Examining the robustness and concentration dependen interfacial adsorption coefficients

Water Research 190, 116778 DOI: 10.1016/j.watres.2020.116778

Citation Report

#	Article	IF	CITATIONS
1	Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media. Environmental Science & Technology, 2021, 55, 3706-3715.	4.6	29
2	Impact of a Hydrocarbon Surfactant on the Retention and Transport of Perfluorooctanoic Acid in Saturated and Unsaturated Porous Media. Environmental Science & Technology, 2021, 55, 10480-10490.	4.6	20
3	Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media. Water Research, 2021, 202, 117405.	5.3	30
4	The influence of molecular structure on PFAS adsorption at air-water interfaces in electrolyte solutions. Chemosphere, 2021, 281, 130829.	4.2	33
5	The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media. Science of the Total Environment, 2022, 806, 150595.	3.9	18
6	Air-water interfacial areas relevant for transport of per and poly-fluoroalkyl substances. Water Research, 2021, 207, 117785.	5.3	19
7	Model validation and analyses of parameter sensitivity and uncertainty for modeling long-term retention and leaching of PFAS in the vadose zone. Journal of Hydrology, 2021, 603, 127172.	2.3	22
8	Predicting the impact of salt mixtures on the air-water interfacial behavior of PFAS. Science of the Total Environment, 2022, 819, 151987.	3.9	9
9	A screening model for quantifying PFAS leaching in the vadose zone and mass discharge to groundwater. Advances in Water Resources, 2022, 160, 104102.	1.7	17
10	Where Is the <scp>PFAS</scp> ? Innovations in <scp>PFAS</scp> Detection and Characterization. Ground Water Monitoring and Remediation, 2022, 42, 13-23.	0.6	3
11	Transport of perfluorooctanoic acid in unsaturated porous media mediated by SDBS. Journal of Hydrology, 2022, 607, 127479.	2.3	9
12	Air-water interfacial adsorption of C4-C10 perfluorocarboxylic acids during transport in unsaturated porous media. Science of the Total Environment, 2022, 831, 154905.	3.9	11
13	PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces. Chemosphere, 2022, 302, 134938.	4.2	27
14	Estimation of Transport Parameters of Perfluoroalkyl Acids (PFAAs) in Unsaturated Porous Media: Critical Experimental and Modeling Improvements. Environmental Science & Technology, 2022, 56, 7963-7975.	4.6	12
15	Per―and Polyfluoroalkyl Substances (PFAS) in Subsurface Environments: Occurrence, Fate, Transport, and Research Prospect. Reviews of Geophysics, 2022, 60, .	9.0	29
16	Effect of different co-foaming agents on PFAS removal from the environment by foam fractionation. Water Research, 2023, 230, 119532.	5.3	19
17	Bioavailability, phytotoxicity and plant uptake of per-and polyfluoroalkyl substances (PFAS): A review. Journal of Hazardous Materials, 2023, 447, 130805.	6.5	27
18	Revising the EPA dilution-attenuation soil screening model for PFAS. Journal of Hazardous Materials Letters, 2023, 4, 100077.	2.0	1

CITATION REPORT