Immunogenicity Risk Profile of Nanobodies

Frontiers in Immunology 12, 632687 DOI: 10.3389/fimmu.2021.632687

Citation Report

#	Article	IF	CITATIONS
1	<i>Llamanade</i> : An Open-Source Computational Pipeline for Robust Nanobody Humanization. SSRN Electronic Journal, 0, , .	0.4	1
2	Immunogenicity and humanization of singleâ€domain antibodies. FEBS Journal, 2022, 289, 4304-4327.	4.7	60
3	Nanobodies for Medical Imaging: About Ready for Prime Time?. Biomolecules, 2021, 11, 637.	4.0	21
4	<i>In vitro</i> immunogenicity prediction: bridging between innate and adaptive immunity. Bioanalysis, 2021, 13, 1071-1081.	1.5	3
5	Transportation of Single-Domain Antibodies through the Blood–Brain Barrier. Biomolecules, 2021, 11, 1131.	4.0	35
6	Pharmacokinetics of Single Domain Antibodies and Conjugated Nanoparticles Using a Hybrid near Infrared Method. International Journal of Molecular Sciences, 2021, 22, 8695.	4.1	8
8	TRIM28 Selective Nanobody Reduces Glioblastoma Stem Cell Invasion. Molecules, 2021, 26, 5141.	3.8	16
9	Targeting Human Papillomavirus-Associated Cancer by Oncoprotein-Specific Recombinant Antibodies. International Journal of Molecular Sciences, 2021, 22, 9143.	4.1	5
10	A Small Virus to Deliver Small Antibodies: New Targeted Therapies Based on AAV Delivery of Nanobodies. Microorganisms, 2021, 9, 1956.	3.6	8
11	Nanobodies as powerful pulmonary targeted biotherapeutics against SARS-CoV-2, pharmaceutical point of view. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129974.	2.4	12
12	Nanobody‣ngineered Natural Killer Cell Conjugates for Solid Tumor Adoptive Immunotherapy. Small, 2021, 17, e2103463.	10.0	20
13	Dose escalation biodistribution, positron emission tomography/computed tomography imaging and dosimetry of a highly specific radionuclide-labeled non-blocking nanobody. EJNMMI Research, 2021, 11, 113.	2.5	6
14	Evaluation of single domain antibodies as nuclear tracers for imaging of the immune checkpoint receptor human lymphocyte activation gene-3 in cancer. EJNMMI Research, 2021, 11, 115.	2.5	5
15	Enzymatic ligation of an antibody and arginine 9 peptide for efficient and cell-specific siRNA delivery. Scientific Reports, 2021, 11, 21882.	3.3	3
16	A non-internalised CD38-binding radiolabelled single-domain antibody fragment to monitor and treat multiple myeloma. Journal of Hematology and Oncology, 2021, 14, 183.	17.0	12
17	Interference of p53:Twist1 interaction through competing nanobodies. International Journal of Biological Macromolecules, 2022, 194, 24-31.	7.5	4
18	Intrabody Targeting HIF-1α Mediates Transcriptional Downregulation of Target Genes Related to Solid Tumors. International Journal of Molecular Sciences, 2021, 22, 12335.	4.1	2
19	Central Nervous System Delivery of Antibodies and Their Single-Domain Antibodies and Variable Fragment Derivatives with Focus on Intranasal Nose to Brain Administration. Antibodies, 2021, 10, 47.	2.5	8

#	Article	IF	CITATIONS
20	Isolation of nanobodies with potential to reduce patients' IgE binding to Bet v 1. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1751-1760.	5.7	9
21	CS1-specific single-domain antibodies labeled with Actinium-225 prolong survival and increase CD8+ T cells and PD-L1 expression in Multiple Myeloma. OncoImmunology, 2021, 10, 2000699.	4.6	9
22	Recent advances in nanotechnology-based COVID-19 vaccines and therapeutic antibodies. Nanoscale, 2022, 14, 1054-1074.	5.6	22
23	Research Progress and Applications of Multivalent, Multispecific and Modified Nanobodies for Disease Treatment. Frontiers in Immunology, 2021, 12, 838082.	4.8	27
24	Construction of a Humanized Artificial VHH Library Reproducing Structural Features of Camelid VHHs for Therapeutics. Antibodies, 2022, 11, 10.	2.5	8
25	GPC3-targeted immunoPET imaging of hepatocellular carcinomas. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2682-2692.	6.4	23
26	Angiogenic biomolecules specific nanobodies application in cancer imaging and therapy; review and updates. International Immunopharmacology, 2022, 105, 108585.	3.8	2
27	Biparatopic nanobodies protect mice from lethal challenge with SARSâ€CoVâ€2 variants of concern. EMBO Reports, 2022, 23, e53865.	4.5	18
28	Nanobodies: From Serendipitous Discovery of Heavy Chain-Only Antibodies in Camelids to a Wide Range of Useful Applications. Methods in Molecular Biology, 2022, 2446, 3-17.	0.9	1
29	Ozoralizumab, a Humanized Anti-TNFα NANOBODY® Compound, Exhibits Efficacy Not Only at the Onset of Arthritis in a Human TNF Transgenic Mouse but Also During Secondary Failure of Administration of an Anti-TNFα IgG. Frontiers in Immunology, 2022, 13, 853008.	4.8	43
30	Nanobodies as molecular imaging probes. Free Radical Biology and Medicine, 2022, 182, 260-275.	2.9	19
31	AAVâ€mediated delivery of an antiâ€BACE1 VHH alleviates pathology in an Alzheimer's disease model. EMBO Molecular Medicine, 2022, 14, e09824.	6.9	13
32	Llamanade: An open-source computational pipeline for robust nanobody humanization. Structure, 2022, 30, 418-429.e3.	3.3	18
33	Single-Domain Antibodies for Targeting, Detection, and In Vivo Imaging of Human CD4+ Cells. Frontiers in Immunology, 2021, 12, 799910.	4.8	18
34	Diagnosis of Glioblastoma by Immuno-Positron Emission Tomography. Cancers, 2022, 14, 74.	3.7	12
35	Improved targeting of human CD4+ T cells by nanobody-modified AAV2 gene therapy vectors. PLoS ONE, 2021, 16, e0261269.	2.5	14
36	AAV Vector-Mediated Antibody Delivery (A-MAD) in the Central Nervous System. Frontiers in Neurology, 2022, 13, 870799.	2.4	4
37	Nanobody-based CAR-T cells for cancer immunotherapy. Biomarker Research, 2022, 10, 24.	6.8	51

#	Article	IF	CITATIONS
38	Camelid Single-Domain Antibodies: Promises and Challenges as Lifesaving Treatments. International Journal of Molecular Sciences, 2022, 23, 5009.	4.1	31
39	In vivo Visualization of M2 Macrophages in the Myocardium After Myocardial Infarction (MI) Using 68Ga-NOTA-Anti-MMR Nb: Targeting Mannose Receptor (MR, CD206) on M2 Macrophages. Frontiers in Cardiovascular Medicine, 2022, 9, 889963.	2.4	7
41	Emerging applications of nanobodies in cancer therapy. International Review of Cell and Molecular Biology, 2022, , 143-199.	3.2	9
42	Radiotheranostic Agents in Hematological Malignancies. Frontiers in Immunology, 0, 13, .	4.8	5
43	Single-Domain Antibody Theranostics on the Horizon. Journal of Nuclear Medicine, 2022, 63, 1475-1479.	5.0	14
44	ImmunoPET in oncology. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2022, 41, 332-339.	0.2	1
45	Race for the Cure: From the Oldest to the Newest Monoclonal Antibodies for Multiple Myeloma Treatment. Biomolecules, 2022, 12, 1146.	4.0	3
47	Development of a Bispecific Nanobody Targeting CD20 on B-Cell Lymphoma Cells and CD3 on T Cells. Vaccines, 2022, 10, 1335.	4.4	3
48	Total Chemical Synthesis of a Functionalized GFP Nanobody. ChemBioChem, 2022, 23, .	2.6	5
49	Single Domain Antibody application in bacterial infection diagnosis and neutralization. Frontiers in Immunology, 0, 13, .	4.8	9
50	Selection of single domain anti-transferrin receptor antibodies for blood-brain barrier transcytosis using a neurotensin based assay and histological assessment of target engagement in a mouse model of Alzheimer's related amyloid-beta pathology. PLoS ONE, 2022, 17, e0276107.	2.5	7
51	CD38-specific nanobodies allow in vivo imaging of multiple myeloma under daratumumab therapy. Frontiers in Immunology, 0, 13, .	4.8	4
52	Cross-Reactive Fc-Fused Single-Domain Antibodies to Hemagglutinin Stem Region Protect Mice from Group 1 Influenza a Virus Infection. Viruses, 2022, 14, 2485.	3.3	2
53	Size-advantage of monovalent nanobodies against the macrophage mannose receptor for deep tumor penetration and tumor-associated macrophage targeting. Theranostics, 2023, 13, 355-373.	10.0	7
54	Utilizing Biologics in Drug Desensitization. Current Allergy and Asthma Reports, 2023, 23, 1-11.	5.3	6
55	Modern Advances in CARs Therapy and Creating a New Approach to Future Treatment. International Journal of Molecular Sciences, 2022, 23, 15006.	4.1	4
56	Screening and identification of an anti-PD-1 nanobody with antitumor activity. Bioscience Reports, 2023, 43, .	2.4	3
57	Bispecific killer cell engager with high affinity and specificity toward CD16a on NK cells for cancer immunotherapy. Frontiers in Immunology, 0, 13, .	4.8	12

		CITATION REPORT		
# 58	ARTICLE Innovative strategies to study epigenetic regulation and advance precision medicine. ,	2024, , 96-111.	IF	Citations
59	Local delivery of optimized nanobodies targeting the PD-1/PD-L1 axis with a self-amplif vector induces potent antitumor responses. Cancer Letters, 2023, 561, 216139.	ying RNA viral	7.2	5
60	Targeting the Brain with Single-Domain Antibodies: Greater Potential Than Stated So F International Journal of Molecular Sciences, 2023, 24, 2632.	ar?.	4.1	5
61	Nanobodies: Robust miniprotein binders in biomedicine. Advanced Drug Delivery Revie 114726.	ws, 2023, 195,	13.7	7
62	T-cells engineered with a novel VHH-based chimeric antigen receptor against CD19 exh tumoricidal efficacy to their FMC63-based counterparts. Frontiers in Immunology, 0, 1	nibit comparable 4, .	4.8	8
63	A bispecific TÂcell engager recruits both type 1 NKT and Vγ9VÎ′2-T cells for the treatmo CD1d-expressing hematological malignancies. Cell Reports Medicine, 2023, 4, 100961	ent of ·	6.5	9
65	Nanobodies: A Review of Generation, Diagnostics and Therapeutics. International Jourr Molecular Sciences, 2023, 24, 5994.	ial of	4.1	43
66	Preparation and characterization of nanobodies targeting SARS-CoV-2 papain-like prot Expression and Purification, 2023, 207, 106267.	ease. Protein	1.3	2
67	Global parameter optimisation and sensitivity analysis of antivenom pharmacokinetics pharmacodynamics. Toxicon, 2023, 232, 107206.	and	1.6	1
68	Selfâ€Immolative Nanobodyâ€Cysteine Residue Modification for Controlled Immunodı Advanced Therapeutics, 0, , .	ug Delivery.	3.2	1
69	Potential Promises and Perils of Human Biological Treatments for Immunotherapy in Ve Oncology. Veterinary Sciences, 2023, 10, 336.	eterinary	1.7	1
70	Current and emerging pharmacological treatments for respiratory syncytial virus infect high-risk infants. Expert Opinion on Pharmacotherapy, 2023, 24, 1143-1158.	ion in	1.8	1
71	A few good reasons to use nanobodies for cancer treatment. European Journal of Imm 53, .	unology, 2023,	2.9	3
72	Production of nanobodies in Andean camelids and their most common applications: A in the medical field Revista Bionatura, 2023, 8, 1-12.	general review	0.4	0
73	Construction of Synthetic VHH Libraries in Ribosome Display Format. Methods in Mole 2023, , 19-31.	cular Biology,	0.9	0
74	Targeted Alpha Therapy (TAT) with Single-Domain Antibodies (Nanobodies). Cancers, 2	023, 15, 3493.	3.7	0
75	Current status and future expectations of nanobodies in oncology trials. Expert Opinic Investigational Drugs, 2023, 32, 705-721.	n on	4.1	1
76	NANOBODY® Molecule, a Giga Medical Tool in Nanodimensions. International Journa Sciences, 2023, 24, 13229.	of Molecular	4.1	1

CITATION REPORT ARTICLE IF CITATIONS Bispecific T-Cell Engagers and Chimeric Antigen Receptor T-Cell Therapies in Glioblastoma: An Update. 2.2 1 Current Oncology, 2023, 30, 8501-8549. Single domain Camelid antibody fragments for molecular imaging and therapy of cancer. Frontiers in 2.8 Oncology, 0, 13, . The potential of monoclonal antibodies for colorectal cancer therapy., 2023, 40, . 0 Phase I Study of [⁶⁸Ga]Ga-Anti-CD206-sdAb for PET/CT Assessment of Protumorigenic 5.0 Macrophage Presence in Solid Tumors (MMR Phase I). Journal of Nuclear Medicine, 2023, 64, 1378-1384. A high affinity and specificity anti-HER2 single-domain antibody (VHH) that targets trastuzumab's 2.9 1 epitope with versatile biochémical, biological, and medical applications. Immunologic Research, 0, , . Safety assessment of fluorescently labeled anti-EGFR Nanobodies in healthy dogs. Frontiers in 3.5 Pharmacology, 0, 14, . ImmunoPET imaging of Trop2 expression in solid tumors with nanobody tracers. European Journal of 6.4 0 Nuclear Medicine and Molecular Imaging, 0, , . Structure-based design of nanobodies that inhibit seeding of Alzheimer's patient–extracted tau 7.1 fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, . A novel nanobody-based HER2-targeting antibody exhibits potent synergistic antitumor efficacy in 4.8 0 trastuzumab-resistant cancer cells. Frontiers in Immunology, 0, 14, . COVIDâ€19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Medicinal Research Reviews, 2024, 44, 738-811. Antibodies internalization mechanisms by dendritic cells and their role in therapeutic antibody 2.9 0 immunogenicity. European Journal of Immunology, 2024, 54, . Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted 4.8 treatment. Frontiers in Immunology, 0, 14, . In Vivo mRNA CAR T Cell Engineering via Targeted Ionizable Lipid Nanoparticles with Extrahepatic 10.0 3 Tropism. Small, O, , . Characterization of novel CD19-specific VHHs isolated from a camelid immune library by phage display. 4.4 Journal of Translational Medicine, 2023, 21, . Semiâ€synthetic nanobodyâ€ligand conjugates exhibit tunable signaling properties and enhanced

Modern approaches to the immunotherapy of <i>Clostridioides difficile</i>. Jurnal Infektologii, 2024, 15, 35-41. Promising Diagnostic and Therapeutic Approaches Based on VHHs for Cancer Management. Cancers, 93 3.7 0 2024, 16, 371.

transcriptional outputs at neurokinin receptorâ€1. Protein Science, 2024, 33, .

0

7.6

A single-domain antibody detects and neutralises toxic Aβ42 oligomers in the Alzheimer's disease CSF. 94 6.2 Alzheimer's Research and Therapy, 2024, 16, .

#

77

79

81

83

84

85

87

89

#	Article	IF	CITATIONS
96	SARS-CoV-2 Specific Nanobodies Neutralize Different Variants of Concern and Reduce Virus Load in the Brain of h-ACE2 Transgenic Mice. Viruses, 2024, 16, 185.	3.3	0
97	Phase II Trial Assessing the Repeatability and Tumor Uptake of [⁶⁸ Ga]Ga-HER2 Single-Domain Antibody PET/CT in Patients with Breast Carcinoma. Journal of Nuclear Medicine, 2024, 65, 178-184.	5.0	0