. SSRN Electronic Journal, 0, , .	0.4	2
76	Nature, nurture, and vegetation management: Studies with sheep and goats. Animal, 2022, 16, 100434.	1.3	0
77	Forest canopy resists plant invasions: a case study of <i>Chromolaena odorata</i> in Sal (<i>Shorea) Tj ETQq1 1</i>	0.784314	rg&T /Overloo
78	Identifying economic costs and knowledge gaps of invasive aquatic crustaceans. Science of the Total Environment, 2022, 813, 152325.	3.9	30
79	Le coût économique des invasions biologiques. Pourlascience Fr, 2021, N° 524 - juin, 7-7.	0.0	Ο
80	The Oriental Hornet (Vespa orientalis L.): a Threat to the Americas?. Neotropical Entomology, 2022, 51, 330-338.	0.5	6
81	Recreational boats routinely transfer organisms and promote marine bioinvasions. Biological Invasions, 2022, 24, 1083-1096.	1.2	11

#	Article	IF	CITATIONS
83	Effects of Glyphosate Application on Physiologically Integrated Clones of the Invasive Plant Carpobrotus edulis. Diversity, 2022, 14, 47.	0.7	2
85	Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti. Communications Biology, 2022, 5, 66.	2.0	12
87	Vector control reduces the rate of species invasion in the world's largest freshwater ecosystem. Conservation Letters, 2022, 15, .	2.8	14
88	Stopping Winter Flooding of Rice Fields to Control Invasive Snails Has no Effect on Waterbird Abundance at the Landscape Scale. Frontiers in Ecology and Evolution, 2022, 9, .	1.1	2
89	Alien Invasive Plant Effect on Soil Fauna Is Habitat Dependent. Diversity, 2022, 14, 61.	0.7	8
90	Managing human-mediated range shifts: understanding spatial, temporal and genetic variation in marine non-native species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210025.	1.8	8
91	American fall webworm in China: A new case of global biological invasions. Innovation(China), 2022, 3, 100201.	5.2	0
92	Geographic dispersion of invasive crop pests: the role of basal, plastic climate stress tolerance and other complementary traits in the tropics. Current Opinion in Insect Science, 2022, 50, 100878.	2.2	20
93	Ecology of fear in highly invasive fish revealed by robots. IScience, 2022, 25, 103529.	1.9	11
94	Diversity and patterns of marine nonâ€native species in the archipelagos of Macaronesia. Diversity and Distributions, 2022, 28, 667-684.	1.9	23
95	Mapping invasive alien species in grassland ecosystems using airborne imaging spectroscopy and remotely observable vegetation functional traits. Remote Sensing of Environment, 2022, 271, 112887.	4.6	16
96	A psychological model to understand background reasons for different attitudes and behaviors of youth residents in relation to free-roaming cat problems on a human-inhabited World Heritage Island in Japan. Global Ecology and Conservation, 2022, 34, e02009.	1.0	0
97	Experimental adaptation of native parasitoids to the invasive insect pest, Drosophila suzukii. Biological Control, 2022, 167, 104843.	1.4	11
98	Geographic and taxonomic trends of rising biological invasion costs. Science of the Total Environment, 2022, 817, 152948.	3.9	20
99	Surprisingly high economic costs of biological invasions in protected areas. Biological Invasions, 2022, 24, 1995-2016.	1.2	16
100	Biological invasion costs reveal insufficient proactive management worldwide. Science of the Total Environment, 2022, 819, 153404.	3.9	93
101	Network Models and Simulation Analytics for Multi-scale Dynamics of Biological Invasions. Frontiers in Big Data, 2022, 5, 796897.	1.8	2
102	Eight Decades of Dalbulus maidis (DeLong & Wolcott) (Hemiptera, Cicadellidae) in Brazil: What We Know and What We Need to Know. Neotropical Entomology, 2022, 51, 1-17.	0.5	15

#	Article	IF	CITATIONS
103	Control Practices for Safeguarding Agricultural and Environmental Biosecurity Before Entry Points. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2022, , 76-119.	0.1	0
104	High Risks with Opportunities of Religious Release Resulted Biological Invasions in China. SSRN Electronic Journal, 0, , .	0.4	1
105	Potential risky exotic fish species, their ecological impacts and potential reasons for invasion in Korean aquatic ecosystems. Journal of Ecology and Environment, 0, 46, .	1.6	4
106	Invasion Frameworks: a Forest Pathogen Perspective. Current Forestry Reports, 2022, 8, 74-89.	3.4	14
107	Misleading estimates of economic impacts of biological invasions: Including the costs but not the benefits. Ambio, 2022, 51, 1786-1799.	2.8	16
108	Dietary contributions of the alien zebra mussel Dreissena polymorpha in British freshwater fish suggest low biological resistance to their invasion. Hydrobiologia, 2022, 849, 2253-2265.	1.0	1
109	Economic costs of invasive bivalves in freshwater ecosystems. Diversity and Distributions, 2022, 28, 1010-1021.	1.9	26
110	Stress response gene family expansions correlate with invasive potential in teleost fish. Journal of Experimental Biology, 2022, 225, .	0.8	2
111	Scale dependence of landscape heterogeneity effects on plant invasions. Journal of Applied Ecology, 2022, 59, 1313-1323.	1.9	9
112	Effectiveness of the Modification of Sewers to Reduce the Reproduction of Culex pipiens and Aedes albopictus in Barcelona, Spain. Pathogens, 2022, 11, 423.	1.2	4
113	The potential role of public gardens as sentinels of plant invasion. Biodiversity and Conservation, 2022, 31, 1829-1844.	1.2	5
114	Managing biological invasions: the cost of inaction. Biological Invasions, 2022, 24, 1927-1946.	1.2	36
115	Could speciesâ€focused suppression of <i>Aedes aegypti</i> , the yellow fever mosquito, and <i>Aedes albopictus</i> , the tiger mosquito, affect interacting predators? An evidence synthesis from the literature. Pest Management Science, 2022, 78, 2729-2745.	1.7	5
116	Evolution of increased competitive ability may explain dominance of introduced species in ruderal communities. Ecological Monographs, 2022, 92, .	2.4	10
117	Massive economic costs of biological invasions despite widespread knowledge gaps: a dual setback for India. Biological Invasions, 2022, 24, 2017-2039.	1.2	17
118	Invasive species services-disservices conundrum: A case study from Kashmir Himalaya. Journal of Environmental Management, 2022, 309, 114674.	3.8	5
119	On the road: Anthropogenic factors drive the invasion risk of a wild solitary bee species. Science of the Total Environment, 2022, 827, 154246.	3.9	17
120	Water resource prospects for the next 50 years on the water planet: personal perspectives on a shared history from Earth Day, the Fourth Industrial Revolution and One Health to the futures of alternative energy, bioconvergence and quantum computing. Water International, 2021, 46, 1158-1186.	0.4	2

#	Article	IF	CITATIONS
121	Functional traits explain the consistent resistance of biodiversity to plant invasion under nitrogen enrichment. Ecology Letters, 2022, 25, 778-789.	3.0	38
122	A New Signal of Tropicalization in the Northeast Atlantic: The Spread of the Spotfin Burrfish Chilomycterus reticulatus in Madeira Archipelago and Its Invasion Risk. Diversity, 2021, 13, 639.	0.7	2
123	Major environmental factors and traits of invasive alien plants determining their spatial distribution. Journal of Ecology and Environment, 2021, 45, .	1.6	2
124	Urban Environments Aid Invasion of Brown Widows (Theridiidae: Latrodectus geometricus) in North America, Constraining Regions of Overlap and Mitigating Potential Impact on Native Widows. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	4
125	Management of invasive alien species in Spain: A bibliometric review. NeoBiota, 0, 70, 123-150.	1.0	7
126	Direct Aulacaspis yasumatsui Infestation of Pre-Harvest Cycas Seeds Reduces Germination and Performance of Seedlings. Horticulturae, 2021, 7, 562.	1.2	1
127	Siteâ€specific risk assessment enables tradeâ€off analysis of nonâ€native tree species in European forests. Ecology and Evolution, 2021, 11, 18089-18110.	0.8	8
130	Microsatellite Loci Reveal High Genetic Diversity, Mutation, and Migration Rates as Invasion Drivers of Callery Pear (Pyrus calleryana) in the Southeastern United States. Frontiers in Genetics, 2022, 13, 861398.	1.1	6
131	Optimizing management of invasions in an uncertain world using dynamic spatial models. Ecological Applications, 2022, 32, e2628.	1.8	5
132	Ecological Niche Shifts Affect the Potential Invasive Risk of Rapistrum rugosum (L.) All. in China. Frontiers in Plant Science, 2022, 13, 827497.	1.7	1
133	Rapid in situ identification of biological specimens via DNA amplicon sequencing using miniaturized laboratory equipment. Nature Protocols, 2022, 17, 1415-1443.	5.5	23
134	The magnitude, diversity, and distribution of the economic costs of invasive terrestrial invertebrates worldwide. Science of the Total Environment, 2022, 835, 155391.	3.9	21
135	AIS explorer: Prioritization for watercraft inspections-A decision-support tool for aquatic invasive species management. Journal of Environmental Management, 2022, 314, 115037.	3.8	4
136	A framework to integrate innovations in invasion science for proactive management. Biological Reviews, 2022, 97, 1712-1735.	4.7	17
138	Economic costs of invasive alien ants worldwide. Biological Invasions, 2022, 24, 2041-2060.	1.2	42
139	Introduction pathways of economically costly invasive alien species. Biological Invasions, 2022, 24, 2061-2079.	1.2	21
140	Scaling up qualitative research to harness the capacity of lay people in invasive plant management. Conservation Biology, 2022, 36, .	2.4	5
141	Assessing and Predicting the Distribution of Riparian Invasive Plants in Continental Portugal. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	3

#	Article	IF	CITATIONS
142	Application of Invasive Plants as Biochar Precursors in the Field of Environment and Energy Storage. Frontiers in Environmental Science, 2022, 10, .	1.5	4
143	On the presence of the giant freshwater prawn, Macrobrachium rosenbergii, in French Guiana confirmed by citizen science and genetic analyses. , 2022, 1, 100039.		1
144	Roots of invasive woody plants produce more diverse flavonoids than non-invasive taxa, a global analysis. Biological Invasions, 0, , 1.	1.2	3
145	Satellitome of the Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), the Most Diverse Among Insects. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	15
146	The principles driving gene drives for conservation. Environmental Science and Policy, 2022, 135, 36-45.	2.4	7
147	Invasion impacts and dynamics of a Europeanâ€wide introduced species. Global Change Biology, 2022, 28, 4620-4632.	4.2	27
148	Seasonal and daily activity of non-native sambar deer in and around high-elevation peatlands, south-eastern Australia. Wildlife Research, 2022, 49, 659-672.	0.7	11
149	Threats at home? Assessing the potential ecological impacts and risks of commonly traded pet fishes. NeoBiota, 0, 73, 109-136.	1.0	5
150	Chew-cards can accurately index invasive rat densities in Mariana Island forests. NeoBiota, 0, 74, 29-56.	1.0	0
151	Spotted knapweed (Centaurea stoebe) creates a soil legacy effect by modulating soil elemental composition in a semi-arid grassland ecosystem. Journal of Environmental Management, 2022, 317, 115391.	3.8	3
152	High Capacity of Oxytetracycline Hydrochloride Removal in Wastewater Via Mikania Micrantha Kunth-Derived Biochar Modified by Zn/Fe-Ldh. SSRN Electronic Journal, 0, , .	0.4	0
153	Contrasting National Plant Protection Needs, Perceptions and Techno-Scientific Capabilities in the Asia-Pacific Region. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	0
154	Wildlife Trade for Belief-Based Use: Insights From Traditional Healers in South Africa. Frontiers in Ecology and Evolution, 0, 10, .	1.1	4
155	Deep learning detects invasive plant species across complex landscapes using Worldviewâ€2 and Planetscope satellite imagery. Remote Sensing in Ecology and Conservation, 2022, 8, 875-889.	2.2	12
156	GIRAE: a generalised approach for linking the total impact of invasion to species' range, abundance and per-unit effects. Biological Invasions, 2022, 24, 3147-3167.	1.2	9
157	Improved Captures of the Invasive Brown Marmorated Stink Bug, Halyomorpha halys, Using a Novel Multimodal Trap. Insects, 2022, 13, 527.	1.0	8
158	Genetic structure of American bullfrog populations in Brazil. Scientific Reports, 2022, 12, .	1.6	0
159	Functional trait-based potential invasiveness of exotic submerged macrophytes and their effects on sediment bacterial community. Hydrobiologia, 2022, 849, 3061-3077.	1.0	3

~			<u> </u>	
CĽ	ΓΑΤΙ	ION.	REPC	DRT

#	Article	IF	CITATIONS
160	Trait-mediated competition drives an ant invasion and alters functional diversity. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	2
161	Influence of secondary dispersal by ants on invasive processes of exotic species with fleshy fruits. Biological Invasions, 0, , .	1.2	0
162	Big data from a popular app reveals that fishing creates superhighways for aquatic invaders. , 2022, 1, .		5
163	virToad: simulating the spatiotemporal population dynamics and management of a global invader. Landscape Ecology, 2022, 37, 2273-2292.	1.9	3
164	Older populations of the invader <i>Solidago canadensis</i> exhibit stronger positive plantâ€soil feedbacks and competitive ability in China. American Journal of Botany, 2022, 109, 1230-1241.	0.8	12
165	Optimal management of stochastic invasion in a metapopulation with Allee effects. Journal of Theoretical Biology, 2022, 549, 111221.	0.8	1
166	Achieving effective outreach for invasive species: firewood case studies from 2005 to 2016. Biological Invasions, 2022, 24, 3321-3339.	1.2	3
167	The marsh slug, Deroceras laeve in Darjeeling Himalayas, India: First record and modelling of suitable habitats. Acta Ecologica Sinica, 2023, 43, 432-438.	0.9	2
168	Gunnera tinctoria invasions increase, not decrease, earthworm abundance and diversity. Biological Invasions, 0, , .	1.2	3
169	Guiding large-scale management of invasive species using network metrics. Nature Sustainability, 2022, 5, 762-769.	11.5	5
170	Scalability of genetic biocontrols for eradicating invasive alien mammals. NeoBiota, 0, 74, 93-103.	1.0	4
172	Potential impact of four invasive alien plants on the provision of ecosystem services in Europe under present and future climatic scenarios. Ecosystem Services, 2022, 56, 101459.	2.3	13
173	Anthropogenic pressure leads to more introductions: Marine traffic and artificial structures in offshore islands increases non-indigenous species. Marine Pollution Bulletin, 2022, 181, 113898.	2.3	10
174	Population ecology and classical biological control of forest insect pests in a changing world. Forest Ecology and Management, 2022, 520, 120400.	1.4	5
175	Capacity of countries to reduce biological invasions. Sustainability Science, 2023, 18, 771-789.	2.5	7
176	Lakes in Hot Water: The Impacts of a Changing Climate on Aquatic Ecosystems. BioScience, 2022, 72, 1050-1061.	2.2	59
177	Recruitment and Seasonal Occurrence of Parasites in Juvenile Invasive Round Gobies (Neogobius) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50

178 Ac	cquisition and evolution of enhanced mutualism—an underappreciated mechanism for invasive uccess?. ISME Journal, 2022, 16, 2467-2478.	4.4	14
--------	--	-----	----

	Сітат	ion Report	
#	Article	IF	CITATIONS
179	Plant pathogens as introduced weed biological control agents: Could antagonistic fungi be important factors determining agent success or failure?. Frontiers in Fungal Biology, 0, 3, .	0.9	5
180	High-capacity removal of oxytetracycline hydrochloride from wastewater via Mikania micrantha Kunth-derived biochar modified by Zn/Fe-layered double hydroxide. Bioresource Technology, 2022, 361, 127646.	4.8	19
181	Commercial trade of wild animals: examining the use of the IUCN Red List and CITES Appendices as the basis for corporate trade policies. Frontiers in Conservation Science, 0, 3, .	0.9	1
182	Of Fears and Budgets: Strategies of Control in Vespa velutina Invasion and Lessons for Best Management Practices. Environmental Management, 2022, 70, 605-617.	1.2	5
183	Global economic costs of herpetofauna invasions. Scientific Reports, 2022, 12, .	1.6	10
185	The nature of economic costs of biological invasions. Biological Invasions, 2022, 24, 2081-2101.	1.2	14
186	Uncovering the genomic basis of an extraordinary plant invasion. Science Advances, 2022, 8, .	4.7	19
188	Ecosystem services provided by the exotic bivalves Dreissena polymorpha, D. rostriformis bugensis, and Limnoperna fortunei. Hydrobiologia, 2023, 850, 2811-2854.	1.0	14
189	Genomic data is missing for many highly invasive species, restricting our preparedness for escalating incursion rates. Scientific Reports, 2022, 12, .	1.6	18
190	The right tree in the right place? A major economic tree species poses major ecological threats. Biological Invasions, 2023, 25, 39-60.	1.2	9
192	The global social-economic dimension of biological invasions by plankton: Grossly underestimated costs but a rising concern for water quality benefits?. Water Research, 2022, 222, 118918.	5.3	8
193	Chromosome-level genome assembly and population genomic analyses provide insights into adaptive evolution of the red turpentine beetle, Dendroctonus valens. BMC Biology, 2022, 20, .	1.7	5
194	Exploring isotopic niches among Silver Carp and two native planktivores in a large reservoir. Freshwater Science, 0, , .	0.9	0
196	Darwin's naturalization conundrum reconciled by changes of species interactions. Ecology, 2023, 104,	1.5	11
197	Building a synthesis of economic costs of biological invasions in New Zealand. PeerJ, 0, 10, e13580.	0.9	3
198	Simulating the Changes of Invasive Phragmites australis in a Pristine Wetland Complex with a Grey System Coupled System Dynamic Model: A Remote Sensing Practice. Remote Sensing, 2022, 14, 3886.	1.8	2
199	Alien insect dispersal mediated by the global movement of commodities. Ecological Applications, 2023, 33, .	1.8	10
200	A single introduction of wild rabbits triggered the biological invasion of Australia. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12

#	Article	IF	CITATIONS
201	Marine species introduction via reproduction and its response to ship transit routes. Frontiers in Ecology and the Environment, 2022, 20, 581-588.	1.9	2
202	Functional traits underlying performance variations in the overwintering of the cosmopolitan invasive plant water hyacinth (<i>Eichhornia crassipes</i>) under climate warming and water drawdown. Ecology and Evolution, 2022, 12, .	0.8	2
203	SNP4OrphanSpecies: A bioinformatics pipeline to isolate molecular markers for studying genetic diversity of orphan species. Biodiversity Data Journal, 0, 10, .	0.4	0
204	Combining resource population dynamics into impact assessments of native and invasive species under abiotic change. Ecological Indicators, 2022, 142, 109260.	2.6	1
205	A review of two decades of government support for managing alien plant invasions in South Africa. Biological Conservation, 2022, 274, 109741.	1.9	9
206	Personality-dependent passage behaviour of an aquatic invasive species at a barrier to dispersal. Animal Behaviour, 2022, 192, 63-74.	0.8	5
207	Scientists' warning of threats to mountains. Science of the Total Environment, 2022, 853, 158611.	3.9	24
208	Underexplored and Growing Economic Costs of Invasive Alien Trees. SSRN Electronic Journal, 0, , .	0.4	0
209	Seed Germination Ecology in Neotropical Melastomataceae: Past, Present, and Future. , 2022, , 707-733.		1
210	Drivers of Systematic Bias in Alien Plant Species Distribution Data. SSRN Electronic Journal, 0, , .	0.4	0
211	Invasive species threats to seabirds. , 2023, , 97-130.		1
212	Review of the impacts of invasive alien vertebrates on biodiversity. Scientia Sinica Vitae, 2023, 53, 1035-1054.	0.1	2
213	Status, mechanism, suitable distribution areas and protection countermeasure of invasive species in the karst areas of Southwest China. Frontiers in Environmental Science, 0, 10, .	1.5	2
214	Thermal fitness costs and benefits of developmental acclimation in fall armyworm. Scientific African, 2022, 17, e01369.	0.7	3
215	Fungicide-Mediated Shifts in the Foliar Fungal Community of an Invasive Grass. Phytobiomes Journal, 2023, 7, 198-207.	1.4	1
217	Bioethanol Production Potential and Other Biomass Energy Properties of Invasive Reynoutria, Solidago, and Spiraea Plants. Forests, 2022, 13, 1582.	0.9	4
218	The Invasion and Long Naturalization of Solanum elaeagnifolium affects the Soil Nematode Community: Evidence from a Comparative Study. Agronomy, 2022, 12, 2346.	1.3	3
219	Alien plant and native herbivore network of Kashmir Himalaya. Arthropod-Plant Interactions, 2022, 16, 423-435.	0.5	0

#	Article	IF	CITATIONS
220	Prolonged phloem feeding by the spotted lanternfly, an invasive planthopper, alters resource allocation and inhibits gas exchange in grapevines. Plant Direct, 2022, 6, .	0.8	11
221	Aboveground herbivory can promote exotic plant invasion through intra―and interspecific abovegroundâ€belowground interactions. New Phytologist, 0, , .	3.5	3
222	Clonal functional traits favor the invasive success of alien plants into native communities. Ecological Applications, 2024, 34, .	1.8	17
224	Warming and elevated nitrogen deposition accelerate the invasion process of Solidago canadensis L Ecological Processes, 2022, 11, .	1.6	5
225	Forest Insect Biosecurity: Processes, Patterns, Predictions, Pitfalls. Annual Review of Entomology, 2023, 68, 211-229.	5.7	18
226	Policy-Oriented Research in Invasion Science: Trends, Status, Gaps, and Lessons. BioScience, 0, , .	2.2	1
227	Valuing the contributions of non-native species to people and nature. Trends in Ecology and Evolution, 2022, 37, 1058-1066.	4.2	30
228	Editorial. NeoBiota, 0, 76, 1-11.	1.0	0
229	Expanding the invasion toolbox: including stable isotope analysis in risk assessment. NeoBiota, 0, 76, 191-210.	1.0	6
230	What we know and don't know about the invasive zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis bugensis) mussels. Hydrobiologia, 0, , .	1.0	20
231	Climate warming exacerbates plant disease through enhancing commensal interaction of co-infested insect vectors. Journal of Pest Science, 2023, 96, 945-959.	1.9	1
232	Potential Global Distribution of Invasive Alien Species, Anthonomus grandis Boheman, under Current and Future Climate Using Optimal MaxEnt Model. Agriculture (Switzerland), 2022, 12, 1759.	1.4	7
233	Root characteristics explain greater water use efficiency and drought tolerance in invasive Compositae plants. Plant and Soil, 2023, 483, 209-223.	1.8	4
234	Invasive Drosophila suzukii outnumbers native controphics and causes substantial damage to fruits of forest plants. NeoBiota, 0, 77, 39-77.	1.0	1
235	Advancing the missed mutualist hypothesis, the under-appreciated twin of the enemy release hypothesis. Biology Letters, 2022, 18, .	1.0	5
236	Integrating expert knowledge at regional and national scales improves impact assessments of non-native species. NeoBiota, 0, 77, 79-100.	1.0	0
237	Using Import Data to Predict the Potential of Introduction of Alert Alien Species to South Korea. Diversity, 2022, 14, 910.	0.7	1
239	Multiple sources implicated in the red swamp crayfish invasion in Michigan, USA. Biological Invasions, 2023, 25, 713-724.	1.2	1

		CITATION REPORT		
# 240	ARTICLE Public Acceptability and Stakeholder Engagement for Genetic Control Technologies. , 2	022, , 474-492.	IF	CITATIONS
241	The Difficulty of Predicting Evolutionary Change in Response to Novel Ecological Interac Experiment with <i>Anolis</i> Lizards. American Naturalist, 2023, 201, 537-556.	ctions: A Field	1.0	5
242	Global economic costs and knowledge gaps of invasive gastropods. Ecological Indicator 109614.	[.] s, 2022, 145,	2.6	11
243	The economic costs, management and regulation of biological invasions in the Nordic c Journal of Environmental Management, 2022, 324, 116374.	ountries.	3.8	6
244	Seeding artificial habitats with native benthic species can prevent the occurrence of exc organisms. Marine Environmental Research, 2022, 182, 105771.	otic	1.1	3
245	Predicting the impact of invasive trees from different measures of abundance. Journal o Environmental Management, 2023, 325, 116480.	f	3.8	1
246	Drivers of systematic bias in alien plant species distribution data. Science of the Total E 2023, 857, 159598.	ıvironment,	3.9	0
247	Global economic costs of mammal invasions. Science of the Total Environment, 2023, 8	57, 159479.	3.9	9
248	Invasive alien acacias rapidly stock carbon, but threaten biodiversity recovery in young second-growth forests. Philosophical Transactions of the Royal Society B: Biological Sci 378, .	ences, 2023,	1.8	9
249	Economic costs of protecting islands from invasive alien species. Conservation Biology,	2023, 37, .	2.4	7
250	The COVID-19 Restrictions and Biological Invasion: A Global Terrestrial Ecosystem Persp Propagule Pressure and Invasion Trajectory. Sustainability, 2022, 14, 14783.	ective on	1.6	0
251	Invasive species policy in Brazil: a review and critical analysis. Environmental Conservati 67-72.	on, 2023, 50,	0.7	4
252	Knowledge and perceptions of invasive plant biocontrol in Europe versus the rest of the Journal of Environmental Management, 2023, 327, 116896.	world.	3.8	4
253	Indigenous and introduced Collembola differ in desiccation resistance but not its plastic response to temperature. Current Research in Insect Science, 2023, 3, 100051.	tity in	0.8	2
254	Climate change and the potential distribution of the glassy-winged sharpshooter (Homa	alodisca) Tj ETQq0 0 0 rgBT	- Overlocl 3.9	k 10 Tf 50 1
255	Increased Invasion Risk of Tagetes minuta L. in China under Climate Change: A Study of Geographical Distributions. Plants, 2022, 11, 3248.	the Potential	1.6	1
256	Multiple invasions, Wolbachia and human-aided transport drive the genetic variability o albopictus in the Iberian Peninsula. Scientific Reports, 2022, 12, .	f Aedes	1.6	4
257	ة»¿Size distribution and reproductive phenology of the invasive Burmese python (Pytho	n molurus) Tj ETQq1 1 0.78	34314 rgB	T ₃ /Overlock

#	Article	IF	CITATIONS
258	Predicting Climate Change Effects on the Potential Distribution of Two Invasive Cryptic Species of the Bemisia tabaci Species Complex in China. Insects, 2022, 13, 1081.	1.0	2
259	An Efficient and Quick Analytical Method for the Quantification of an Algal Alkaloid Caulerpin Showed In-Vitro Anticancer Activity against Colorectal Cancer. Marine Drugs, 2022, 20, 757.	2.2	1
260	Flora introduced and naturalized in Central America. Biological Invasions, 2023, 25, 1007-1021.	1.2	3
261	"Do we need to see gardens in a new light?―Recommendations for policy and practice to improve the ecosystem services derived from domestic gardens. Urban Forestry and Urban Greening, 2023, 80, 127820.	2.3	3
262	Knowledge needs in economic costs of invasive species facilitated by canalisation. NeoBiota, 0, 78, 207-223.	1.0	10
263	The introduction of three cryptic tree frog species in the Dutch coastal dunes challenges conservation paradigms. Amphibia - Reptilia, 2022, 44, 1-10.	0.1	2
264	Potential distribution prediction of <i>Amaranthus palmeri</i> S.ÂWatson in China under current and future climate scenarios. Ecology and Evolution, 2022, 12, .	0.8	9
265	The evolutionary process of invasion in the fall armyworm (Spodoptera frugiperda). Scientific Reports, 2022, 12, .	1.6	11
266	Tangled in a Web: Management Type and Vegetation Shape the Occurrence of Web-Building Spiders in Protected Areas. Insects, 2022, 13, 1129.	1.0	1
267	The limits of mtDNA analysis for determining the provenance of invasive species: a midwife toad example. Amphibia - Reptilia, 2022, 44, 27-33.	0.1	1
268	The conservation paradox of an introduced population of a threatened species: spadefoot toads in the coastal dunes of the Netherlands. Amphibia - Reptilia, 2022, 44, 11-18.	0.1	2
270	The escalating global problem of accidental human-mediated transport of alien species: A case study using alien herpetofauna interceptions in New Zealand. Biological Conservation, 2023, 278, 109860.	1.9	2
271	Resource competition drives an invasionâ€replacement event among shrew species on an island. Journal of Animal Ecology, 2023, 92, 698-709.	1.3	3
272	Coastal ecosystem service in response to past and future land use and land cover change dynamics in the Yangtze river estuary. Journal of Cleaner Production, 2023, 385, 135601.	4.6	12
274	Parallel genetic and phenotypic differentiation of Erigeron annuus invasion in China. Frontiers in Plant Science, 0, 13, .	1.7	1
275	Future Trends in Obolodiplosis robiniae Distribution across Eurasian Continent under Global Climate Change. Insects, 2023, 14, 48.	1.0	1
276	The global spread and invasion capacities of alien ants. Current Biology, 2023, 33, 566-571.e3.	1.8	15
277	Human activities favour prolific life histories in both traded and introduced vertebrates. Nature Communications, 2023, 14, .	5.8	2

#	Article	IF	CITATIONS
278	Large shifts of niche and range in the golden apple snail (<scp><i>Pomacea canaliculata</i></scp>), an aquatic invasive species. Ecosphere, 2023, 14, .	1.0	7
279	On the importance of invasive species niche dynamics in plant conservation management at large and local scale. Frontiers in Ecology and Evolution, 0, 10, .	1.1	3
280	Alien ornamental plant species cultivated in Taizhou, southeastern China, may experience greater range expansions than native species under future climates. Global Ecology and Conservation, 2023, 41, e02371.	1.0	2
281	Multiple invasions exert combined magnified effects on native plants, soil nutrients and alters the plant-herbivore interaction in dry tropical forest. Forest Ecology and Management, 2023, 531, 120781.	1.4	7
282	Plant pest invasions, as seen through news and social media. Computers, Environment and Urban Systems, 2023, 100, 101922.	3.3	6
283	Diversity studies on insect pests of high altitudinal transitional zones of North-western Himalayas. Nusantara Bioscience, 2022, 14, .	0.2	0
284	The worldwide networks of spread of recorded alien species. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	17
285	The naturalized vascular flora of Malesia. Biological Invasions, 2023, 25, 1339-1357.	1.2	1
286	Compilation, Revision, and Annotation of DNA Barcodes of Marine Invertebrate Non-Indigenous Species (NIS) Occurring in European Coastal Regions. Diversity, 2023, 15, 174.	0.7	6
287	Remote Sensing and Invasive Plants in Coastal Ecosystems: What We Know So Far and Future Prospects. Land, 2023, 12, 341.	1.2	3
289	Non-native fishes in Brazilian freshwaters: identifying biases and gaps in ecological research. Biological Invasions, 0, , .	1.2	6
290	An Overview of Marine Non-Indigenous Species Found in Three Contrasting Biogeographic Metropolitan French Regions: Insights on Distribution, Origins and Pathways of Introduction. Diversity, 2023, 15, 161.	0.7	13
291	Global invasion history and native decline of the common starling: insights through genetics. Biological Invasions, 2023, 25, 1291-1316.	1.2	6
292	Leaf-Level Field Spectroscopy to Discriminate Invasive Species (Psidium guajava L. and Hovenia dulcis) Tj ETQq1 791.	0.78431 1.8	4 rgBT /Ove 1
293	Aliens in caves: the global dimension of biological invasions in subterranean ecosystems. Biological Reviews, 2023, 98, 849-867.	4.7	9
294	Genetically Depauperate and Still Successful: Few Multilocus Genotypes of the Introduced Parthenogenetic Weevil Naupactus cervinus (Coleoptera: Curculionidae) Prevail in the Continental United States. Insects, 2023, 14, 113.	1.0	Ο
295	Solanum elaeagnifolium (Solanaceae) Invading One in Five Natura 2000 Protected Areas of Greece and One in Four Habitat Types: What Is Next?. Diversity, 2023, 15, 143.	0.7	2
296	Unexpected biotic homogenization masks the effect of a pollution gradient on local variability of community structure in a marine urban environment. Journal of Experimental Marine Biology and Ecology, 2023, 562, 151882.	0.7	1

#	Article	IF	CITATIONS
297	Managing an invasive tree in coastal dunes: The importance of follow-up treatments to improve the recovery of protected habitats. Frontiers in Environmental Science, 0, 11, .	1.5	5
298	The aquarium pet trade as a source of potentially invasive crayfish species in Serbia. , 2023, 78, 2147-2155.		2
299	Improving Machine Learning Classifications of Phragmites australis Using Object-Based Image Analysis. Remote Sensing, 2023, 15, 989.	1.8	4
300	ï»;Chelonian challenge: three alien species from North America are moving their reproductive boundaries in Central Europe. NeoBiota, 0, 82, 1-21.	1.0	2
301	Spatio-temporal patterns of an invasive species Mimosa bimucronata (DC.) Kuntze under different climate scenarios in China. Frontiers in Forests and Global Change, 0, 6, .	1.0	1
302	A comparative study of three fishery methods for sampling the invasive topmouth gudgeon (<scp><i>Pseudorasbora parva</i></scp>) in ponds. Journal of Fish Biology, 2023, 102, 1121-1128.	0.7	0
303	Stealth advocacy in ecology and conservation biology. Biological Conservation, 2023, 280, 109968.	1.9	4
304	Sigmoidal curves reflect impacts and dynamics of aquatic invasive species. Science of the Total Environment, 2023, 872, 161818.	3.9	12
305	Plant invasion risk inside and outside protected areas: Propagule pressure, abiotic and biotic factors definitively matter. Science of the Total Environment, 2023, 877, 162993.	3.9	5
306	Invasion patterns of Spartina alterniflora: Response of clones and seedlings to flooding and salinity—A case study in the Yellow River Delta, China. Science of the Total Environment, 2023, 877, 162803.	3.9	1
307	Long-term trends and drivers of biological invasion in Central European streams. Science of the Total Environment, 2023, 876, 162817.	3.9	6
308	Spatial priorities for invasive alien species control in protected areas. Science of the Total Environment, 2023, 878, 162675.	3.9	1
309	An introduction to illegal wildlife trade and its effects on biodiversity and society. Forensic Science International Animals and Environments, 2023, 3, 100064.	0.3	3
310	The elephant in the room: Introduced species also profit from refuge creation by artificial fish habitats. Marine Environmental Research, 2023, 185, 105859.	1.1	6
311	In the wind: Invasive species travel along predictable atmospheric pathways. Ecological Applications, 2023, 33, .	1.8	1
312	Recovery of insular seabird populations years after rodent eradication. Conservation Biology, 2023, 37, .	2.4	4
313	A horizon scan exercise for aquatic invasive alien species in Iberian inland waters. Science of the Total Environment, 2023, 869, 161798.	3.9	8
314	The Impact of Climate Change on Insect Pests Damaging Crops. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 73-101.	0.3	Ο

#	Article	IF	CITATIONS
315	Free-roaming dogs but not invasive mammals established in the wild endanger the flightless kagu of New Caledonia. Biological Conservation, 2023, 279, 109934.	1.9	1
316	Assessing risk from invasive alien plants in China: Reconstructing invasion history and estimating distribution patterns of Lolium temulentum and Aegilops tauschii. Frontiers in Plant Science, 0, 14, .	1.7	2
317	Warming significantly inhibited the competitive advantage of native plants in interspecific competition under phosphorus deposition. Plant and Soil, 0, , .	1.8	1
318	Divergent desalination effects on alien and native gammarid functional responses. Marine Biology, 2023, 170, .	0.7	0
319	Temporal decline of genetic differentiation among populations of western flower thrips across an invaded range. Biological Invasions, 2023, 25, 1921-1933.	1.2	0
320	Physiology and transcriptome analysis of the response mechanism of Solidago canadensis to the nitrogen addition environment. Frontiers in Plant Science, 0, 14, .	1.7	1
321	Applicability of Point- and Polygon-Based Vegetation Monitoring Data to Identify Soil, Hydrological and Climatic Driving Forces of Biological Invasions—A Case Study of Ailanthus altissima, Elaeagnus angustifolia and Robinia pseudoacacia. Plants, 2023, 12, 855.	1.6	0
322	Biological invasions and invasive species in freshwaters: perception of the general public. Human Dimensions of Wildlife, 2024, 29, 48-63.	1.0	9
323	Is Biological Control of Weeds Conservation's Blind Spot?. Quarterly Review of Biology, 2023, 98, 1-28.	0.0	2
324	Biotic resistance to fish invasions in southern <scp>China</scp> : Evidence from biomass, habitat, and fertility limitation. Ecological Applications, 2023, 33, .	1.8	2
325	Socio-environmental impacts of non-native and transplanted aquatic mollusc species in South America: What do we really know?. Hydrobiologia, 0, , .	1.0	2
326	Per-capita impacts of an invasive grass vary across levels of ecological organization in a tropical savanna. Biological Invasions, 2023, 25, 1811-1826.	1.2	2
327	Neophyte invasions in European heathlands and scrub. Biological Invasions, 2023, 25, 1739-1765.	1.2	0
329	Combining multiple lines of evidence to elucidate the origin and introduction pathway of bitou bush (Chrysanthemoides monilifera subsp. rotundata) in Australia. Biological Invasions, 0, , .	1.2	0
330	Agroecology and invasive alien plants: A winner-take-all game. Frontiers in Plant Science, 0, 14, .	1.7	2
331	Vulnerability of protected areas to future climate change, land use modification, and biological invasions in <scp>C</scp> hina. Ecological Applications, 2024, 34, .	1.8	3
332	Current evidences of the efficacy of mosquito mass-trapping interventions to reduce Aedes aegypti and Aedes albopictus populations and Aedes-borne virus transmission. PLoS Neglected Tropical Diseases, 2023, 17, e0011153.	1.3	2
335	First Report of Nathrius brevipennis (Mulsant) (Coleoptera: Cerambycidae: Cerambycinae) in Australia, with Notes on Diagnostic Characters, Biology and Habits, Distribution, and Hosts. The Coleopterists Bulletin, 2023, 77, .	0.1	0

#	Article	IF	CITATIONS
336	Chromatin profiling identifies transcriptional readthrough as a conserved mechanism for piRNA biogenesis in mosquitoes. Cell Reports, 2023, 42, 112257.	2.9	2
337	Contributions to the Flora of Tropical East Africa. Plants, 2023, 12, 1336.	1.6	0
338	Assessing the relative impacts and economic costs of Japanese knotweed management methods. Scientific Reports, 2023, 13, .	1.6	4
339	Mapping of Phragmites in estuarine wetlands using high-resolution aerial imagery. Environmental Monitoring and Assessment, 2023, 195, .	1.3	2
341	A Gender-Selective Harvesting Strategy: Weak Allee Effects and a Non-hyperbolic Extinction Boundary. Acta Biotheoretica, 2023, 71, .	0.7	0
343	Use of an Arboretum and DNA Barcoding for the Detection and Identification of Leaf-Mining Insects on Alien Woody Plants. Forests, 2023, 14, 641.	0.9	Ο
344	Effects of salt stress on interspecific competition between an invasive alien plant Oenothera biennis and three native species. Frontiers in Plant Science, 0, 14, .	1.7	1
345	A Modeling Framework to Frame a Biological Invasion: Impatiens glandulifera in North America. Plants, 2023, 12, 1433.	1.6	1
346	Economic costs of invasive rodents worldwide: the tip of the iceberg. PeerJ, 0, 11, e14935.	0.9	6
349	A Novel Dependoparvovirus Identified in Cloacal Swabs of Monk Parakeet (Myiopsitta monachus) from Urban Areas of Spain. Viruses, 2023, 15, 850.	1.5	1
350	Predicting the South American invasion pathways of the mayfly <i>Cloeon dipterum</i> Linnaeus 1761 (Ephemeroptera: Baetidae) using species distribution models. Insect Conservation and Diversity, 2023, 16, 521-530.	1.4	3
351	Public perceptions about the invasive pampas grass, Cortaderia selloana: a case study of environmentally conscious citizens in Southern Europe. Biological Invasions, 2023, 25, 2043-2056.	1.2	1
352	When origin, reproduction ability and diet define the role of birds in invasions. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	1.2	4
353	Biological invasions are as costly as natural hazards. Perspectives in Ecology and Conservation, 2023, 21, 143-150.	1.0	10
354	Emergence of the Fungal Rosette Agent in the World: Current Risk to Fish Biodiversity and Aquaculture. Journal of Fungi (Basel, Switzerland), 2023, 9, 426.	1.5	0
355	Intraspecific trait plasticity to N and P of the wetland invader, <i>Alternanthera philoxeroides</i> under flooded conditions. Ecology and Evolution, 2023, 13, .	0.8	1
356	A data driven method for prioritizing invasive species to aid policy and management. Biological Invasions, 2023, 25, 2293-2307.	1.2	3
357	New Records of Scarab Beetles1 from the State of Campeche, Mexico, with Comments on their Agricultural and Ecological Importance. Southwestern Entomologist, 2023, 48, .	0.1	0

#	Article	IF	CITATIONS
358	Decisionâ€making under uncertainty for species introductions into ecological networks. Ecology Letters, 2023, 26, 983-1004.	3.0	2
359	Identifying key points of disagreement in non-native impacts and valuations. Trends in Ecology and Evolution, 2023, 38, 501-504.	4.2	3
360	The impact of land use on non-native species incidence and number in local assemblages worldwide. Nature Communications, 2023, 14, .	5.8	8
361	Major drivers of biodiversity loss and their impacts on helminth parasite populations and communities. Journal of Helminthology, 2023, 97, .	0.4	5
362	The faunal Ponto-Caspianization of central and western European waterways. Biological Invasions, 2023, 25, 2613-2629.	1.2	6
363	Resilient amphipods: Gammarid predatory behaviour is unaffected by microplastic exposure and deoxygenation. Science of the Total Environment, 2023, 883, 163582.	3.9	2
364	Monitoring the online ant trade reveals high biological invasion risk. Biological Conservation, 2023, 282, 110038.	1.9	1
366	Wildlife Health. , 2023, , 112-149.		0
375	Marine ecotoxicity and hazard of smart antifouling nanomaterials. , 2023, , 363-378.		0
436	Host Switching and Geographic Expansions in (Hemi)biotrophic Plant Pathogens. , 2023, , 123-148.		0
441	Recent post-release evaluations of weed biocontrol programmes in South Africa: a summary of what has been achieved and what can be improved. BioControl, 0, , .	0.9	1
443	Origins of successful invasions. Nature Ecology and Evolution, 0, , .	3.4	0
449	Biological, ecological and trophic features of invasive mosquitoes and other hematophagous arthropods: What makes them successful?. Biological Invasions, 0, , .	1.2	0
454	Pattern to process, research to practice: remote sensing of plant invasions. Biological Invasions, 2023, 25, 3651-3676.	1.2	2
464	From trade regulations to socio-ecological solutions: Present and future actions to promote insect conservation. , 2024, , 315-326.		0
465	The role of citizen science in biodiversity monitoring: when invasive species and insects meet. , 2024, , 291-314.		0
466	Biological invasions: a global threat to insect diversity. , 2024, , 1-15.		0
483	Editorial: The role of community and industry surveillance in managing invasive species: a review of current knowledge. Frontiers in Ecology and Evolution, 0, 11, .	1.1	0

#	Article	IF	CITATIONS
484	New insights on massively introduced managed species and their consequences for plant–pollinator interactions. Advances in Ecological Research, 2023, , 63-89.	1.4	1
502	Parasite Invasions and Impact Potential. , 2023, , 77-99.		Ο
509	Australian <i>Acacia</i> Species Around the World: Historical, Social, Evolutionary and Ecological Insights into One of the Planet's Most Widespread Plant Genera. , 2023, , 1-26.		0
528	Managing Environmental Threats: Integrating Nature-Related Risks into Investment Decisions and the Financial System. Springer Optimization and Its Applications, 2023, , 13-37.	0.6	Ο
530	Hybridization between <i>Coptotermes formosanus</i> and <i>Coptotermes gestroi</i> ., 2023, , 353-364.		0
535	Parasites in Biological Invasions: an Introduction. , 2023, , 1-7.		Ο
537	Invasion Biology. , 2023, , 1-12.		0
560	Prioritizing weeds for biological control development in the western USA: adaptation of the Biological Control Target Selection system. BioControl, 0, , .	0.9	Ο
569	Editorial: Invasive pathogens and arthropods: biogeography, drivers of invasion success, impacts on indigenous forest trees and emerging management strategies. Frontiers in Forests and Global Change, 0, 7, .	1.0	0