Optical whispering-gallery mode barcodes for high-premeasurements

Light: Science and Applications 10, 32 DOI: 10.1038/s41377-021-00472-2

Citation Report

#	Article	IF	CITATIONS
1	Microresonator sensors based on evanescent field perturbation. , 2021, , .		0
2	High-resolution and large-dynamic-range temperature sensor using fiber Bragg grating Fabry-Pérot cavity. Optics Express, 2021, 29, 18523.	1.7	25
3	High quality, high index-contrast chalcogenide microdisk resonators. Optics Express, 2021, 29, 17775.	1.7	11
4	Biophotonic probes for bio-detection and imaging. Light: Science and Applications, 2021, 10, 124.	7.7	74
5	Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities. Light: Science and Applications, 2021, 10, 128.	7.7	40
6	Special Issue on the 60th anniversary of the first laser—Series I: Microcavity Photonics—from fundamentals to applications. Light: Science and Applications, 2021, 10, 141.	7.7	5
7	Microwave frequency measurement with high accuracy and wide bandwidth based on whispering-gallery mode barcode. Optics Letters, 2021, 46, 5008.	1.7	7
8	Randomly Induced Phase Transformation in Silk Proteinâ€Based Microlaser Arrays for Anticounterfeiting. Advanced Materials, 2021, 33, e2102586.	11.1	29
9	Microbubble resonators for scattering-free absorption spectroscopy of nanoparticles. Optics Express, 2021, 29, 31130.	1.7	6
10	Sensitivity Dependence of Single Nanoparticle Mass Detection Using Mechanical Oscillations in Optical Microcavities. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-7.	1.9	1
11	Microwave-assisted in situ laser dye incorporation into high sensitivity whispering gallery mode microresonators. Journal Physics D: Applied Physics, 2022, 55, 055101.	1.3	1
12	Intelligent Optical Microresonator Imaging Sensor for Early Stage Classification of Dynamical Variations. Advanced Photonics Research, 2021, 2, 2100242.	1.7	3
13	Photonics-inspired terahertz whispering gallery mode resonator waveguide on silicon platform. Applied Physics Letters, 2021, 119, .	1.5	4
14	Pump-controlled RGB single-mode polymer lasers based on a hybrid 2D–3D μ-cavity for temperature sensing. Nanophotonics, 2021, 10, 4591-4599.	2.9	10
15	Droplet Lasers for Smart Photonic Labels. ACS Applied Materials & Interfaces, 2021, 13, 51485-51494.	4.0	10
16	Polarized Emission of Lanthanide Metal–Organic Framework (Lnâ€MOF) Crystals for Highâ€Capacity Photonic Barcodes. Advanced Optical Materials, 2022, 10, .	3.6	17
17	Photonic thermometer by silicon nitride microring resonator with milli-kelvin self-heating effect. Measurement: Journal of the International Measurement Confederation, 2022, 188, 110494.	2.5	13
18	Multifunctional lanthanide ionsâ€doped Ba2TiGe2O8 phosphor for near-infrared ratiometric	1.5	5

	CITATION	tion Report	
#	Article	IF	CITATIONS
19	whispering gallery mode with a liquid crystal microdroplet. Optics Letters, 2022, 47, 381.	1.7	3
20	Lineshape Modulation and Sensing Characteristics of Resonator Assembled With Liquid-Metal Core Edge-Coupled With Microfiber Coupler. Journal of Lightwave Technology, 2022, 40, 2516-2522.	2.7	5
21	Single-molecule optofluidic microsensor with interface whispering gallery modes. Proceedings of the United States of America, 2022, 119, .	3.3	51
22	Exciting Hybrid Optical Modes with Fano Lineshapes in Core–Shell CsPbBr ₃ Microspheres for Optical Sensing. Journal of Physical Chemistry C, 2022, 126, 3109-3117.	1.5	4
23	Enhanced nanoparticle sensing by mode intensity in a non-reciprocally coupled microcavity. Journal of Applied Physics, 2022, 131, .	1.1	6
24	Magnetic Field Sensing Based on Whispering Gallery Mode with Nanostructured Magnetic Fluid-Infiltrated Photonic Crystal Fiber. Nanomaterials, 2022, 12, 862.	1.9	32
25	Reverse tuning of Whispering Gallery Mode microresonators. , 2022, , .		0
26	Modulation of Fano-like resonance in spherical microbubble cavity for high sensitivity pressure sensing. Applied Physics Express, 2022, 15, 046504.	1.1	1
27	An On-Chip Silicon Photonics Thermometer with Milli-Kelvin Resolution. Applied Sciences (Switzerland), 2022, 12, 3713.	1.3	5
28	Dynamic Evolution of Microcavity Raman Laser subjected to Frequency-shifted Feedback and its Application in Laser Spectrum Encoding Thermal Sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2022, , 1-1.	1.9	1
29	Optical Whispering-Gallery-Mode Microbubble Sensors. Micromachines, 2022, 13, 592.	1.4	19
30	Ultrahighâ€Resolution Optical Fiber Thermometer Based on Microcavity Optoâ€Mechanical Oscillation. Advanced Photonics Research, 2022, 3, .	1.7	3
31	An Optoelectronic thermometer based on microscale infrared-to-visible conversion devices. Light: Science and Applications, 2022, 11, 130.	7.7	22
32	A High- <i>Q</i> , Hollow-Core Micro-Bottle Cavity Biosensor for DNA Detection With Low Detection Limit. Journal of Lightwave Technology, 2022, 40, 5345-5351.	2.7	7
33	Fast Switching Acoustic Sensor With Ultrahigh Sensitivity and Wide Dynamic Response Range Based on Ultrahigh- <i>Q</i> CaF ₂ Resonator. Journal of Lightwave Technology, 2022, 40, 5775-5780.	2.7	8
34	Ultrasound Sensing Using Packaged Microsphere Cavity in the Underwater Environment. Sensors, 2022, 22, 4190.	2.1	6
35	Machine learning boosts performance of optical fiber sensors: a case study for vector bending sensing. Optics Express, 2022, 30, 24553.	1.7	7
36	Temperature Sensors Based on Polymer Fiber Optic Interferometer. Chemosensors, 2022, 10, 228.	1.8	9

#		IF	CITATIONS
37	application in ratiometric luminescence temperature sensing. CrystEngComm, 0, , .	1.3	4
38	High-Q WGM Resonators Encapsulated in PDMS for Highly Sensitive Displacement Detection. Journal of Lightwave Technology, 2022, , 1-11.	2.7	5
39	Underwater Acoustic Wave Detection Based on Packaged Optical Microbubble Resonator. Journal of Lightwave Technology, 2022, 40, 6272-6279.	2.7	6
40	Displacement sensing in a multimode SNAP microcavity by an artificial neural network. Optics Express, 2022, 30, 27015.	1.7	3
41	Electrically Tunable Polymer Whispering-Gallery-Mode Laser. Materials, 2022, 15, 4812.	1.3	3
42	On-chip simultaneous measurement of humidity and temperature using cascaded photonic crystal microring resonators with error correction. Optics Express, 2022, 30, 35608.	1.7	6
43	Dissipative Acousto-optic Interactions in Optical Microcavities. Physical Review Letters, 2022, 129, .	2.9	14
44	High-precision whispering gallery microsensors with ergodic spectra empowered by machine learning. Photonics Research, 2022, 10, 2343.	3.4	14
45	Intense red up-conversion luminescence and temperature sensing property of Yb3+/Er3+ co-doped BaGd2O4 phosphors. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 284, 121805.	2.0	6
46	Photonic Barcodes Based on a SNAP Microcavity for Displacement Sensing. IEEE Sensors Journal, 2022, 22, 17830-17837.	2.4	0
47	Large-scale flexible-resonators with temperature insensitivity employing superoleophobic substrates. Optics Express, 2022, 30, 40897.	1.7	0
48	Experimental and Numerical Validation of Whispering Gallery Resonators as Optical Temperature Sensors. Sensors, 2022, 22, 7831.	2.1	1
49	Wavelength Sensing Based on Whispering Gallery Mode Mapping. Fibers, 2022, 10, 90.	1.8	1
50	Free-access optomechanical liquid probes using a twin-microbottle resonator. Science Advances, 2022, 8, .	4.7	8
51	Recent advances in optical biosensing approaches for biomarkers detection. Biosensors and Bioelectronics: X, 2022, 12, 100269.	0.9	5
52	Photonic Bandgap Fiber Microlaser for Optofluidic Sensing and Tagging. , 2022, , .		0
53	Review of different coupling methods with whispering gallery mode resonator cavities for sensing. Optics and Laser Technology, 2023, 159, 108955.	2.2	3
54	Optical Vernier sensor based on a cascaded tapered thin-core microfiber for highly sensitive refractive index sensing. Applied Optics, 2022, 61, 10727.	0.9	2

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Unconventional photon blockade in a non-Hermitian indirectly coupled resonator system. Optics Express, 2023, 31, 1629.	1.7	4
56	Thermal Gradient Induced Transparency and Absorption in a Microcavity. Laser and Photonics Reviews, 0, , 2200644.	4.4	3
57	Microwave Photonic Sensor Based on Optical Sideband Processing with Linear Frequency-modulated Pulse. , 2022, , .		2
58	Compact on-chip crystalline resonator integration with etching of tapered fiber waveguide. Applied Optics, 2023, 62, 1492.	0.9	1
59	Microbubble Resonators for Photoacoustic Detection and Photothermal Spectroscopy. Journal of Lightwave Technology, 2023, 41, 4137-4144.	2.7	0
60	Scalable Onâ \in Chip Microdisk Resonator Spectrometer. Laser and Photonics Reviews, 2023, 17, .	4.4	4
61	A Lever-Type PDMS Flexible Cavity for Acoustic Vector Sensor With High Sensitivity. IEEE Sensors Journal, 2023, 23, 5637-5642.	2.4	1
62	The Velocity of Underwater Ultrasound at Different Temperatures. IETE Journal of Research, 0, , 1-10.	1.8	0
63	Dual electro-optic frequency comb photonic thermometry. Optics Letters, 2023, 48, 2210.	1.7	1
64	Intelligent detection of complex biochemical compounds with multiplexed microresonator sensor. , 2023, , .		Ο
65	Chloroform-infiltrated photonic crystal fiber with high-temperature sensitivity. Optics Express, 2023, 31, 13279.	1.7	2
66	Photonic Bandgap Fiber Microlaser with Dualâ€Band Emission for Integrated Optical Tagging and Sensing. Laser and Photonics Reviews, 2023, 17, .	4.4	5
67	Phase Transition Monitoring of Liquid Metal Based on Temperature Sensors of Packaged Microbubble Resonators. IEEE Sensors Journal, 2023, 23, 8178-8183.	2.4	1
68	Visualizing the Nanoscopic Field Distribution of Whispering-Gallery Modes in a Dielectric Sphere by Cathodoluminescence. ACS Photonics, 2023, 10, 1434-1445.	3.2	3
69	Advanced flexible electronic devices for biomedical application. , 2023, , 261-275.		0
70	Integrated multi-mode glass ceramic fiber for high-resolution temperature sensing. , 2023, , 100132.		1
71	Machine learning-assisted high-accuracy and large dynamic range thermometer in high-Q microbubble resonators. Optics Express, 2023, 31, 16781.	1.7	3
72	Microfiber optomechanical torsion sensor. Frontiers in Physics, 0, 11, .	1.0	0

#	Article	IF	CITATIONS
73	Enhanced Biomolecule Concentration Sensing by Using Exceptional Points in a Microtube Cavity With Multiple Layers. IEEE Sensors Journal, 2023, 23, 11662-11671.	2.4	1
74	Micropascal-sensitivity ultrasound sensors based on optical microcavities. Photonics Research, 2023, 11, 1139.	3.4	0
88	Al-based solution for robust detection with optical microresonators. , 2023, , .		0
97	Optical Fiber Vector Bending Sensor Based on Machine Learning Analysis. , 2023, , .		0
100	Multimode sensing based on optical microcavities. Frontiers of Optoelectronics, 2023, 16, .	1.9	1
105	Packaged Ultra-High-Quality Optical Whispering Gallery Mode Microresonators with Air Tightness and 3-Axis Adjustment. , 2023, , .		0