A Review of Resistive Switching Devices: Performance Applications

Small Structures 2, 2000109 DOI: 10.1002/sstr.202000109

Citation Report

#	Article	IF	CITATIONS
1	A dual-functional Ta/TaO _x /Ru device with both nonlinear selector and resistive switching behaviors. RSC Advances, 2021, 11, 18241-18245.	3.6	4
2	Reinforcement of double built-in electric fields in spiro-MeOTAD/Ga ₂ O ₃ /Si p–i–n structure for a high-sensitivity solar-blind UV photovoltaic detector. Journal of Materials Chemistry C, 2021, 9, 14788-14798.	5.5	21
3	Reversible Barrier Switching of ZnO/RuO2 Schottky Diodes. Materials, 2021, 14, 2678.	2.9	5
4	A Highâ€5peed True Random Number Generator Based on a Cu _{<i>x</i>} Te _{1â^'<i>x</i>} Diffusive Memristor. Advanced Intelligent Systems, 2021, 3, 2100062.	6.1	21
5	Structureâ€Dependent Influence of Moisture on Resistive Switching Behavior of ZnO Thin Films. Advanced Materials Interfaces, 2021, 8, 2100915.	3.7	13
6	Performance Assessment of Amorphous HfO2-Based RRAM Devices for Neuromorphic Applications. ECS Journal of Solid State Science and Technology, 2021, 10, 083002.	1.8	2
7	A Cu/HZO/GeS/Pt Memristor for Neuroinspired Computing. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100072.	2.4	5
8	A Memristorâ€Based Silicon Carbide for Artificial Nociceptor and Neuromorphic Computing. Advanced Materials Technologies, 2021, 6, 2100373.	5.8	31
9	Reconfigurable 2D WSe ₂ â€Based Memtransistor for Mimicking Homosynaptic and Heterosynaptic Plasticity. Small, 2021, 17, e2103175.	10.0	45
10	Parylene-based memristive synapses for hardware neural networks capable of dopamine-modulated STDP learning. Journal Physics D: Applied Physics, 2021, 54, 484002.	2.8	11
11	Memristor-based biomimetic compound eye for real-time collision detection. Nature Communications, 2021, 12, 5979.	12.8	82
12	Unconventional Resistive Switching Behavior in Fibroinâ€Based Memristor. Advanced Electronic Materials, 2022, 8, 2100843.	5.1	21
13	Antiferromagnetism in Niâ€Based Superconductors. Advanced Materials, 2022, 34, e2106117.	21.0	26
14	Grain Boundary Confinement of Silver Imidazole for Resistive Switching. Advanced Functional Materials, 2022, 32, 2108598.	14.9	11
15	Alloy electrode engineering in memristors for emulating the biological synapse. Nanoscale, 2022, 14, 1318-1326.	5.6	15
16	A Spiro-MeOTAD/Ga ₂ O ₃ /Si p-i-n Junction Featuring Enhanced Self-Powered Solar-Blind Sensing via Balancing Absorption of Photons and Separation of Photogenerated Carriers. ACS Applied Materials & Interfaces, 2021, 13, 57619-57628.	8.0	19
17	Engineering Spiking Neurons Using Threshold Switching Devices for High-Efficient Neuromorphic Computing. Frontiers in Neuroscience, 2021, 15, 786694.	2.8	11
18	FangTianSim: High-Level Cycle-Accurate Resistive Random-Access Memory-Based Multi-Core Spiking Neural Network Processor Simulator. Frontiers in Neuroscience, 2021, 15, 806325.	2.8	1

#	Article	IF	Citations
19	Emerging dynamic memristors for neuromorphic reservoir computing. Nanoscale, 2022, 14, 289-298.	5.6	43
20	Memristors based on carbon dots for learning activities in artificial biosynapse applications. Materials Chemistry Frontiers, 2022, 6, 1098-1106.	5.9	6
21	Flexible memristive spiking neuron for neuromorphic sensing and computing. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 148503.	0.5	2
22	Intelligent resistive-switching EWOD device based on the Fe doped ZnO memristor. Ceramics International, 2022, , .	4.8	3
23	Natural biomaterial honey-based resistive switching device for artificial synapse in neuromorphic systems. Applied Physics Letters, 2022, 120, .	3.3	10
24	Parylene-based memristive crossbar structures with multilevel resistive switching for neuromorphic computing. Nanotechnology, 2022, 33, 255201.	2.6	13
25	Structure and Electrical Properties of Zirconium-Aluminum-Oxide Films Engineered by Atomic Layer Deposition. Coatings, 2022, 12, 431.	2.6	1
26	Inkjetâ€Printed Ag/aâ€TiO ₂ /Ag Neuromorphic Nanodevice Based on Functionalized Ink. Advanced Engineering Materials, 2022, 24, .	3.5	5
27	High stability resistive switching mechanism of a screen-printed electrode based on BOBZBT2 organic pentamer for creatinine detection. Scientific Reports, 2021, 11, 23519.	3.3	4
28	Application of neuromorphic resistive random access memory in image processing. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 148504.	0.5	1
29	Improved resistive switching characteristics of a multi-stacked HfO ₂ /Al ₂ O ₃ /HfO ₂ RRAM structure for neuromorphic and synaptic applications: experimental and computational study. RSC Advances, 2022, 12, 11649-11656.	3.6	8
30	A Heterogeneously Integrated Spiking Neuron Array for Multimodeâ€Fused Perception and Object Classification. Advanced Materials, 2022, 34, e2200481.	21.0	48
31	Implementing in-situ self-organizing maps with memristor crossbar arrays for data mining and optimization. Nature Communications, 2022, 13, 2289.	12.8	25
32	Toward memristive in-memory computing: principles and applications. Frontiers of Optoelectronics, 2022, 15, .	3.7	17
33	Digital and analog resistive switching in NiO-based memristor by electrode engineering. Japanese Journal of Applied Physics, 0, , .	1.5	3
34	Stability of Quantized Conductance Levels in Memristors with Copper Filaments: Toward Understanding the Mechanisms of Resistive Switching. Physical Review Applied, 2022, 17, .	3.8	5
35	Observation of resistive switching in a graphite/hexagonal boron nitride/graphite heterostructure memristor. Journal of Semiconductors, 2022, 43, 052003.	3.7	2
36	Non-volatile memory based in-memory computing technology. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 148507.	0.5	1

#	Article	IF	CITATIONS
37	Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise. Chaos, Solitons and Fractals, 2022, 162, 112459.	5.1	5
38	Principle and Application of Frequency-Domain Characteristic Analysis of Fractional-Order Memristor. Micromachines, 2022, 13, 1512.	2.9	0
39	Correlation of natural honey-based RRAM processing and switching properties by experimental study and machine learning. Solid-State Electronics, 2022, 197, 108463.	1.4	6
40	Electrode dependence in halide perovskite memories: resistive switching behaviours. Materials Chemistry Frontiers, 2022, 6, 3125-3142.	5.9	8
41	Plasma fireball-mediated ion implantation for nonvolatile memory application. Applied Surface Science, 2023, 607, 154999.	6.1	1
42	Voltage-Controlled Conversion from CDS to MDS in an Azobenzene-Based Organic Memristor for Information Storage and Logic Operations. ACS Applied Materials & Interfaces, 2022, 14, 41304-41315.	8.0	23
43	Study of carbon nanotube embedded honey as a resistive switching material. Nanotechnology, 2022, 33, 495705.	2.6	3
44	Probabilistic computing using Cu0.1Te0.9/HfO2/Pt diffusive memristors. Nature Communications, 2022, 13, .	12.8	19
45	Flexible Threshold Switching Based on CsCu ₂ 1 ₃ with Low Threshold Voltage and High Air Stability. ACS Applied Materials & Interfaces, 2022, 14, 43474-43481.	8.0	8
46	Electrical Gating of the Charge-Density-Wave Phases in Two-Dimensional <i>h</i> -BN/1T-TaS ₂ Devices. ACS Nano, 2022, 16, 18968-18977.	14.6	9
47	Reproducible Non-Volatile Multi-State Storage and Emulation of Synaptic Plasticity Based on a Copper-Nanoparticle-Embedded HfOx/ZnO Bilayer with Ultralow-Switching Current and Ideal Data Retention. Nanomaterials, 2022, 12, 3769.	4.1	3
48	All-atomristor logic gates. Nano Research, 2023, 16, 1688-1694.	10.4	4
49	Improved Performance of the Al ₂ O ₃ -Protected HfO ₂ –TiO ₂ Base Layer with a Self-Assembled CH ₃ NH ₃ PbI ₃ Heterostructure for Extremely Low Operating Voltage and Stable Filament Formation in Nonvolatile Resistive Switching Memory. ACS Applied	8.0	7
50	Materials & amp; Interfaces, 2022, 14, 51066-51083. Advancement in Soft Iontronic Resistive Memory Devices and Their Application for Neuromorphic Computing. Advanced Intelligent Systems, 2023, 5, .	6.1	10
51	Insights into nonvolatile resistive switching in monolayer hexagonal boron nitride. Journal of Applied Physics, 2022, 132, .	2.5	3
52	MEMRISTOR-BASED LSTM NETWORK FOR TEXT CLASSIFICATION. Fractals, 2023, 31, .	3.7	32
53	Recent progress in bio-voltage memristors working with ultralow voltage of biological amplitude. Nanoscale, 2023, 15, 4669-4681.	5.6	2
54	Sprayed FeWO4 thin film-based memristive device with negative differential resistance effect for non-volatile memory and synaptic learning applications. Journal of Colloid and Interface Science, 2023, 642, 540-553.	9.4	8

#	Article	IF	Citations
55	A Memristive Cell with Long Retention Time in 65 nm CMOS Technology. Advanced Electronic Materials, 0, , .	5.1	0
56	ZnO and ZnO-Based Materials as Active Layer in Resistive Random-Access Memory (RRAM). Crystals, 2023, 13, 416.	2.2	10
57	Nanosecond Memristor Based on Oxygen Vacancy Engineering in SrTiO ₃ Single Crystal. ChemNanoMat, 2023, 9, .	2.8	0
58	Tin Oxide Nanorod Array-Based Photonic Memristors with Multilevel Resistance States Driven by Optoelectronic Stimuli. ACS Applied Materials & Interfaces, 2023, 15, 15676-15690.	8.0	3
59	Research Process of Carbon Dots in Memristors. Advanced Electronic Materials, 2023, 9, .	5.1	6
60	Promising Materials and Synthesis Methods for Resistive Switching Memory Devices: A Status Review. ACS Applied Electronic Materials, 2023, 5, 2454-2481.	4.3	10
61	Nano <i>t</i> -Se Peninsulas Embedded in Natively Oxidized 2D TiSe ₂ Enable Uniform and Fast Memristive Switching. ACS Applied Materials & Interfaces, 2023, 15, 23371-23379.	8.0	2
62	One step hydrothermal synthesis of MoS2–SnO2 nanocomposite for resistive switching memory application. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1
63	Polarization-field tuning and stable performance of the resistance switching in a ferroelectric/amorphous PbZr0.2Ti0.8O3/La2Zr2O7 heterostructure. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
64	Inâ€Grain Ferroelectric Switching in Subâ€5 nm Thin Al _{0.74} Sc _{0.26} NÂFilms at 1 V. Advanced Science, 2023, 10, .	11.2	11
65	Evolution between Volatile and Nonvolatile Resistive Switching Behaviors in Ag/TiO _{<i>x</i>} /CeO _{<i>y</i>} /F-Doped SnO ₂ Nanostructure-Based Memristor Devices for Information Processing Applications. ACS Applied Nano Materials, 2023, 6, 8857-8867.	5.0	6
66	Recent progress of layered memristors based on two-dimensional MoS2. Science China Information Sciences, 2023, 66, .	4.3	1
67	Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing. Frontiers of Physics, 2023, 18, .	5.0	3
68	Photochargeable Semiconductors: in "Dark Photocatalysis―and Beyond. Advanced Functional Materials, 2023, 33, .	14.9	4
69	Multi-level resistive switching in hafnium-oxide-based devices for neuromorphic computing. Nano Convergence, 2023, 10, .	12.1	3
70	Advances in pixel driving technology for micro-LED displays. Nanoscale, 2023, 15, 17232-17248.	5.6	2
71	TiW/SiO _X :Al/TiW memristor with negative differential resistance effect for neuromorphic computing. Materials Express, 2023, 13, 1117-1124.	0.5	0
72	Mg dopant induced ultra-high HRS resistance and striking switching window characteristics in amorphous Y2O3 film-based memristors. Applied Physics Letters, 2023, 123, .	3.3	1

#	Article	IF	CITATIONS
73	Soft Grafting of DNA Over Hexagonal Copper Sulfide for Low-Power Memristor Switching. Materials Advances, 0, , .	5.4	0
74	A bidirectional thermal sensory leaky integrate-and-fire (LIF) neuron model based on bipolar NbO _{<i>x</i>} volatile threshold devices with ultra-low operating current. Nanoscale, 0, , .	5.6	0
75	Silicon Oxide-based CBRAM Memory and Neuromorphic Properties. , 2023, , 515-529.		0
76	Effect of electrode materials on resistive switching behaviour of NbOx-based memristive devices. Scientific Reports, 2023, 13, .	3.3	1
77	Memristive Devices for Neuromorphic and Deep Learning Applications. , 2023, , 680-704.		0
78	<i>In situ</i> observation of indium filament growth dynamics in ITO electrode-based memristor. Applied Physics Letters, 2023, 123, .	3.3	0
79	Memory Characteristics of Anthracene-based Polyimides in Non-volatile Resistive Memory Devices. Materials Advances, 0, , .	5.4	0
80	A Robust Memristor-Enhanced Polynomial Hyper-Chaotic Map and Its Multi-Channel Image Encryption Application. Micromachines, 2023, 14, 2090.	2.9	3
81	Transformation of rust iron into a sustainable product for applications in the electronic, energy, biomedical, and environment fields: Towards a multitasking approach. Nano Today, 2024, 54, 102085.	11.9	0
82	Praseodymium Content Influence on the Resistive Switching Effect of HfO ₂ -Based RRAM Devices. , 2023, , .		0
83	Recent advances of carbon dot-based memristors: Mechanisms, devices, and applications. Applied Materials Today, 2024, 36, 102032.	4.3	0
84	Effect of Temperature on the Multilevel Properties and Set and Reset Transitions in HfO ₂ -Based Resistive Switching Devices. , 2023, , .		0
85	Noncytotoxic WORM Memory Using Lysozyme with Ultrahigh Stability for Transient and Sustainable Electronics Applications. ACS Omega, 2024, 9, 618-627.	3.5	0
86	Fabrication of Sb ₂ S ₃ /Sb ₂ Se ₃ heterostructure for potential resistive switching applications. Nano Express, 2024, 5, 015005.	2.4	2
87	Resistive Switching Properties in Memristors for Optoelectronic Synaptic Memristors: Deposition Techniques, Key Performance Parameters, and Applications. ACS Applied Electronic Materials, 0, , .	4.3	0
88	From fundamentals to frontiers: a review of memristor mechanisms, modeling and emerging applications. Journal of Materials Chemistry C, 2024, 12, 1583-1608.	5.5	0
89	Realization of nociceptive receptors based on Mott memristors. Applied Physics Express, 2024, 17, 025001.	2.4	0
91	Colossal Magnetoresistive Switching Induced by d ⁰ Ferromagnetism of MgO in a Semiconductor Nanochannel Device with Ferromagnetic Fe/MgO Electrodes. Advanced Materials, 0, , .	21.0	0

#	Article	IF	CITATIONS
92	Artificial Optoelectronic Synapses Based on Light ontrollable Ferroelectric Semiconductor Memristor. Advanced Optical Materials, 0, , .	7.3	0
93	Effect of Film Density on MgSiO ₃ -Based Resistive Random-Access Memory. ECS Journal of Solid State Science and Technology, 2024, 13, 025004.	1.8	0
94	Enriching oxygen vacancies in hematite (α-Fe2O3) films with Cu impurities for resistive switching applications. Journal of Materials Science: Materials in Electronics, 2024, 35, .	2.2	0