Temperate fish detection and classification: a deep learn

Applied Intelligence 52, 6988-7001

DOI: 10.1007/s10489-020-02154-9

Citation Report

#	Article	IF	Citations
1	Fuzzy Overclustering: Semi-Supervised Classification of Fuzzy Labels with Overclustering and Inverse Cross-Entropy. Sensors, 2021, 21, 6661.	2.1	6
2	Feasibility Research on Fish Pose Estimation Based on Rotating Box Object Detection. Fishes, 2021, 6, 65.	0.7	6
3	A package auto-counting model based on tailored YOLO and DeepSort techniques. MATEC Web of Conferences, 2022, 355, 02054.	0.1	5
4	Fish Species Detection Using Deep Learning for Industrial Applications. Lecture Notes in Electrical Engineering, 2022, , 401-408.	0.3	O
5	Underwater object detection: architectures and algorithms – a comprehensive review. Multimedia Tools and Applications, 2022, 81, 20871-20916.	2.6	16
6	Computer vision and deep learning for fish classification in underwater habitats: A survey. Fish and Fisheries, 2022, 23, 977-999.	2.7	35
7	Use of a 360-Degree Underwater Camera to Characterize Artificial Reef and Fish Aggregating Effects around Marine Energy Devices. Journal of Marine Science and Engineering, 2022, 10, 555.	1.2	6
8	Fish biodiversity and inferred abundance in a highly valued coastal temperate environment: the inner Queen Charlotte Sound, New Zealand. Marine and Freshwater Research, 2022, , .	0.7	1
9	Autonomous Temporal Pseudo-Labeling for Fish Detection. Applied Sciences (Switzerland), 2022, 12, 5910.	1.3	4
10	Deep learning-assisted high resolution mapping of vulnerable habitats within the Capbreton Canyon System, Bay of Biscay. Estuarine, Coastal and Shelf Science, 2022, 275, 107957.	0.9	6
11	Accurate Fish Detection under Marine Background Noise Based on the Retinex Enhancement Algorithm and CNN. Journal of Marine Science and Engineering, 2022, 10, 878.	1.2	2
12	Non-Intrusive Fish Weight Estimation in Turbid Water Using Deep Learning and Regression Models. Sensors, 2022, 22, 5161.	2.1	8
13	Accelerating Species Recognition and Labelling of Fish From Underwater Video With Machine-Assisted Deep Learning. Frontiers in Marine Science, 0, 9, .	1.2	9
14	A Review on Fish Species Classification and Determination Using Machine Learning Algorithms. Lecture Notes in Networks and Systems, 2022, , 643-656.	0.5	1
15	Branch-Manoeuvring Capable Pipe Cleaning Robot forÂAquaponic Systems. Communications in Computer and Information Science, 2022, , 107-118.	0.4	0
16	Live Fish Species Classification in Underwater Images by Using Convolutional Neural Networks Based on Incremental Learning with Knowledge Distillation Loss. Machine Learning and Knowledge Extraction, 2022, 4, 753-767.	3.2	8
17	Underwater Image Enhancement Based on Color Correction and Detail Enhancement. Journal of Marine Science and Engineering, 2022, 10, 1513.	1.2	4
18	Rapid detection of Penaeus vannamei diseases via an improved LeNet. Aquacultural Engineering, 2023, 100, 102296.	1.4	3

#	Article	IF	CITATIONS
19	A Review on the Use of Computer Vision and Artificial Intelligence for Fish Recognition, Monitoring, and Management. Fishes, 2022, 7, 335.	0.7	16
20	Image Classification of Decapterus Macarellus Using Ridge Regression. , 2022, , .		1
21	Accurate Wound and Lice Detection in Atlantic Salmon Fish Using a Convolutional Neural Network. Fishes, 2022, 7, 345.	0.7	3
22	KRS-Net: A Classification Approach Based on Deep Learning for Koi with High Similarity. Biology, 2022, 11, 1727.	1.3	1
23	Effects Evaluation of Data Augmentation Techniques on Common Seafood Types Classification Tasks. Studies in Computational Intelligence, 2023, , 213-223.	0.7	0
24	SU ÜRÜNLERİ YETİŞTİRİCİLİĞİ İÇİN BALIK DAVRANIŞLARININ BİLGİSAYARLI GÖRÜ Journal of Anatolian Environmental and Animal Sciences, 0, , .	NTÜ Ä°Åż	žLEME YÃ-NI
25	Image dataset for benchmarking automated fish detection and classification algorithms. Scientific Data, $2023,10,.$	2.4	3
26	Future Trends and Short-Review on Fish Species Classification Models Based on Deep Learning Approaches. , 2022, , .		1
28	Vision Technology in Underwater: Applications, Challenges and Perspectives. , 2022, , .		0
29	Automatic detection and classification of coastal Mediterranean fish from underwater images: Good practices for robust training. Frontiers in Marine Science, $0,10,10$	1.2	2
30	Deep learning-based visual detection of marine organisms: A survey. Neurocomputing, 2023, 532, 1-32.	3.5	12
31	An Approach for Counting Breeding Eels Using Mathematical Morphology Operations and Boundary Detection. Applied Computer Science, 2022, 27, 110-118.	0.3	0
32	â€~Small Data' for big insights in ecology. Trends in Ecology and Evolution, 2023, 38, 615-622.	4.2	5
33	Artificial intelligence for fish behavior recognition may unlock fishing gear selectivity. Frontiers in Marine Science, $0,10,10$	1.2	8
34	A multitask model for realtime fish detection and segmentation based on YOLOv5. PeerJ Computer Science, 0, 9, e1262.	2.7	1
35	Using diver-operated stereo-video to monitor juvenile fish assemblages in Mediterranean coastal habitats formed by macrophytes. , 0, , 596-605.		0
40	A survey on fish health monitoring approaches using computer vision techniques. , 2023, , .		1
41	HRFSVM: identification of fish disease using hybrid Random Forest and Support Vector Machine. Environmental Monitoring and Assessment, 2023, 195, .	1.3	1

#	Article	IF	CITATIONS
44	Underwater biological target recognition of East Juyanhai based on image enhancement and yolov5. , 2023, , .		1
45	Designing a Heuristic Based Hybrid CNN with Attention Mechanism for the Effective Classification of Fish Species. , 2023, , .		0
47	Automating Fish Detection and Species Classification in Underwaters Using Deep Learning Model. Cognitive Science and Technology, 2023, , 371-382.	0.2	0
48	A Deep Learning Approach for Marine Animal Classification: Enhancing Taxonomic Identification and Conservation Efforts., 2023,,.		0
51	A Deep Learning Approach to Recognize Bangladeshi Shrimp Species. , 2023, , .		0
52	Improving Fisheries Management through Deep learning based Automated fish counting. , 2023, , .		0
55	A Study on Coral Species Recognition Using Repetitive Structures and Deep Learning., 2023,,.		0
57	Fish tracking based on YOLO and ByteTrack. , 2023, , .		O
59	Classification of Underwater Fish Species Using Custom-Built Deep Learning Architectures. Lecture Notes in Networks and Systems, 2024, , 211-226.	0.5	0
65	YOLO-Based Fish Detection in Underwater Environments. , 0, , .		O