Characterization of Retinal Microvascular and Choroida Parkinson Disease

JAMA Ophthalmology 139, 182

DOI: 10.1001/jamaophthalmol.2020.5730

Citation Report

#	Article	IF	CITATIONS
2	Applicability of optical coherence tomography angiography (OCTA) imaging in Parkinson's disease. Scientific Reports, 2021, 11, 5520.	3.3	8
3	Assessment of retinal microvascular health by optical coherence tomography angiography among persons with HIV. Aids, 2021, 35, 1321-1324.	2.2	5
4	Assessing intravitreal anti-VEGF drug safety using real-world data: methodological challenges in observational research. Expert Opinion on Drug Safety, 2022, 21, 205-214.	2.4	4
5	Foveal Remodeling of Retinal Microvasculature in Parkinson's Disease. Frontiers in Neuroscience, 2021, 15, 708700.	2.8	17
6	Choroidal Thickness Correlates with Clinical and Imaging Metrics of Parkinson's Disease: A Pilot Study. Journal of Parkinson's Disease, 2021, 11, 1857-1868.	2.8	4
7	Retinal Microvascular and Choroidal Changes in Parkinson Disease. JAMA Ophthalmology, 2021, 139, 921.	2.5	2
8	Retinal Microvascular and Choroidal Changes in Parkinson Diseaseâ€"Reply. JAMA Ophthalmology, 2021, 139, 922.	2.5	0
9	Visual Impairments Are Associated With Retinal Microvascular Density in Patients With Parkinson's Disease. Frontiers in Neuroscience, 2021, 15, 718820.	2.8	12
10	Retinal Flow Density Changes in Early-stage Parkinson's Disease Investigated by Swept-Source Optical Coherence Tomography Angiography. Current Eye Research, 2021, 46, 1886-1891.	1.5	17
11	Myeloid cells in retinal and brain degeneration. FEBS Journal, 2021, , .	4.7	12
12	Ophthalmic manifestations of dementing disorders. Current Opinion in Ophthalmology, 2021, 32, 515-520.	2.9	5
13	Multimodal retinal imaging to detect and understand Alzheimer's and Parkinson's disease. Current Opinion in Neurobiology, 2022, 72, 1-7.	4.2	14
14	Macular microcirculation characteristics in Parkinson's disease evaluated by OCT-Angiography: a literature review. Seminars in Ophthalmology, 2021, , 1-9.	1.6	4
15	Retinal imaging biomarkers of neurodegenerative diseases. Australasian journal of optometry, The, 2022, 105, 194-204.	1.3	14
16	Retinal Neurovascular Impairment in Non-diabetic and Non-dialytic Chronic Kidney Disease Patients. Frontiers in Neuroscience, 2021, 15, 703898.	2.8	10
17	Mercury is present in neurons and oligodendrocytes in regions of the brain affected by Parkinson's disease and co-localises with Lewy bodies. PLoS ONE, 2022, 17, e0262464.	2.5	15
18	Macular Microvasculature Is Associated With Total Cerebral Small Vessel Disease Burden in Recent Single Subcortical Infarction. Frontiers in Aging Neuroscience, 2021, 13, 787775.	3.4	15
19	Retinal Degeneration: A Window to Understand the Origin and Progression of Parkinson's Disease?. Frontiers in Neuroscience, 2021, 15, 799526.	2.8	12

#	Article	IF	CITATIONS
20	Multimodal brain and retinal imaging of dopaminergic degeneration in Parkinson disease. Nature Reviews Neurology, 2022, 18, 203-220.	10.1	44
21	The Value of Optical Coherence Tomography Angiography (OCT-A) in Neurological Diseases. Diagnostics, 2022, 12, 468.	2.6	12
22	<i>JAMA Ophthalmology—</i> The Year in Review, 2021. JAMA Ophthalmology, 2022, , .	2.5	0
23	Retinal age gap as a predictive biomarker of future risk of Parkinson's disease. Age and Ageing, 2022, 51,	1.6	22
24	Fluid Biomarkers in Alzheimer's Disease and Other Neurodegenerative Disorders: Toward Integrative Diagnostic Frameworks and Tailored Treatments. Diagnostics, 2022, 12, 796.	2.6	4
25	OCT-Angiografie als interdisziplinĀ r es Diagnostikum fýr Systemerkrankungen. Klinische Monatsblatter Fur Augenheilkunde, 2021, 238, 1294-1298.	0.5	4
26	Clinical Sphingolipids Pathway in Parkinson's Disease: From GCase to Integrated-Biomarker Discovery. Cells, 2022, 11, 1353.	4.1	7
27	Elevated α-synuclein and NfL levels in tear fluids and decreased retinal microvascular densities in patients with Parkinson's disease. GeroScience, 2022, 44, 1551-1562.	4.6	9
28	Retinal Microvascular Changes in Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review, Meta-Analysis, and Meta-Regression. Frontiers in Aging Neuroscience, 2022, 14, 860759.	3.4	6
29	Quantitative vessel density analysis of macular and peripapillary areas by optical coherence tomography angiography in adults with primary nephrotic syndrome. Microvascular Research, 2022, 144, 104407.	2.5	4
30	Evaluation of macular microvascular density using optical coherence tomography angiography in patients with Posner-Schlossman syndrome. BMC Ophthalmology, 2022, 22, .	1.4	4
31	Advanced ultrawide-field optical coherence tomography angiography identifies previously undetectable changes in biomechanics-related parameters in nonpathological myopic fundus. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	4.1	8
32	Evaluation of retina and microvascular changes in the patient with Parkinson's disease: A systematic review and meta-analysis. Frontiers in Medicine, 0, 9, .	2.6	8
33	Retinal organoids from human-induced pluripotent stem cells: From studying retinal dystrophies to early diagnosis of Alzheimer's and Parkinson's disease. Seminars in Cell and Developmental Biology, 2023, 144, 77-86.	5.0	7
34	Ophthalmologic problems correlates with cognitive impairment in patients with Parkinson's disease. Frontiers in Neuroscience, 0, 16 , .	2.8	1
36	Ultra-Widefield Swept-Source Optical Coherence Tomography Angiography in the Assessment of Choroidal Changes in Young Adults With Myopia. Translational Vision Science and Technology, 2022, 11, 14.	2.2	4
37	Intrasession Repeatability of Optical Coherence Tomography Angiography Parameters in Neurodegenerative Disease. Ophthalmology Science, 2023, , 100275.	2.5	0
38	Choroidal structural analysis in ultra-high risk and first-episode psychosis. European Neuropsychopharmacology, 2023, 70, 72-80.	0.7	О

#	Article	IF	CITATIONS
39	Choroidal structural alterations and choroidal vascularity index in bipolar disorder patients. Photodiagnosis and Photodynamic Therapy, 2023, 42, 103518.	2.6	1
40	Optical coherence tomography angiography in Parkinson's disease: a systematic review and meta-analysis. Eye, 2023, 37, 2847-2854.	2.1	4
41	The Role of Alpha-Synuclein Deposits in Parkinson's Disease: A Focus on the Human Retina. International Journal of Molecular Sciences, 2023, 24, 4391.	4.1	4
42	The Relationship between Visual-Evoked Potential and Optic Coherence Tomography and Clinical Findings in Parkinson Patients. Parkinson's Disease, 2023, 2023, 1-11.	1.1	2
43	Inner retinal layers' alterations of the microvasculature in early stages of Parkinson's disease: a cross sectional study. International Ophthalmology, 2023, 43, 2533-2543.	1.4	4
44	Central retinal microvasculature damage is associated with orthostatic hypotension in Parkinson's disease. Npj Parkinson's Disease, 2023, 9, .	5.3	1
45	A Deep Learning–Based Fully Automated Program for Choroidal Structure Analysis Within the Region of Interest in Myopic Children. Translational Vision Science and Technology, 2023, 12, 22.	2.2	3
46	Optical coherence tomography angiography measurements in Parkinson's disease: A systematic review and meta-analysis. Eye, 2023, 37, 3145-3156.	2.1	5
47	Association of retinal optical coherence tomography metrics and polygenic risk scores with cognitive function and future cognitive decline. British Journal of Ophthalmology, 0, , bjo-2022-322762.	3.9	2
48	Attention-Deficit/Hyperactivity Disorder Animal Model Presents Retinal Alterations and Methylphenidate Has a Differential Effect in ADHD versus Control Conditions. Antioxidants, 2023, 12, 937.	5.1	2
49	Optical coherence tomography angiography in neuro-ophthalmology. Current Opinion in Ophthalmology, 2023, 34, 354-360.	2.9	1
51	Retinal inner nuclear layer thickness in the diagnosis of cognitive impairment explored using a C57BL/6J mouse model. Scientific Reports, 2023, 13, .	3.3	0
52	Retinal and Choriocapillaris Vascular Changes in Early Alzheimer Disease Patients Using Optical Coherence Tomography Angiography. Journal of Neuro-Ophthalmology, 2023, Publish Ahead of Print, .	0.8	2
53	Optical Coherence Tomography Angiography (OCT-A): Emerging Landscapes in Neuro-Ophthalmology and Central Nervous System (CNS) Disorders. , 0, , .		0
55	Advances in laser speckle imaging: From qualitative to quantitative hemodynamic assessment. Journal of Biophotonics, 2024, 17, .	2.3	2
56	Alterations of Macular Structure in Non-Glaucomatous Subjects With Obstructive Pulmonary Function., 2023, 64, 24.		0
57	APOE ε4 Gene Carriers Demonstrate Reduced Retinal Capillary Densities in Asymptomatic Older Adults. Journal of Clinical Medicine, 2023, 12, 5649.	2.4	2
58	Longitudinal Analysis of Retinal Microvascular and Choroidal Imaging Parameters in Parkinson's Disease Compared with Controls. Ophthalmology Science, 2023, 3, 100393.	2.5	1

#	ARTICLE	IF	CITATIONS
59	Choroidal morphology and microvascular structure in eyes of patients with idiopathic normal pressure hydrocephalus before and after ventriculo-peritoneal shunt surgery. Scientific Reports, 2023, 13, .	3.3	1
60	Synthetic OCT-A blood vessel maps using fundus images and generative adversarial networks. Scientific Reports, 2023, 13, .	3.3	0
61	Evaluation of Tropicamide–Phenylephrine Mydriatic Eye Drop Instillation on Choroidal Thickness. Journal of Clinical Medicine, 2023, 12, 6355.	2.4	1
62	Clinical Observation of Macular Superficial Capillary Plexus and Ganglion Cell Complex in Patients with Parkinson's Disease. Ophthalmic Research, 2023, 66, 1181-1190.	1.9	2
63	Retinal Vessel Density and Retinal Nerve Fiber Layer Thickness: A Prospective Study of One-Year Follow-Up of Patients with Parkinson's Disease. International Journal of General Medicine, 0, Volume 16, 3701-3712.	1.8	0
64	Investigation of altered retinal microvasculature in female patients with rheumatoid arthritis: optical coherence tomography angiography detection. Bioscience Reports, 2023, 43, .	2.4	1
65	Characteristics of the retina and choroid in fibromyalgia patients and their correlation with disease severity and quality of life. Photodiagnosis and Photodynamic Therapy, 2023, 44, 103819.	2.6	0
66	Central retina thickness measured with spectral-domain optical coherence tomography in Parkinson disease: A meta-analysis. Medicine (United States), 2023, 102, e35354.	1.0	1
67	Retinal Changes in Parkinson's Disease: A Non-invasive Biomarker for Early Diagnosis. Cellular and Molecular Neurobiology, 2023, 43, 3983-3996.	3.3	2
68	The Correlation between Retinal and Choroidal Thickness with Age-Related White Matter Hyperintensities in Progressive Supranuclear Palsy. Journal of Clinical Medicine, 2023, 12, 6671.	2.4	0
69	A metabolomics study in aqueous humor discloses altered arginine metabolism in Parkinson's disease. Fluids and Barriers of the CNS, 2023, 20, .	5.0	1
70	Evaluation of Retinal Nerve Fibre Layer Thickness and Choroidal Thickness in Parkinson Disease Patients. Prague Medical Report, 2023, 124, 421-434.	0.8	0
71	Targeted spectroscopy in the eye fundus. Journal of Biomedical Optics, 2023, 28, .	2.6	0
72	OCT-A Findings and Usefulness in Alzheimer's Disease, Parkinson's Disease, and Systemic Lupus Erythematosus., 2023,, 170-188.		O
73	Ultra-Widefield Imaging of the Retinal Macrovasculature in Parkinson Disease Versus Controls With Normal Cognition Using Alpha-Shapes Analysis. Translational Vision Science and Technology, 2024, 13, 15.	2.2	0
75	Optical Coherence Tomography Angiography: Revolutionizing Clinical Diagnostics and Treatment in Central Nervous System Disease. , 2024, .		0
77	Retinal Microvasculature Causally Affects the Brain Cortical Structure: A Mendelian Randomization Study. Ophthalmology Science, 2024, , 100465.	2.5	0
78	Characterizing differences in retinal and choroidal microvasculature and structure in individuals with Huntington's Disease compared to healthy controls: A cross-sectional prospective study. PLoS ONE, 2024, 19, e0296742.	2.5	0

CITATION REPORT

#	ARTICLE	IF	CITATIONS
79	Peripapillary Optical Coherence Tomography Angiography in Alzheimer's Disease, Mild Cognitive Impairment, and Normal Cognition. Ophthalmic Surgery Lasers and Imaging Retina, 2024, 55, 78-84.	0.7	0
80	Retinal imaging and Alzheimer's disease: a future powered by Artificial Intelligence. Graefe's Archive for Clinical and Experimental Ophthalmology, 0, , .	1.9	0
81	Retinal structure and vessel density changes in cerebral small vessel disease. Frontiers in Neuroscience, $0,18,\ldots$	2.8	0
82	Combination of serum markers with optical coherence tomography angiography for evaluating neuromyelitis optica spectrum disorders and multiple sclerosis. Multiple Sclerosis and Related Disorders, 2024, 85, 105478.	2.0	0
83	Advancing systemic disease diagnosis through ophthalmic imageâ€based artificial intelligence. , 2024, 3, .		0
84	Choroidal Vascularity Index and Choroidal Structural Changes in Children With Nephrotic Syndrome. Translational Vision Science and Technology, 2024, 13, 18.	2.2	0