Screening of DNA-Encoded Small Molecule Libraries ins

Journal of the American Chemical Society 143, 2751-2756 DOI: 10.1021/jacs.0c09213

Citation Report

#	Article	IF	CITATIONS
1	Bispecific Estrogen Receptor α Degraders Incorporating Novel Binders Identified Using DNA-Encoded Chemical Library Screening. Journal of Medicinal Chemistry, 2021, 64, 5049-5066.	6.4	35
2	Affinity Selections of DNAâ€Encoded Chemical Libraries on Carbonic Anhydrase IXâ€Expressing Tumor Cells Reveal a Dependence on Ligand Valence. Chemistry - A European Journal, 2021, 27, 8985-8993.	3.3	19
3	Recent Advances on the Selection Methods of DNAâ€Encoded Libraries. ChemBioChem, 2021, 22, 2384-2397.	2.6	19
4	Expanding the effectiveness of screening. Nature Chemistry, 2021, 13, 515-517.	13.6	1
5	DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges. ACS Pharmacology and Translational Science, 2021, 4, 1265-1279.	4.9	120
6	Diversity-oriented synthesis as a tool to expand the chemical space of DNA-encoded libraries. Bioorganic and Medicinal Chemistry, 2021, 41, 116218.	3.0	16
7	Combinatorial technology revitalized by DNAâ€encoding. MedComm, 2021, 2, 481-489.	7.2	8
8	Evolution of the Selection Methods of DNA-Encoded Chemical Libraries. Accounts of Chemical Research, 2021, 54, 3491-3503.	15.6	25
9	Strategies for targeting undruggable targets. Expert Opinion on Drug Discovery, 2022, 17, 55-69.	5.0	34
10	Chemical Probes for Understudied Kinases: Challenges and Opportunities. Journal of Medicinal Chemistry, 2022, 65, 1132-1170.	6.4	15
11	Macrocyclic DNA-encoded chemical libraries: a historical perspective. RSC Chemical Biology, 2022, 3, 7-17.	4.1	22
12	DNA-encoded chemical libraries. Nature Reviews Methods Primers, 2022, 2, .	21.2	75
13	In-solution direct oxidative coupling for the integration of sulfur/selenium into DNA-encoded chemical libraries. Chemical Science, 2022, 13, 2604-2613.	7.4	21
14	Strategies for developing DNA-encoded libraries beyond binding assays. Nature Chemistry, 2022, 14, 129-140.	13.6	54
15	Recent advances in DNA-encoded dynamic libraries. RSC Chemical Biology, 2022, 3, 407-419.	4.1	12
16	Expanding the DNA-encoded library toolbox: identifying small molecules targeting RNA. Nucleic Acids Research, 2022, 50, e67-e67.	14.5	14
17	Switchable DNAâ€Encoded Chemical Library: Interconversion between Double―and Singleâ€Stranded DNA Formats. ChemBioChem, 2022, 23, .	2.6	6
19	Palladium-Mediated Carbonylative Suzuki Coupling for DNA-Encoded Library Synthesis. Organic Letters, 2022, 24, 5214-5219.	4.6	2

CITATION REPORT

#	Article	IF	CITATIONS
20	Biomacromolecule-Assisted Screening for Reaction Discovery and Catalyst Optimization. Chemical Reviews, 2022, 122, 13800-13880.	47.7	2
21	Target Protein Design and Preselection Analysis. Methods in Molecular Biology, 2022, , 143-154.	0.9	1
22	Selection Strategies in DNA-Encoded Libraries. Topics in Medicinal Chemistry, 2022, , .	0.8	1
24	Selection methods for proximity-dependent enrichment of ligands from DNA-encoded libraries using enzymatic fusion proteins. Chemical Science, 2023, 14, 245-250.	7.4	7
25	Photoredox-Mediated Deoxygenative Alkylation of DNA-Tagged Alkenes with Activated Alcohols. Organic Letters, 2022, 24, 9514-9519.	4.6	4
26	DNAâ€Encoded Libraries: Towards Harnessing their Full Power with Darwinian Evolution. Angewandte Chemie, 2023, 135, .	2.0	3
27	DNAâ€Encoded Libraries: Towards Harnessing their Full Power with Darwinian Evolution. Angewandte Chemie - International Edition, 2023, 62, .	13.8	16
28	Translating the Genome into Drugs. Accounts of Chemical Research, 2023, 56, 489-499.	15.6	4
29	In-Cell Penetration Selection–Mass Spectrometry Produces Noncanonical Peptides for Antisense Delivery. ACS Chemical Biology, 2023, 18, 615-628.	3.4	3
30	Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers. Nature Communications, 2023, 14, .	12.8	6
31	Lead Generation. , 2023, , 682-719.		0
32	Heterocyclization vs Coupling Reactions: A DNA-Encoded Libraries Case. Journal of Organic and Pharmaceutical Chemistry, 2023, 21, 3-19.	0.4	3
33	Small-molecule discovery through DNA-encoded libraries. Nature Reviews Drug Discovery, 2023, 22, 699-722.	46.4	18
34	Machine-Learning-Based Data Analysis Method for Cell-Based Selection of DNA-Encoded Libraries. ACS Omega, 2023, 8, 19057-19071.	3.5	2
35	DNAâ \in Encoded Libraries and Their Application to RNA. Israel Journal of Chemistry, 2023, 63, .	2.3	2
36	Diversity-oriented synthesis encoded by deoxyoligonucleotides. Nature Communications, 2023, 14, .	12.8	2
37	Covalent Capture and Selection of DNAâ€Encoded Chemical Libraries via Photoâ€Activated Lysineâ€Selective Crosslinkers. Chemistry - an Asian Journal, 0, , .	3.3	0
38	Recording Binding Information Directly into DNA-Encoded Libraries Using Terminal Deoxynucleotidyl Transferase. Journal of the American Chemical Society, 2023, 145, 20874-20882.	13.7	2

#	Article	IF	CITATIONS
39	Evolution of chemistry and selection technology for DNA-encoded library. Acta Pharmaceutica Sinica B, 2024, 14, 492-516.	12.0	5