Single-Crystalline Ultrathin 2D Porous Nanosheets of C

Journal of the American Chemical Society 143, 3509-3518

DOI: 10.1021/jacs.0c13005

Citation Report

#	Article	IF	CITATIONS
1	Turn-On Fluorescence Enantioselective Sensing of Hydroxyl Carboxylic Enantiomers by Metal–Organic Framework Nanosheets with a Homochiral Tetracarboxylate of Cyclohexane Diamide. ACS Applied Materials & Interfaces, 2021, 13, 20821-20829.	4.0	34
2	Robust photocatalytic hydrogen production on metal-organic layers of Al-TCPP with ultrahigh turnover numbers. Chinese Chemical Letters, 2021, 32, 3833-3836.	4.8	17
3	Two Distinct Stages of Structural Modification of ZIF-L MOF under Electron-Beam Irradiation. Chemistry of Materials, 2021, 33, 5681-5689.	3.2	16
4	Two-dimensional metal-organic framework nanosheet composites: Preparations and applications. Chinese Chemical Letters, 2022, 33, 693-702.	4.8	51
5	Chiral Induction in Buckminsterfullerene Using a Metal–Organic Framework. Angewandte Chemie, 2021, 133, 18091-18095.	1.6	7
6	Chiral Induction in Buckminsterfullerene Using a Metal–Organic Framework. Angewandte Chemie - International Edition, 2021, 60, 17947-17951.	7.2	18
7	Structural visualization of ultrathin chiral porous metal-organic framework nanosheet. Matter, 2021, 4, 2669-2671.	5.0	3
8	Fabrication of 2D Metal–Organic Framework Nanosheets with Highly Colloidal Stability and High Yield through Coordination Modulation. ACS Applied Materials & Interfaces, 2021, 13, 39755-39762.	4.0	15
9	Two-dimensional coordination polymers containing permethylated motifs - promising candidates for 2D emerging materials. Structural, behavioral and functional particularities. Reactive and Functional Polymers, 2021, 168, 105039.	2.0	4
10	DNA Programmable Self-Assembly of Planar, Thin-Layered Chiral Nanoparticle Superstructures with Complex Two-Dimensional Patterns. ACS Nano, 2021, 15, 16664-16672.	7.3	20
11	Layer or Tube? Uncovering Key Factors Determining the Rolling-up of Layered Coordination Polymers. Journal of the American Chemical Society, 2021, 143, 17587-17598.	6.6	10
12	Few-Layered Metal–Organic Framework Nanosheets as Catalysts for the Synthesis of 2,3-Dihydroquinazolinone and Propargylamines. ACS Applied Nano Materials, 2021, 4, 12108-12118.	2.4	3
13	Ultraweak chemiluminescence enhanced on the surface of lanthanide metal–organic framework nanosheets synthesized by ultrasonic wave. Applied Surface Science, 2022, 579, 151860.	3.1	8
14	Ultrathin metal–organic framework nanosheets and devices. Oxford Open Materials Science, 2020, 1, .	0.5	O
15	Modulating the Chemical Microenvironment of Pt Nanoparticles within Ultrathin Nanosheets of Isoreticular MOFs for Enhanced Catalytic Activity. Inorganic Chemistry, 2022, 61, 2538-2545.	1.9	10
16	Induction of chiral polymers from metal-organic framework for stereoselective recognition. Analytica Chimica Acta, 2022, 1196, 339546.	2.6	4
17	Hierarchically Macro-Microporous Ce-Based MOFs for the Cleavage of DNA., 2022, 4, 385-391.		31
18	Metal-organic framework-based core-shell composites for chromatographic stationary phases. TrAC - Trends in Analytical Chemistry, 2022, 149, 116545.	5.8	12

#	Article	IF	Citations
19	Two-dimensional Metal Organic Frameworks for photonic applications. Optical Materials Express, 0, , .	1.6	9
20	Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	99
21	Metal-Organic Framework-Based Core-Shell Composites for Chromatographic Stationary Phase Applications. SSRN Electronic Journal, 0, , .	0.4	0
22	Post-Exfoliation Functionalisation of Metal-Organic Framework Nanosheets via Click Chemistry. Nanoscale, 2022, , .	2.8	4
23	Cryogenic Focused Ion Beam Enables Atomic-Resolution Imaging of Local Structures in Highly Sensitive Bulk Crystals and Devices. Journal of the American Chemical Society, 2022, 144, 3182-3191.	6.6	28
24	Energy Transfer in Metal–Organic Frameworks for Fluorescence Sensing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9970-9986.	4.0	109
25	<i>In Situ Trans–Cis</i> Isomerization of Naphthylvinylpyridine Ligand in a Zinc(II) Coordination Polymer: Liquid and Vapor Phase Sensing of Mutagenic Pollutants and Nitroexplosives. ACS Applied Polymer Materials, 2022, 4, 2841-2850.	2.0	12
26	Atomic-number ($\langle i\rangle Z\langle i\rangle$)-correlated atomic sizes for deciphering electron microscopic molecular images. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114432119.	3.3	14
27	Chiral Metal–Organic Frameworks. Chemical Reviews, 2022, 122, 9078-9144.	23.0	175
28	From Hydrogen Bond to van der Waals Force: Molecular Scalpel Strategy to Exfoliate a Two-Dimensional Metal–Organic Nanosheet. Inorganic Chemistry, 2022, 61, 5465-5468.	1.9	0
29	Low-Dose Electron Microscopy Imaging of Electron Beam-Sensitive Crystalline Materials. Accounts of Materials Research, 2022, 3, 552-564.	5.9	17
30	Striking 2D materials: exfoliation of molecular crystals. Science China Chemistry, 2022, 65, 1005-1006.	4.2	2
31	Facile synthesis of dual-ligand terbium-organic gels as ratiometric fluorescence probes for efficient mercury detection. Journal of Hazardous Materials, 2022, 436, 129080.	6.5	12
32	Kadsura-Shaped Covalent–Organic Framework Nanostructures for the Sensitive Detection and Removal of 2,4,6-Trinitrophenol. ACS Applied Nano Materials, 2022, 5, 6422-6429.	2.4	19
33	Multifunctional lanthanide MOF luminescent sensor built by structural designing and energy level regulation of a ligand. Inorganic Chemistry Frontiers, 2022, 9, 4065-4074.	3.0	23
34	The Development of iDPC-STEM and Its Application in Electron Beam Sensitive Materials. Molecules, 2022, 27, 3829.	1.7	5
35	Bimetallic Au-Pd NPs Embedded in MOF Ultrathin Nanosheets with Tuned Surface Electronic Properties for High-performance Benzyl Alcohol Oxidation. Chemical Research in Chinese Universities, 2022, 38, 1344-1348.	1.3	5
36	2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coordination Chemistry Reviews, 2022, 472, 214777.	9.5	109

#	ARTICLE	IF	CITATIONS
37	Challenges and opportunities for chiral covalent organic frameworks. Chemical Science, 2022, 13, 9811-9832.	3.7	19
38	Robust Carbazole-Based Rare-Earth MOFs: Tunable White-Light Emission for Temperature and DMF Sensing. ACS Applied Materials & Interfaces, 2022, 14, 41178-41185.	4.0	8
39	Ultrathin Metal–Organic Framework Nanosheets Exhibiting Exceptional Catalytic Activity. Journal of the American Chemical Society, 2022, 144, 17487-17495.	6.6	48
40	Recent progress in the design, synthesis and applications of chiral metal-organic frameworks. Frontiers in Chemistry, 0, 10 , .	1.8	10
41	2D Hexagonal Assemblies of Amphiphilic Doubleâ€Helical Poly(phenylacetylene) Homopolymers with Enhanced Circularly Polarized Luminescence and Chiral Selfâ€Sorting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
42	Metal-organic frameworks' tricks in asymmetric catalysis. Chem Catalysis, 2022, 2, 2986-3018.	2.9	3
43	2D Hexagonal Assemblies of Amphiphilic Double Helical Poly(phenylacetylene) Homopolymers with Enhanced Circularly Polarized Luminescence and Chiral Selfâ€Sorting. Angewandte Chemie, 0, , .	1.6	2
44	Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chemical Reviews, 2022, 122, 17397-17478.	23.0	23
45	Chiral two-dimensional metal–organic frameworks based on Zn(salen) ligands: subcomponent self-assembly and circularly polarised luminescence. CrystEngComm, 2023, 25, 484-489.	1.3	1
46	Nonsteroidal anti-inflammatory drug monitoring in serum: a Tb-MOF-based luminescent mixed matrix membrane detector with high sensitivity and reliability. Dalton Transactions, 2023, 52, 644-651.	1.6	2
47	Metal–Organic Frameworks-Based Analytical Devices for Chiral Sensing and Separations: A Review (2012–2022). Chemosensors, 2023, 11, 29.	1.8	6
48	Advances in Two-dimensional (2D) Inorganic Chiral Materials and 2D Organic-inorganic Hybrid Chiral Materials. Current Chinese Science, 2023, 03, .	0.2	0
49	Chiral-Controlled Cyclic Chemiluminescence Reactions for the Analysis of Enantiomer Amino Acids. Analytical Chemistry, 2023, 95, 6971-6979.	3.2	3
50	Highly Efficient versus Null Electrochemical Enantioselective Recognition Controlled by Achiral Colinkers in Homochiral Metal–Organic Frameworks. ACS Sensors, 2023, 8, 774-783.	4.0	3
51	Temperature-Dependent Preparation of Hydrogen-Bond Organic Frameworks: Ultrathin and Stable Nanosheets for Fluorescent Sensing toward Uranyl. Crystal Growth and Design, 2023, 23, 1840-1847.	1.4	4
52	Bodipy-Based Metal–Organic Frameworks Transformed in Solid States from 1D Chains to 2D Layer Structures as Efficient Visible Light Heterogeneous Photocatalysts for Forging C–B and C–C Bonds. Journal of the American Chemical Society, 2023, 145, 6123-6134.	6.6	14
53	Ultrathin 2D Ceriumâ€Based Metal–Organic Framework Nanosheet That Boosts Selective Oxidation of Inert C(sp ³)H Bond through Multiphoton Excitation. Small, 2023, 19, .	5.2	9
54	A Mixed Protonic–Electronic Conductor Base on the Host–Guest Architecture of 2D Metal–Organic Layers and Inorganic Layers. Advanced Science, 2023, 10, .	5.6	3

CITATION REPORT

#	Article	IF	CITATIONS
55	Exploring Functional Photonic Devices made from a Chiral Metal–Organic Framework Material by a Multiscale Computational Method. Advanced Functional Materials, 0, , .	7.8	5
57	Metal–organic frameworks for the capture of α-pinene traces. Chemical Communications, 2023, 59, 7064-7067.	2.2	1
63	Metal-Organic Frameworks on Versatile Substrates. Journal of Materials Chemistry A, 0, , .	5.2	1
77	Quinquevalent phosphorus acids. , 2024, , 109-231.		0